Na-deficient P2-type layered oxide cathodes for practical sodium-ion batteries

Yu Huang , Weixiong Zeng , Kui Li , Xiaobo Zhu

Microstructures ›› 2024, Vol. 4 ›› Issue (3) : 2024027

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (3) :2024027 DOI: 10.20517/microstructures.2023.102
Review

Na-deficient P2-type layered oxide cathodes for practical sodium-ion batteries

Author information +
History +
PDF

Abstract

Sodium-ion batteries (SIBs) have attracted enormous attention as candidates in stationary energy storage systems, because of the decent electrochemical performance based on cheap and abundant Na-ion intercalation chemistry. Layered oxides, the workhorses of modern lithium-ion batteries, have regained interest for replicating their success in enabling SIBs. A unique feature of sodium layered oxides is their ability to crystallize into a thermodynamically stable P2-type layered structure with under-stoichiometric Na content. This structure provides highly open trigonal prismatic environments for Na ions, permitting high Na+ mobility and excellent structural stability. This review delves into the intrinsic characteristics and key challenges faced by P2-type cathodes and then comprehensively summarizes the up-to-date advances in modification strategies from compositional design, elemental doping, phase mixing, morphological control, and surface modification to sodium compensation. The updated understanding presented in this review is anticipated to guide and expedite the development of P2-type layered oxide cathodes for practical SIB applications.

Keywords

Sodium-ion batteries / layered structure / Na deficiency / P2-type / modification strategies / sodium compensation

Cite this article

Download citation ▾
Yu Huang, Weixiong Zeng, Kui Li, Xiaobo Zhu. Na-deficient P2-type layered oxide cathodes for practical sodium-ion batteries. Microstructures, 2024, 4(3): 2024027 DOI:10.20517/microstructures.2023.102

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Van der Ven A,Banerjee S.Rechargeable alkali-ion battery materials: theory and computation.Chem Rev2020;120:6977-7019

[2]

Larcher D.Towards greener and more sustainable batteries for electrical energy storage.Nat Chem2015;7:19-29

[3]

Zhu X,Manning E.Recent advances on Fe- and Mn-based cathode materials for lithium and sodium ion batteries.J Nanopart Res2018;20:160

[4]

Yabuuchi N,Iwatate J.P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries.Nat Mater2012;11:512-7

[5]

Yaroshevsky AA.Abundances of chemical elements in the Earth’s crust.Geochem Int2006;44:48-55

[6]

USG Survey. Mineral commodity summaries. Available from: https://pubs.usgs.gov/publication/mcs2023 [Last accessed on 11 May 2024]

[7]

Rudola A,Barker J.Reviewing the safe shipping of lithium-ion and sodium-ion cells: a materials chemistry perspective.Energy Mater Adv2021;2021:2021/9798460

[8]

Zhu X.Advances in materials for all-climate sodium-ion batteries.EcoMat2020;2:e12043

[9]

Liu Z,Chu S.Integrating P2 into O′3 toward a robust Mn-based layered cathode for sodium-ion batteries.J Mater Chem A2020;8:23820-6

[10]

Zhu X,Fujii H.A new sodium iron phosphate as a stable high-rate cathode material for sodium ion batteries.Nano Res2018;11:6197-205

[11]

Liang X,Sun Y.Practical cathodes for sodium-ion batteries: who will take the crown?.Adv Energy Mater2023;13:2301975

[12]

Delmas C,Guignard M.The layered oxides in lithium and sodium-ion batteries: a solid-state chemistry approach.Adv Energy Mater2021;11:2001201

[13]

Peng B,Ahmad N,Ma X.Recent progress in the emerging modification strategies for layered oxide cathodes toward practicable sodium ion batteries.Adv Energy Mater2023;13:2300334

[14]

Zhang Y,Huang Y.Air-stable NaxTMO2 cathodes for sodium storage.Front Chem2019;7:335 PMCID:PMC6528619

[15]

Wang X,Zhao C.Achieving a high-performance sodium-ion pouch cell by regulating intergrowth structures in a layered oxide cathode with anionic redox.Nat Energy2024;9:184-96

[16]

Johnston W,Sestrich D.The preparation, crystallography, and magnetic properties of the LixCo1-xO system.J Phys Chem Solids1958;7:1-13

[17]

Mizushima K,Wiseman P.LixCoO2 (0< x< -1): a new cathode material for batteries of high energy density.Mater Res Bull1980;15:783-9

[18]

Fouassier C,Reau J.Sur de nouveaux bronzes oxygénés de formule NaχCoO2(χ1). Le système cobalt-oxygène-sodium.J Solid State Chem1973;6:532-7

[19]

Delmas C,Fouassier C.Electrochemical intercalation of sodium in NaxCoO2 bronzes.Solid State Ion1981;3-4:165-9

[20]

Braconnier J,Hagenmuller P.Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2.Mater Res Bull1982;17:993-1000

[21]

Maazaz A,Hagenmuller P.A study of the NaxTiO2 system by electrochemical deintercalation.J Incl Phenom1983;1:45-51

[22]

Delmas C,Hagenmuller P.Structural classification and properties of the layered oxides.Physica B+C1980;99:81-5

[23]

Katcho NA,Saurel D.Origins of bistability and na ion mobility difference in P2- and O3-Na2/3Fe2/3Mn1/3O2 cathode polymorphs.Adv Energy Mater2017;7:1601477

[24]

Zhao C,Yao Z.Rational design of layered oxide materials for sodium-ion batteries.Science2020;370:708-11

[25]

Kim D,Slater M.Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes.Adv Energy Mater2011;1:333-6

[26]

Cheng Z,Guo Y.Mitigating the large-volume phase transition of P2-type cathodes by synergetic effect of multiple ions for improved sodium-ion batteries.Adv Energy Mater2022;12:2103461

[27]

Lee DH,Meng YS.An advanced cathode for Na-ion batteries with high rate and excellent structural stability.Phys Chem Chem Phys2013;15:3304-12

[28]

Jung YH,Johnsen RE,Kim DK.In situ X-ray diffraction studies on structural changes of a P2 layered material during electrochemical desodiation/sodiation.Adv Funct Mater2015;25:3227-37

[29]

Sathiya M,Doublet M,Hadermann J.A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes.Adv Energy Mater2018;8:1702599

[30]

Ong SP,Hautier G.Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials.Energy Environ Sci2011;4:368088

[31]

Liu Z,Ji S,Zhang D.Recent progress of P2-type layered transition-metal oxide cathodes for sodium-ion batteries.Chemistry2020;26:7747-66

[32]

Paidi AK,Ramakrishnan P.Unravelling the nature of the intrinsic complex structure of binary-phase Na-layered oxides.Adv Mater2022;34:e2202137

[33]

Jung R,Karayaylali P.Effect of ambient storage on the degradation of Ni-rich positive electrode materials (NMC811) for Li-Ion batteries.J Electrochem Soc2018;165:A132-41

[34]

You Y,Li W.Understanding the air-exposure degradation chemistry at a nanoscale of layered oxide cathodes for sodium-Ion batteries.Nano Lett2019;19:182-8

[35]

Zheng L,Shunmugasundaram R.Effect of controlled-atmosphere storage and ethanol rinsing on NaNi0.5Mn0.5O2 for sodium-ion batteries.ACS Appl Mater Interfaces2018;10:38246-54

[36]

Sun Y,Meng D.Degradation mechanism of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode materials during ambient storage and their in situ regeneration.ACS Appl Energy Mater2021;4:2061-7

[37]

Zuo W,Liu X.The stability of P2-layered sodium transition metal oxides in ambient atmospheres.Nat Commun2020;11:3544 PMCID:PMC7363866

[38]

Mu L,Yang Z.Water-processable P2-Na0.67Ni0.22Cu0.11Mn0.56Ti0.11O2 cathode material for sodium ion batteries.J Electrochem Soc2019;166:A251-7

[39]

Han MH,Sharma N.High-performance P2-phase Na2/3Mn0.8Fe0.1Ti 0.1O2 cathode material for ambient-temperature sodium-ion batteries.Chem Mater2016;28:106-16

[40]

Deng Y,Liang R.Layer-based heterostructured cathodes for lithium-ion and sodium-ion batteries.Adv Funct Mater2019;29:1808522

[41]

Song T.Recent progress on strategies to improve the high-voltage stability of layered-oxide cathode materials for sodium-ion batteries.J Phys Mater2021;4:032004

[42]

Hwang J,Yu T.A new P2-type layered oxide cathode with extremely high energy density for sodium-ion batteries.Adv Energy Mater2019;9:1803346

[43]

Lu Z.In situ X-ray diffraction study of P2-Na2/3[Ni1/3Mn2/3]O2.J Electrochem Soc2001;148:A1225

[44]

Yang L,Liu J.Lithium-doping stabilized high-performance P2-Na0.66Li0.18Fe0.12Mn0.7O2 cathode for sodium ion batteries.J Am Chem Soc2019;141:6680-9

[45]

Singh G,Lopez del Amo JM.High voltage Mg-doped Na0.67Ni0.3-xMgxMn0.7O2 (x = 0.05, 0.1) Na-Ion cathodes with enhanced stability and rate capability.Chem Mater2016;28:5087-94

[46]

Yuan D,Qian J.P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 cathode material with high-capacity for sodium-ion battery.Electrochim Acta2014;116:300-5

[47]

Jiang M,Liao X.Revisiting the capacity-fading mechanism of P2-type sodium layered oxide cathode materials during high-voltage cycling.J Energy Chem2022;69:16-25

[48]

Martens I,Mirolo M.Defects and nanostrain gradients control phase transition mechanisms in single crystal high-voltage lithium spinel.Nat Commun2023;14:6975 PMCID:PMC10620135

[49]

Martens I,Mirolo M.Revisiting phase transformation mechanisms in LiNi0.5Mn1.5O4 high voltage cathodes with operando microdiffraction.ACS Mater Lett2022;4:2528-36

[50]

Asl HY.Reining in dissolved transition-metal ions.Science2020;369:140-1

[51]

Zhu X,Luo B,Wang L.A stable high-power Na2Ti3O7/LiNi0.5Mn1.5O4 Li-ion hybrid energy storage device.Electrochim Acta2018;284:30-7

[52]

Lu Z.Intercalation of water in P2, T2 and O2 structure Az[CoxNi1/3-xMn2/3]O2.Chem Mater2001;13:1252-7

[53]

Duffort V,Black R.Uptake of CO2 in layered P2-Na0.67Mn0.5Fe0.5O2: insertion of carbonate anions.Chem Mater2015;27:2515-24

[54]

Tang J,Pol VG.Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries.J Power Sources2018;396:476-82

[55]

Xiao B,Gu M.Lithium-pretreated hard carbon as high-performance sodium-ion battery anodes.Adv Energy Mater2018;8:1801441

[56]

Zhang B,Rousse G,Abakumov AM.Insertion compounds and composites made by ball milling for advanced sodium-ion batteries.Nat Commun2016;7:10308 PMCID:PMC4735632

[57]

Park K,Goodenough JB.Electrochemical and chemical properties of Na2NiO2 as a cathode additive for a rechargeable sodium battery.Chem Mater2015;27:6682-8

[58]

Jo C,Yashiro H.Controllable charge capacity using a black additive for high-energy-density sodium-ion batteries.J Mater Chem A2019;7:3903-9

[59]

Sathiya M,Batuk D,Gopalan R.Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-Ion cells based on P2-NaxMO2 electrodes.Chem Mater2017;29:5948-56

[60]

Singh G,Cabanas MC,Armand M.An approach to overcome first cycle irreversible capacity in P2-Na2/3[Fe1/2Mn1/2]O2.Electrochem Commun2013;37:61-3

[61]

Shen B,Dai C.Manipulating irreversible phase transition of NaCrO2 towards an effective sodium compensation additive for superior sodium-ion full cells.J Colloid Interface Sci2019;553:524-9

[62]

Martinez De Ilarduya J,López del Amo JM,Singh G.NaN3 addition, a strategy to overcome the problem of sodium deficiency in P2-Na0.67[Fe0.5Mn0.5]O2 cathode for sodium-ion battery.J Power Sources2017;337:197-203

[63]

Niu Y,Yin Y.High-efficiency cathode sodium compensation for sodium-ion batteries.Adv Mater2020;32:2001419

[64]

Shacklette LW,Townsend L.Rechargeable electrodes from sodium cobalt bronzes.J Electrochem Soc1988;135:2669-74

[65]

Mendiboure A,Hagenmuller P.Electrochemical intercalation and deintercalation of NaxMnO2 bronzes.J Solid State Chem1985;57:323-31

[66]

Hamani D,Tarascon J.NaxVO2 as possible electrode for Na-ion batteries.Electrochem Commun2011;13:938-41

[67]

Berthelot R,Delmas C.Electrochemical investigation of the P2-NaxCoO2 phase diagram.Nat Mater2011;10:74-80

[68]

Caballero A,Morales J,Santos Peña J.Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells.J Mater Chem2002;12:1142-7

[69]

Wang Y,Fitzhugh W.Tuning discharge voltage by Schottky electron barrier in P2-Na2/3Mg0.205Ni0.1Fe0.05Mn0.645O2.Energy Stor Mater2023;55:587-96

[70]

Voronina N,Yu JH.Unveiling the role of ruthenium in layered sodium cobaltite toward high-performance electrode enabled by anionic and cationic redox.Adv Energy Mater2023;13:2302017

[71]

She Q,Huang A.Limiting cobalt fraction in lithium rich cathode materials for stable and fast activation.Chem Eng Sci2024;284:119526

[72]

Zhang J,Wang W,Li B.Comprehensive review of P2-type Na2/3Ni1/3Mn2/3O2, a potential cathode for practical application of Na-ion batteries.ACS Appl Mater Interfaces2019;11:22051-66

[73]

Lu Z,Dahn JR.Superlattice ordering of Mn, Ni, and Co in layered alkali transition metal oxides with P2, P3, and O3 Structures.Chem Mater2000;12:3583-90

[74]

Zhang Y,Ma J.Revisiting the Na2/3Ni1/3Mn2/3O2 cathode: oxygen redox chemistry and oxygen release suppression.ACS Cent Sci2020;6:232-40 PMCID:PMC7047265

[75]

Liu L,Bo S.High-performance P2-type Na2/3(Mn1/2Fe1/4Co1/4)O2 cathode material with superior rate capability for Na-ion batteries.Adv Energy Mater2015;5:1500944

[76]

Li Z,Sun L,Liu X.Designing an advanced P2-Na0.67Mn0.65Ni0.2Co0.15O2 layered cathode material for Na-ion batteries.J Mater Chem A2015;3:16272-8

[77]

Liu Z,Feng S.Ultralow volume change of P2-type layered oxide cathode for Na-ion batteries with controlled phase transition by regulating distribution of Na.Angew Chem Int Ed2021;60:20960-9

[78]

Wang PF,Liu XY.Na+/vacancy disordering promises high-rate Na-ion batteries.Sci Adv2018;4:eaar6018 PMCID:PMC5844706

[79]

Tang K,Xie X.Electrochemical performance and structural stability of air-stable Na0.67Ni0.33Mn0.67-xTixO2 cathode materials for high-performance sodium-ion batteries.Chem Eng J2020;399:125725

[80]

Wang Y,Xing Y.Entropy modulation strategy of P2-type layered transition metal oxide cathodes for sodium-ion batteries with a high performance.J Mater Chem A2023;11:19955-64

[81]

Yoshida H,Kubota K.P2-type Na2/3Ni1/3Mn2/3-xTixO2 as a new positive electrode for higher energy Na-ion batteries.Chem Commun2014;50:3677-80

[82]

Zou P,Wang C,Li T.Regulating cation interactions for zero-strain and high-voltage P2-type Na2/3Li1/6Co1/6Mn2/3O2 layered oxide cathodes of sodium-ion batteries.Angew Chem Int Ed2023;62:e202304628

[83]

Liu Z,Zeng J.Co-free layered oxide cathode material with stable anionic redox reaction for sodium-ion batteries.Adv Energy Mater2023;13:2301471

[84]

Dreyer SL,Wang J.The effect of configurational entropy on acoustic emission of P2-type layered oxide cathodes for sodium-ion batteries.J Phys Energy2023;5:035002

[85]

Wang J,Wang K.P2-type layered high-entropy oxides as sodium-ion cathode materials.Mater Futures2022;1:035104

[86]

Kubota K,Komaba S.Impact of Ti and Zn dual-substitution in P2 type Na2/3Ni1/3Mn2/3O2 on Ni-Mn and Na-vacancy ordering and electrochemical properties.Adv Mater2023;35:e2300714

[87]

Li Y,Liu B,Liang X.Heteroatom doping: an effective way to boost sodium ion storage.Adv Energy Mater2020;10:2000927

[88]

Zhang L,Liu Y.Suppressing interlayer-gliding and Jahn-teller effect in P2-type layered manganese oxide cathode via Mo doping for sodium-ion batteries.Chem Eng J2021;426:130813

[89]

Wang C,Zhao S.Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery.Nat Commun2021;12:2256 PMCID:PMC8050090

[90]

Ma C,Xu J.Exploring oxygen activity in the high energy P2-type Na0.78Ni0.23Mn0.69O2 cathode material for Na-ion batteries.J Am Chem Soc2017;139:4835-45

[91]

Shen Q,Zhao X.Transition-metal vacancy manufacturing and sodium-site doping enable a high-performance layered oxide cathode through cationic and anionic redox chemistry.Adv Funct Mater2021;31:2106923

[92]

Fu H,Fan G.Synergetic stability enhancement with magnesium and calcium ion substitution for Ni/Mn-based P2-type sodium-ion battery cathodes.Chem Sci2022;13:726-36 PMCID:PMC8768886

[93]

Li C,Hu B.Anionic redox in Na-based layered oxide cathodes: a review with focus on mechanism studies.Mater Today Energy2020;17:100474

[94]

Huang Z,Heng Y,Geng H.Advanced layered oxide cathodes for sodium/potassium-ion batteries: development, challenges and prospects.Chem Eng J2023;452:139438

[95]

Wang X,Ronne A.Stabilizing lattice oxygen redox in layered sodium transition metal oxide through spin singlet state.Nat Commun2023;14:7665 PMCID:PMC10667238

[96]

Wang T,Xia HY.Anionic redox regulated via metal-ligand combinations in layered sulfides.Adv Mater2022;34:e2107353

[97]

Cai C,Hu P.Comprehensively strengthened metal-oxygen bonds for reversible anionic redox reaction.Adv Funct Mater2023;33:2215155

[98]

Liu K,Moon J.Insights into the enhanced cycle and rate performances of the F-substituted P2-type oxide cathodes for sodium-ion batteries.Adv Energy Mater2020;10:2000135

[99]

Wang X,Feng X.In-plane BO3 configuration in P2 layered oxide enables outstanding long cycle performance for sodium ion batteries.Small Methods2023;7:e2201201

[100]

Chae MS,Lyoo J.Anomalous sodium storage behavior in Al/F dual-doped P2-type sodium manganese oxide cathode for sodium-ion batteries.Adv Energy Mater2020;10:2002205

[101]

Mao Q,Wang J.Mitigating the P2-O2 transition and Na+/vacancy ordering in Na2/3Ni1/3Mn2/3O2 by anion/cation dual-doping for fast and stable Na+ insertion/extraction.J Mater Chem A2021;9:10803-11

[102]

Cui X,Ye X.Insights into the improved cycle and rate performance by ex-situ F and in-situ Mg dual doping of layered oxide cathodes for sodium-ion batteries.Energy Stor Mater2022;45:1153-64

[103]

Ma S,Xin HL.Extending phase-variation voltage zones in P2-type sodium cathodes through high-entropy doping for enhanced cycling stability and rate capability.Mater Today Energy2023;38:101446

[104]

Lee E,Ren Y.Layered P2/O3 intergrowth cathode: toward high power Na-ion batteries.Adv Energy Mater2014;4:1400458

[105]

Guo S,Yu H.A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries.Angew Chem Int Ed2015;54:5894-9

[106]

Huang Q,Zhang L.Shear-resistant interface of layered oxide cathodes for sodium ion batteries.Energy Stor Mater2022;45:389-98

[107]

Li Z,Gao R.Li-substituted co-free layered P2/O3 biphasic Na0.67Mn0.55Ni0.25Ti0.2-xLixO2 as high-rate-capability cathode materials for sodium ion batteries.J Phys Chem C2016;120:9007-16

[108]

Zhou D,Lv X.A novel P2/O3 biphase Na0.67Fe0.425Mn0.425Mg0.15O2 as cathode for high-performance sodium-ion batteries.J Power Sources2019;421:147-55

[109]

Yu L,Xu K.Interlocking biphasic chemistry for high-voltage P2/O3 sodium layered oxide cathode.Energy Stor Mater2022;50:730-9

[110]

Chen C,Li Y.P2/O3 biphasic Fe/Mn-based layered oxide cathode with ultrahigh capacity and great cyclability for sodium ion batteries.Nano Energy2021;90:106504

[111]

Liang X.A novel pentanary metal oxide cathode with P2/O3 biphasic structure for high-performance sodium-ion batteries.Adv Funct Mater2022;32:2206154

[112]

Zhou P,Liu J.High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries.Energy Stor Mater2023;57:618-27

[113]

Mu J,Dong W,Han Z.Biphasic high-entropy layered oxide as a stable and high-rate cathode for sodium-ion batteries.Chem Eng J2023;471:144403

[114]

Gao X,Chen H.Cationic-potential tuned biphasic layered cathodes for stable desodiation/sodiation.Sci Bull2022;67:1589-602

[115]

Lin C,Wang X.P2/O3 biphase integration promoting the enhancement of structural stability for sodium layered oxide cathode.Chem Eng J2024;480:147964

[116]

Zhu YF,Hua WB.Manipulating layered P2@P3 integrated spinel structure evolution for high-performance sodium-ion batteries.Angew Chem Int Ed2020;59:9299-304

[117]

Wu ZG,Zhong YJ.Mn-based cathode with synergetic layered-tunnel hybrid structures and their enhanced electrochemical performance in sodium ion batteries.ACS Appl Mater Interfaces2017;9:21267-75

[118]

Xiao Y,Yin Y.A layered-tunnel intergrowth structure for high-performance sodium-ion oxide cathode.Adv Energy Mater2018;8:1800492

[119]

Huang Q,Xu S.A P2@tunnel heterostructure cathode for high-performance sodium-ion batteries.ChemElectroChem2020;7:4383-9

[120]

Xiao Y,Li H.Insights into layered-tunnel dynamic structural evolution based on local coordination chemistry regulation for high-energy-density and long-cycle-life sodium-ion oxide cathodes.InfoMat2023;5:e12475

[121]

Gao G,Ma H.Interface-rich mixed P2+T phase NaxCo0.1Mn0.9O2(0.44 ≤ x ≤ 0.7) toward fast and high capacity sodium storage.J Mater Chem A2018;6:6675-84

[122]

Feng J,Zhong J,Wei Z.Integrating superlattice to regulate P2-O2 phase transition and improve cycling stability in sodium-ion batteries.Batteries Supercaps2022;5:e202200115

[123]

Vanam SP.A molybdenum doped layer-spinel composite cathode material for sodium-ion battery.Electrochim Acta2022;431:141122

[124]

Li R,Li J.An undoped tri-phase coexistent cathode material for sodium-ion batteries.Adv Funct Mater2022;32:2205661

[125]

Tong Z,Deng Y.Tuning the structural disordering in hierarchical LiNi0.5Mn1.5O4 microrods for stable high-rate electrode performance.J Alloy Compd2023;937:168544

[126]

Jung E,Park K.Synthesis of nanostructured P2-Na2/3MnO2 for high performance sodium-ion batteries.Chem Commun2019;55:4757-60

[127]

Shen Q,Liu Y.Dual-strategy of cation-doping and nanoengineering enables fast and stable sodium-ion storage in a novel Fe/Mn-based layered oxide cathode.Adv Sci2020;7:2002199 PMCID:PMC7610329

[128]

Zhu X,Zhu Y,Wang Y.LiNi0.5Mn1.5O4 nanostructures with two-phase intergrowth as enhanced cathodes for lithium-ion batteries.Electrochim Acta2014;121:253-7

[129]

Liu Y,Zhao X.Hierarchical engineering of porous P2-Na2/3Ni1/3Mn2/3O2 nanofibers assembled by nanoparticles enables superior sodium-ion storage cathodes.Adv Funct Mater2020;30:1907837

[130]

Peng B,Zhao L,Zhang G.Dual-manipulation on P2-Na0.67Ni0.33Mn0.67O2 layered cathode toward sodium-ion full cell with record operating voltage beyond 3.5 V.Energy Stor Mater2021;35:620-9

[131]

Zhu X,Zhu Y,Wang Y.Porous LiNi0.5Mn1.5O4 microspheres with different pore conditions: preparation and application as cathode materials for lithium-ion batteries.J Power Sources2014;261:93-100

[132]

Zhu X,Butburee T,Han S.Hierarchical macro/mesoporous NiO as stable and fast-charging anode materials for lithium-ion batteries.Micropor Mesopor Mat2017;238:78-83

[133]

Xie M,He X.Nitrogen-doped meso-macroporous carbon from waste asphalt as high-performance anode materials for alkali-ion batteries.Sustain Mater Techno2023;35:e00535

[134]

Chen C,Chen S.Core-shell layered oxide cathode for high-performance sodium-ion batteries.ACS Appl Mater Interfaces2020;12:7144-52

[135]

Bao S,Wang Z,Wang Q.Novel P2-type concentration-gradient Na0.67Ni0.167Co0.167Mn0.67O2 modified by Mn-rich surface as cathode material for sodium ion batteries.J Power Sources2018;396:404-11

[136]

Hou P,Sun Z.Compositionally graded high-voltage P2-type cathode with superior structural stability and redox kinetics for advanced Na-ion batteries.Nano Res2024;17:2755-62

[137]

Wang D,Liu Y.Sodium-ion batteries towards practical application through gradient Mn-based layer-tunnel cathode.Nano Energy2023;110:108340

[138]

Fu H,Wang L,Li X.Na-rich layered transition metal oxides with core/shell structures for improved performance of sodium-ion batteries.J Phys Chem C2022;126:20196-203

[139]

Pamidi V,Behara S,Reddy MA.Micron-sized single-crystal cathodes for sodium-ion batteries.iScience2022;25:104205 PMCID:PMC9043968

[140]

Zhang F,Guo Y.Highly stabilized single-crystal P2-type layered oxides obtained via rational crystal orientation modulation for sodium-ion batteries.Chem Eng J2023;458:141515

[141]

Fu F,Fu X.Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries.Nat Commun2022;13:2826 PMCID:PMC9123165

[142]

Zhu X,Wang M.Synchronous densification and conductivity modulation of nano-titanate for pseudocapacitive Li-ion storage.Adv Funct Mater2024;34:2311025

[143]

Zuo W,Qiu J.Engineering Na+-layer spacings to stabilize Mn-based layered cathodes for sodium-ion batteries.Nat Commun2021;12:4903 PMCID:PMC8360981

[144]

Zhu X,Wang L.Stabilizing high-voltage cathode materials for next-generation Li-ion batteries.Chem Res Chin Univ2020;36:24-32

[145]

Wang K,Ding Y.Surface facet dependent cycling stability of layered cathodes.Adv Funct Mater2023;33:2302023

[146]

Shi C,Chen X.Challenges of layer-structured cathodes for sodium-ion batteries.Nanoscale Horiz2022;7:338-51

[147]

Liu Y,Zhang A.Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: The capacity decay mechanism and Al2O3 surface modification.Nano Energy2016;27:27-34

[148]

Shi Y,Gao A.Probing the structural transition kinetics and charge compensation of the P2-Na0.78Al0.05Ni0.33Mn0.60O2 cathode for sodium ion batteries.ACS Appl Mater Interfaces2019;11:24122-31

[149]

Ren H,Li Y.Impurity-vibrational entropy enables quasi-zero-strain layered oxide cathodes for high-voltage sodium-ion batteries.Nano Energy2022;103:107765

[150]

Wan G,Zhao L.Dual-strategy modification on P2-Na0.67Ni0.33Mn0.67O2 realizes stable high-voltage cathode and high energy density full cell for sodium-ion batteries.SusMat2023;3:58-71

[151]

Xia X,Cheng C.Suppressing the dynamic oxygen evolution of sodium layered cathodes through synergistic surface dielectric polarization and bulk site-selective co-doping.Adv Mater2023;35:e2209556

[152]

Zhu X,Yang X.Epitaxial growth of an atom-thin layer on a LiNi0.5Mn1.5O4 cathode for stable Li-ion battery cycling.Nat Commun2022;13:1565 PMCID:PMC8943144

[153]

Meng X,Sun X.Emerging applications of atomic layer deposition for lithium-ion battery studies.Adv Mater2012;24:3589-615

[154]

Tiwari VK.Nanostructured coating strategies of cathode for improved sodium ion battery performance.Chem Eng J2023;471:144592

[155]

Alvarado J,Wang S,Kodur M.Improvement of the cathode electrolyte interphase on P2-Na2/3Ni1/3Mn2/3O2 by atomic layer deposition.ACS Appl Mater Interfaces2017;9:26518-30

[156]

Ji H,Chen G.Surface engineering suppresses the failure of biphasic sodium layered cathode for high performance sodium-ion batteries.Adv Funct Mater2022;32:2109319

[157]

Zuo W,Liu X.Highly-stable P2-Na0.67MnO2 electrode enabled by lattice tailoring and surface engineering.Energy Stor Mater2020;26:503-12

[158]

Kaliyappan K,Deng Y,Bai Z.Constructing safe and durable high-voltage P2 layered cathodes for sodium ion batteries enabled by molecular layer deposition of alucone.Adv Funct Mater2020;30:1910251

[159]

Xia J,Fang K.Enhancing the interfacial stability of P2-type cathodes by polydopamine-derived carbon coating for achieving performance improvement.Carbon2020;157:693-702

[160]

Liu Y,Guo B.Enhanced electrochemical performance of Na0.5Ni0.25Mn0.75O2 micro-sheets at 3.8 V for Na-ion batteries with nanosized-thin AlF3 coating.Nanoscale2018;10:12625-30

[161]

Zhang Y,Liu W.AlPO4-coated P2-type hexagonal Na0.7MnO2.05 as high stability cathode for sodium ion battery.Chem Eng J2020;382:122697

[162]

Jiao J,Dang R.A collaborative strategy with ionic conductive Na2SiO3 coating and Si doping of P2-Na0.67Fe0.5Mn0.5O2 cathode: an effective solution to capacity attenuation.Electrochim Acta2021;384:138362

[163]

Shao Y,Li B.Functional surface modification of P2-type layered Mn-based oxide cathode by thin layer of NASICON for sodium-ion batteries.Electrochim Acta2023;442:141915

[164]

Li H,Wang X.Sodium superionic conductor NaTi2(PO4)3 surface layer modified P2-type Na2/3Ni1/3Mn2/3O2 as high-performance cathode for sodium-ion batteries.J Power Sources2021;494:229771

[165]

Deng Q,Zhong W.Nanoscale surface modification of P2-type Na0.65[Mn0.70Ni0.16Co0.14]O2 cathode material for high-performance sodium-ion batteries.Chem Eng J2021;404:126446

[166]

Lu D,Zhong Y.Polypyrrole-coated sodium manganate hollow microspheres as a superior cathode for sodium ion batteries.ACS Appl Mater Interfaces2019;11:15630-7

[167]

Lin J,Dai K.Mitigating interfacial instability of high-voltage sodium layered oxide cathodes with coordinative polymeric structure.J Power Sources2022;552:232235

[168]

Niu YB,Guo YG.Nonaqueous sodium-ion full cells: status, strategies, and prospects.Small2019;15:e1900233

[169]

He H,Tang Y,Shao M.Understanding and improving the initial coulombic efficiency of high-capacity anode materials for practical sodium ion batteries.Energy Stor Mater2019;23:233-51

[170]

Zou K,Cai P.Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: concepts, applications, and perspectives.Adv Funct Mater2021;31:2005581

[171]

Zhao C,Wang Q.Revealing high Na-content P2-type layered oxides as advanced sodium-ion cathodes.J Am Chem Soc2020;142:5742-50

[172]

Charrad G,Berthelot R,Simon P.On the synthesis and potential benefit of Na-rich P-type layered oxides for high power Na-ion batteries.J Solid State Chem2023;326:124190

[173]

Jin T,Wang QC.Realizing complete solid-solution reaction in high sodium content P2-type cathode for high-performance sodium-ion batteries.Angew Chem Int Ed2020;59:14511-6

[174]

Yang X,Li H.Boosting the ultrastable high-Na-content P2-type layered cathode materials with zero-strain cation storage via a lithium dual-site substitution approach.ACS Nano2023;17:18616-28

[175]

Kumar BS,Pradeep A.Fundamental principles toward designing high Na-containing P2-structured “layered” Na-transition metal oxides as high-performance cathode materials for Na-ion batteries.Chem Mater2022;34:10470-83

[176]

Zhang R,Sun D.Sodium citrate as a self-sacrificial sodium compensation additive for sodium-ion batteries.Chem Commun2021;57:4243-6

[177]

Zhang Q,Shi Y.Electrocatalytic-driven compensation for sodium ion pouch cell with high energy density and long lifespan.Energy Stor Mater2021;39:54-9

[178]

Wang H,Sun C,Ai X.A type of sodium-ion full-cell with a layered NaNi0.5Ti0.5O2 cathode and a pre-sodiated hard carbon anode.RSC Adv2015;5:106519-22

[179]

Dewar D.Optimisation of sodium-based energy storage cells using pre-sodiation: a perspective on the emerging field.Energy Environ Sci2021;14:1380-401

[180]

Hwang J,Lee J,Belharouak I.Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes.Nano Energy2015;16:218-26

[181]

Sathiya M,Batuk D,Gopalan R.Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-ion cells based on P2-NaxMO2 electrodes.Chem Mater2017;29:5948-56

[182]

Shanmukaraj D,Sahu T.Highly efficient, cost effective, and safe sodiation agent for high-performance sodium-ion batteries.ChemSusChem2018;11:3286-91

[183]

Zhang Z,Rajagopalan R.A high-capacity self-sacrificial additive based on electroactive sodiated carbonyl groups for sodium-ion batteries.Chem Commun2022;58:8702-5

[184]

Marelli E,Bolli C.How to overcome Na deficiency in full cell using P2-phase sodium cathode-a proof of concept study of Na-rhodizonate used as sodium reservoir.J Power Sources2020;450:227617

[185]

Jo JH,Park YJ,Yashiro H.New insight into ethylenediaminetetraacetic acid tetrasodium salt as a sacrificing sodium ion source for sodium-deficient cathode materials for full cells.ACS Appl Mater Interfaces2019;11:5957-65

[186]

Jo JH,Park YJ,Yashiro H.A new pre-sodiation additive for sodium-ion batteries.Energy Stor Mater2020;32:281-9

[187]

Guo YJ,Wei Z.Insights on electrochemical behaviors of sodium peroxide as a sacrificial cathode additive for boosting energy density of Na-ion battery.ACS Appl Mater Interfaces2021;13:2772-8

[188]

Zhang T,Shen C.Converting residual alkali into sodium compensation additive for high-energy Na-ion batteries.ACS Energy Lett2023;8:4753-61

[189]

Liao J,Lu Y.Sodium compensation and interface protection effects of Na3PS3O for sodium-ion batteries with P2-type oxide cathodes.Chem Eng J2022;437:135275

AI Summary AI Mindmap
PDF

44

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/