Tunable type-I band alignment and electronic structure of GaSe/MoSi2N4 van der Waals heterostructure

Hongxing Jiang , Xiangjiu Zhu , Dandan Wang , Lihua Yang , Yang Liu , Xin Qu , Huilian Liu

Microstructures ›› 2025, Vol. 5 ›› Issue (1) : 2025009

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (1) :2025009 DOI: 10.20517/microstructures.2023.100
Research Article

Tunable type-I band alignment and electronic structure of GaSe/MoSi2N4 van der Waals heterostructure

Author information +
History +
PDF

Abstract

In this study, we have conducted an investigation on the structural characteristics and electronic properties of van der Waals heterostructures (vdWHs) composed of Gallium selenide (GaSe) and MoSi2N4. The analysis was carried out using first-principles methods. The findings indicate that the heterostructure exhibits stability at standard room temperature and possesses characteristics of an indirect bandgap semiconductor. Interestingly, we observed that the band edges of the heterostructure of monolayer GaSe and MoSi2N4 were able to form a type-I band alignment. Therefore, in the field of optoelectronic devices, GaSe/MoSi2N4 vdWHs can be widely used in light-emitting devices such as diodes. In addition, through the application of an external electric field and in-plane strain, the band edges of GaSe/MoSi2N4 vdWHs can be separated from the GaSe and MoSi2N4 layers, forming a transition from the type-I to type-II band alignment, which is very favorable for realizing effective electron-hole separation. Therefore, GaSe/MoSi2N4 vdWHs have great potential as an adjustable material in optoelectronic applications.

Keywords

Two-dimensional heterostructures / first-principles calculations / electronic properties

Cite this article

Download citation ▾
Hongxing Jiang, Xiangjiu Zhu, Dandan Wang, Lihua Yang, Yang Liu, Xin Qu, Huilian Liu. Tunable type-I band alignment and electronic structure of GaSe/MoSi2N4 van der Waals heterostructure. Microstructures, 2025, 5(1): 2025009 DOI:10.20517/microstructures.2023.100

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Geim AK.Van der Waals heterostructures.Nature2013;499:419-25

[2]

Liu Y,Duan X,Huang Y.Van der Waals heterostructures and devices.Nat Rev Mater2016;1:16042

[3]

Novoselov KS,Carvalho A.2D materials and van der Waals heterostructures.Science2016;353:aac9439

[4]

Jin C,Karni O,Wang F.Ultrafast dynamics in van der Waals heterostructures.Nat Nanotechnol2018;13:994-1003

[5]

Wang Z,Pei S.Recent progress in 2D van der Waals heterostructures: fabrication, properties, and applications.Sci China Inf Sci2022;65:3432

[6]

He J,Zhou B,Tao L.2D van der Waals heterostructures: processing, optical properties and applications in ultrafast photonics.Mater Horiz2020;7:2903-21

[7]

Liao W,Wang H.Van der Waals heterostructures for optoelectronics: progress and prospects.Appl Mater Today2019;16:435-55

[8]

Liang SJ,Cui X.Van der Waals heterostructures for high-performance device applications: challenges and opportunities.Adv Mater2020;32:e1903800

[9]

Li C,Zhang DW.Devices and applications of van der Waals heterostructures.J Semicond2017;38:031005

[10]

Liu CH,Fryett T.Nanocavity integrated van der Waals heterostructure light-emitting tunneling diode.Nano Lett2017;17:200-5

[11]

Binder J,Molas MR.Sub-bandgap voltage electroluminescence and magneto-oscillations in a WSe2 light-emitting van der Waals heterostructure.Nano Lett2017;17:1425-30

[12]

Yan R,Han Y.Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment.Nano Lett2015;15:5791-8

[13]

Özçelik VO,Yang C,Low T.Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching.Phys Rev B2016;94

[14]

Massicotte M,Vialla F.Picosecond photoresponse in van der Waals heterostructures.Nat Nanotechnol2016;11:42-6

[15]

Lin YC,Addou R.Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures.Nat Commun2015;6:7311 PMCID:PMC4557306

[16]

Zhou Y,Liu Y.Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets.ACS Nano2014;8:1485-90

[17]

Hu P,Wang L,Xiao K.Synthesis of few-layer GaSe nanosheets for high performance photodetectors.ACS Nano2012;6:5988-94

[18]

Lei S,Liu Z.Synthesis and photoresponse of large GaSe atomic layers.Nano Lett2013;13:2777-81

[19]

Late DJ,Luo J.GaS and GaSe ultrathin layer transistors.Adv Mater2012;24:3549-54

[20]

Zhuang HL.Single-layer group-III monochalcogenide photocatalysts for water splitting.Chem Mater2013;25:3232-8

[21]

Zappia MI,Bellani S.Solution-processed GaSe nanoflake-based films for photoelectrochemical water splitting and photoelectrochemical-type photodetectors.Adv Funct Mater2020;30:1909572

[22]

Ben Aziza Z,Henck H.Tunable quasiparticle band gap in few-layer GaSe/graphene van der Waals heterostructures.Phys Rev B2017;96:035407

[23]

Jung CS,Park K.Red-to-ultraviolet emission tuning of two-dimensional gallium sulfide/selenide.ACS Nano2015;9:9585-93

[24]

Cui Y,Sun L,Huang Y.Two-dimensional few-layer group-III metal monochalcogenides as effective photocatalysts for overall water splitting in the visible range.J Mater Chem A2018;6:22768-77

[25]

Allakhverdiev KR,Özbek S,Salaev EY.Effective nonlinear GaSe crystal. Optical properties and applications.Laser Phys2009;19:1092-104

[26]

Leontie L,Nedeff V,Caraman M.Photoelectric properties of Bi2O3∕GaSe heterojunctions.Appl Physs Lett2009;94:071903

[27]

Xia C.Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides.J Semicond2016;37:051001

[28]

Zhang X,Wan G,Huang M.Transient reflectivity measurement of photocarrier dynamics in GaSe thin films.Appl Phys B2017;123:1-7

[29]

Liu S,Bender DA,Brener I.Mid-infrared time-domain spectroscopy system with carrier-envelope phase stabilization.Appl Phys Lett2013;103:181111

[30]

Zhang CJ,Ronan O.Enabling flexible heterostructures for Li-ion battery anodes based on nanotube and liquid-phase exfoliated 2D gallium chalcogenide nanosheet colloidal solutions.Small2017;13:1701677

[31]

Hong YL,Wang L.Chemical vapor deposition of layered two-dimensional MoSi2N4 materials.Science2020;369:670-4

[32]

Bafekry A,Fadlallah MM.Tunable electronic and magnetic properties of MoSi2N4 monolayer via vacancy defects, atomic adsorption and atomic doping.Appl Surf Sci2021;559:149862

[33]

Guo X.Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain*.Chinese Phys B2021;30:067102

[34]

Jian C,Zhang J.Strained MoSi2N4 monolayers with excellent solar energy absorption and carrier transport properties.J Phys Chem C2021;125:15185-93

[35]

Pham KD,Nguyen CV,Hieu NV.Two-dimensional van der Waals graphene/transition metal nitride heterostructures as promising high-performance nanodevices.New J Chem2021;45:5509-16

[36]

Cao L,Wang Q,Ang YS.Two-dimensional van der Waals electrical contact to monolayer MoSi2N4.Appl Phys Lett2021;118:013106

[37]

Bafekry A,Abdollahzadeh Ziabari A.A van der Waals heterostructure of MoS2/MoSi2N4: a first-principles study.New J Chem2021;45:8291-6

[38]

Cai X,Zhu Y.A two-dimensional MoSe2/MoSi2N4 van der Waals heterostructure with high carrier mobility and diversified regulation of its electronic properties.J Mater Chem C2021;9:10073-83

[39]

Wang Q,Liang S.Efficient ohmic contacts and built-in atomic sublayer protection in MoSi2N4 and WSi2N4 monolayers.npj 2D Mater Appl2021;5:71

[40]

Cohen AJ,Yang W.Challenges for density functional theory.Chem Rev2012;112:289-320

[41]

Allouche AR.Gabedit--a graphical user interface for computational chemistry softwares.J Comput Chem2011;32:174-82

[42]

Blöchl PE.Projector augmented-wave method.Phys Rev B1994;50:17953-79

[43]

Momma K.VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data.J Appl Crystallogr2011;44:1272-6

[44]

Perdew JP,Ernzerhof M.Generalized gradient approximation made simple.Phys Rev Lett1996;77:3865-8

[45]

Paier J,Marsman M.The perdew-burke-ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set.J Chem Phys2005;122:234102

[46]

Heyd J,Ernzerhof M.Hybrid functionals based on a screened coulomb potential.J Chem Phys2003;118:8207-15

[47]

Togo A.First principles phonon calculations in materials science.Scripta Mater2015;108:1-5

[48]

Grzonka J,Molina‐sánchez A,Ferreira PJ.Novel polymorph of GaSe.Adv Funct Mater2021;31:2104965

[49]

Born M,Lax M.Dynamical theory of crystal lattices.Am J Phys1955;23:474

[50]

Mouhat F.Necessary and sufficient elastic stability conditions in various crystal systems.Phys Rev B2014;90:224104

[51]

Zhang WX,He C.Spontaneous enhanced visible-light-driven photocatalytic water splitting on novel type-II GaSe/CN and Ga2SSe/CN vdW heterostructures.J Phys Chem Lett2021;12:5064-75

[52]

He C,Zhang W.Constructing a novel metal-free g-C3N4/g-CN vdW heterostructure with enhanced visible-light-driven photocatalytic activity for water splitting.Appl Surf Sci2021;553:149550

[53]

Yankowitz M,Taniguchi T,LeRoy BJ.Pressure-induced commensurate stacking of graphene on boron nitride.Nat Commun2016;7:13168 PMCID:PMC5462001

[54]

Tongay S,Kang J.Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers.Nano Lett2014;14:3185-90

AI Summary AI Mindmap
PDF

55

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/