Recent developments in metal nanocluster-based catalysts for improving photocatalytic CO2 reduction performance

Huan Li , Huitong Du , Huanhuan Luo , Hua Wang , Wenlei Zhu , Yang Zhou

Microstructures ›› 2023, Vol. 3 ›› Issue (3) : 2023024

PDF
Microstructures ›› 2023, Vol. 3 ›› Issue (3) :2023024 DOI: 10.20517/microstructures.2023.09
Review

Recent developments in metal nanocluster-based catalysts for improving photocatalytic CO2 reduction performance

Author information +
History +
PDF

Abstract

Photocatalytic reduction of carbon dioxide (CO2) is a promising technology for carbon recycling that offers both environmental and economic benefits. Among the potential photocatalysts, metal nanoclusters (MNCs) stand out as a class of materials with remarkable photophysical and photochemical properties. Despite the growing number of studies on MNCs-based photocatalytic reduction of CO2 in recent years, a systematic and comparative overview of these studies is still lacking. This review provides a concise and comprehensive summary of the latest research on MNCs-based catalysts for enhancing photocatalytic CO2 reduction performance. Moreover, this review highlights the challenges and opportunities in this field based on the current development trends.

Keywords

Photocatalysis / CO2 reduction / nanoclusters / photocatalyst

Cite this article

Download citation ▾
Huan Li, Huitong Du, Huanhuan Luo, Hua Wang, Wenlei Zhu, Yang Zhou. Recent developments in metal nanocluster-based catalysts for improving photocatalytic CO2 reduction performance. Microstructures, 2023, 3(3): 2023024 DOI:10.20517/microstructures.2023.09

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arneth A,Pongratz J.Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed.Nat Geosci2017;10:79-84

[2]

Liu LX,Jiang LP,Zhu W.Highly efficient photoelectrochemical reduction of CO2 at low applied voltage using 3D Co-Pi/BiVO4/SnO2 nanosheet array photoanodes.ACS Appl Mater Interfaces2019;11:26024-31

[3]

Yuan Y.Demanding energy from carbon.Carbon Energy2019;1:8-12

[4]

Liu J,Zhou Y,Jiang LP.Controlled synthesis of EDTA-modified porous hollow copper microspheres for high-efficiency conversion of CO2 to multicarbon products.Nano Lett2020;20:4823-8

[5]

Liu J,Song R.Recent progress on single-atom catalysts for CO2 electroreduction.Mater Today2021;48:95-114

[6]

Salemdeeb R,Clark W,Pratt K.A pragmatic and industry-oriented framework for data quality assessment of environmental footprint tools.Resour Environ Sustain2021;3:100019

[7]

Dou X,Ciais P.Near-real-time global gridded daily CO2 emissions.Innovation2022;3:100182 PMCID:PMC8703084

[8]

Du H,Li P.Enriching reaction intermediates in multishell structured copper catalysts for boosted propanol electrosynthesis from carbon monoxide.ACS Nano2023;17:8663-70

[9]

Zhao Q,Mahendran R.Global climate change and human health: pathways and possible solutions.Eco-Environ Health2022;1:53-62

[10]

Fu J,Lin Y.Fight for carbon neutrality with state-of-the-art negative carbon emission technologies.Eco-Environ Health2022;1:259-79

[11]

Li K,Yang X.H2S Involved photocatalytic system: a novel syngas production strategy by boosting the photoreduction of CO2 while recovering hydrogen from the environmental toxicant.Adv Funct Mater2022;32:2113002

[12]

Yang X,Wang G.2D Catalysts for CO2 photoreduction: discussing structure efficiency strategies and prospects for scaled production based on current progress.Chemistry2022;28:e202201881

[13]

Ran J,Qiao SZ.Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities.Adv Mater2018;30:1704649

[14]

Fu J,Qiu X,Liu M.Product selectivity of photocatalytic CO2 reduction reactions.Mater Today2020;32:222-43

[15]

Schäppi R,Dähler F.Drop-in fuels from sunlight and air.Nature2022;601:63-8

[16]

Tian J,Zhu X.Highly exposed active sites of Au nanoclusters for photocatalytic CO2 reduction.Chem Eng J2023;451:138392

[17]

Yang J,Yang K.Indium-based ternary metal sulfide for photocatalytic CO2 reduction application.Chin J Catal2023;44:67-95

[18]

Zhu L,Sun B,Gao T.Recent advances on multivariate MOFs for photocatalytic CO2 reduction and H2 evolution.Adv Sustain Syst2023;7:2200394

[19]

Zhu Z,Liu X.Revealing the stochastic kinetics evolution of photocatalytic CO2 reduction.Nanoscale2023;15:730-41

[20]

Zuo Q,Wang L.High-loading single cobalt atoms on ultrathin MOF nanosheets for efficient photocatalytic CO2 reduction.Sci China Chem2023;66:570-7

[21]

Liu H,Ma J,Hu W.Recent advances in atomic-level engineering of nanostructured catalysts for electrochemical CO2 reduction.Adv Funct Mater2020;30:1910534

[22]

He L,Xia N.Kernel tuning and nonuniform influence on optical and electrochemical gaps of bimetal nanoclusters.J Am Chem Soc2018;140:3487-90

[23]

Bootharaju MS,Lee S,Kim J.Magic-sized stoichiometric II-VI nanoclusters.Small2021;17:e2002067

[24]

Busatto S.Magic-size semiconductor nanostructures: where does the magic come from?.ACS Mater Au2022;2:237-49 PMCID:PMC9100663

[25]

Wang Y,Zhang Y.Magic-size II-VI nanoclusters as synthons for flat colloidal nanocrystals.Inorg Chem2015;54:1165-77

[26]

Kurashige W,Ishii D.Au25-loaded BaLa4Ti4O15 water-splitting photocatalyst with enhanced activity and durability produced using new chromium oxide shell formation method.J Phys Chem C2018;122:13669-81

[27]

Gautam A,Kandasubramanian B.Nanocluster materials in photosynthetic machines.Chem Eng J2020;385:123951

[28]

Nitopi S,Scott SB.Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte.Chem Rev2019;119:7610-72

[29]

Shoji S,Nishikawa M,Sakai E.Photocatalytic reduction of CO2 by CuO nanocluster loaded SrTiO3 nanorod thin film.Chem Phys Lett2016;658:309-14

[30]

Gao Y,Bian J,Li Z.Accelerated charge transfer of g-C3N4/BiVO4 Z-scheme 2D heterojunctions by controllably introducing phosphate bridges and Ag nanocluster co-catalysts for selective CO2 photoreduction to CO.Appl Surf Sci2023;610:155360

[31]

Bo Y,Li H.Bridging Au nanoclusters with ultrathin LDH nanosheets via ligands for enhanced charge transfer in photocatalytic CO2 reduction.Appl Catal B Environ2023;330:122667

[32]

Chen J,Bonaccorso TA,Wang LS.Controlling gold nanoclusters by diphospine ligands.J Am Chem Soc2014;136:92-5

[33]

Zhu Q,Zeng Y.Controllable synthesis and electrocatalytic applications of atomically precise gold nanoclusters.Nanoscale Adv2021;3:6330-41

[34]

Liu L.Metal Catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles.Chem Rev2018;118:4981-5079 PMCID:PMC6061779

[35]

Chakraborty I.Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles.Chem Rev2017;117:8208-71

[36]

Lu H,Li Y.Benzyl-rich ligand engineering of the photostability of atomically precise gold nanoclusters.Chem Commun2022;58:2395-8

[37]

Fang J,Yao Q,Xie J.Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters.Coord Chem Rev2016;322:1-29

[38]

Chai OJH,Chen T.Engineering ultrasmall metal nanoclusters for photocatalytic and electrocatalytic applications.Nanoscale2019;11:20437-48

[39]

Sun Y,Hu W,Zhu Y.Electrocatalytic and photocatalytic applications of atomically precise gold-based nanoclusters.Sci China Chem2021;64:1065-75

[40]

Wu J,Lan M.Artificial photosynthetic assemblies constructed by the self-assembly of synthetic building blocks for enhanced photocatalytic hydrogen evolution.J Mater Chem A2020;8:21690-9

[41]

Yao Q,Yuan X.Toward total synthesis of thiolate-protected metal nanoclusters.ACC Chem Res2018;51:1338-48

[42]

Luo Z,Zhang B.Toward understanding the growth mechanism: tracing all stable intermediate species from reduction of Au(I)-thiolate complexes to evolution of Au25 nanoclusters.J Am Chem Soc2014;136:10577-80

[43]

Yao Q,Fung V.Understanding seed-mediated growth of gold nanoclusters at molecular level.Nat Commun2017;8:927 PMCID:PMC5640603

[44]

Wang S,Kang X.Customizing the structure, composition, and properties of alloy nanoclusters by metal exchange.ACC Chem Res2018;51:2784-92

[45]

Li Y,Jin R.Programmable metal nanoclusters with atomic precision.Adv Mater2021;33:e2006591

[46]

Li G.Atomically precise gold nanoclusters as new model catalysts.ACC Chem Res2013;46:1749-58

[47]

Zhou M,Li Y.Three-stage evolution from nonscalable to scalable optical properties of thiolate-protected gold nanoclusters.J Am Chem Soc2019;141:19754-64

[48]

Pan H.Photons to formate-a review on photocatalytic reduction of CO2 to formic acid.Nanomaterials2020;10:2422 PMCID:PMC7761832

[49]

Linsebigler AL,Yates JT.Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results.Chem Rev1995;95:735-58

[50]

Habisreutinger SN,Stolarczyk JK.Photokatalytische reduktion von CO2 an TiO2 und anderen halbleitern.Angew Chem Int Ed2013;125:7516-57

[51]

Yan J,Zheng N.Surface chemistry of atomically precise coinage-metal nanoclusters: from structural control to surface reactivity and catalysis.ACC Chem Res2018;51:3084-93

[52]

Hou B,Lee HKH.Multiphoton absorption stimulated metal chalcogenide quantum dot solar cells under ambient and concentrated irradiance.Adv Funct Mater2020;30:2004563

[53]

Guo K,Peng L.Boosting photocatalytic CO2 reduction over a covalent organic framework decorated with ruthenium nanoparticles.Chem Eng J2021;405:127011

[54]

Kuhl KP,Abram DN.New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces.Energy Environ Sci2012;5:7050

[55]

Zhou M,Yang P,Wang X.Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2.ACS Catal2018;8:4928-36

[56]

Nguyen D,Do T.Rational one-step synthesis of cobalt clusters embedded-graphitic carbon nitrides for the efficient photocatalytic CO2 reduction under ambient conditions.J Catal2020;392:88-96

[57]

Hansen HA,Peterson AA.Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO.J Phys Chem Lett2013;4:388-92

[58]

Rosen BA,Thorson MR.Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials.Science2011;334:643-4

[59]

Palencia C,Boldt K.The future of colloidal semiconductor magic-size clusters.ACS Nano2020;14:1227-35

[60]

Chang X,Gong J.CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts.Energy Environ Sci2016;9:2177-96

[61]

Peng S,Li Y.Titanate nanotube modified with different nickel precursors for enhanced Eosin Y-sensitized photocatalytic hydrogen evolution.Int J Hydrog Energy2015;40:6038-49

[62]

Zhang W,Zeng X.Synergetic effect of metal nickel and graphene as a cocatalyst for enhanced photocatalytic hydrogen evolution via dye sensitization.Sci Rep2015;5:10589 PMCID:PMC4464385

[63]

Li Y,Peng S,Zhou L.Modification of Zr-doped titania nanotube arrays by urea pyrolysis for enhanced visible-light photoelectrochemical H2 generation.Electrochim Acta2013;87:794-800

[64]

Yin G,Nosaka Y.Photocatalytic carbon dioxide reduction by copper oxide nanocluster-grafted niobate nanosheets.ACS Nano2015;9:2111-9

[65]

Park D,Lee J,Moon S.Interfacial charge-transfer loss in dye-sensitized solar cells.J Phys Chem C2013;117:2734-9

[66]

Irie H,Kamiya K.Efficient visible light-sensitive photocatalysts: Grafting Cu(II) ions onto TiO2 and WO3 photocatalysts.Chem Phys Lett2008;457:202-5

[67]

Irie H,Shibanuma T.Visible light-sensitive Cu(II)-grafted TiO2 photocatalysts: activities and X-ray absorption fine structure analyses.J Phys Chem C2009;113:10761-6

[68]

Yu H,Shimodaira Y.An efficient visible-light-sensitive Fe(III)-grafted TiO2 photocatalyst.J Phys Chem C2010;114:16481-7

[69]

Liu M,Hashimoto K.Cu(II) nanocluster-grafted, Nb-doped TiO2 as an efficient visible-light-sensitive photocatalyst based on energy-level matching between surface and bulk states.J Mater Chem A2014;2:13571-9

[70]

Miyauchi M,Liu M.Visible-light-sensitive photocatalysts: nanocluster-grafted titanium dioxide for indoor environmental remediation.J Phys Chem Lett2016;7:75-84

[71]

Kong L,Wan F,Zhang X.Synergistic effect of surface self-doping and Fe species-grafting for enhanced photocatalytic activity of TiO2 under visible-light.Appl Surf Sci2017;396:26-35

[72]

Ji Y.New Mechanism for photocatalytic reduction of CO2 on the anatase TiO2 (101) surface: the essential role of oxygen vacancy.J Am Chem Soc2016;138:15896-902

[73]

Nolan M,Gray KA.Localization of photoexcited electrons and holes on low coordinated Ti and O sites in free and supported TiO2 nanoclusters.J Phys Chem C2014;118:27890-900

[74]

Hurum D,Crist S,Rajh T.Probing reaction mechanisms in mixed phase TiO2 by EPR.J Electron Spectros Relat Phenomena2006;150:155-63

[75]

Li G.The solid-solid interface: explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials.Chem Phys2007;339:173-87

[76]

Pacchioni G.Oxygen vacancy: the invisible agent on oxide surfaces.Chemphyschem2003;4:1041-7

[77]

Liu M,Miyauchi M.Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts.J Am Chem Soc2013;135:10064-72

[78]

Liu M,Hashimoto K.Visible-light sensitive Cu(II)-TiO2 with sustained anti-viral activity for efficient indoor environmental remediation.J Mater Chem A2015;3:17312-9

[79]

Liu M,Nishikawa M.Enhanced photoactivity with nanocluster-grafted titanium dioxide photocatalysts.ACS Nano2014;8:7229-38

[80]

Cheng L,Yin H,Xiang Q.Cu clusters immobilized on Cd-defective cadmium sulfide nano-rods towards photocatalytic CO2 reduction.J Mater Sci Technol2022;118:54-63

[81]

Billo T,Raghunath P.Ni-nanocluster modified black TiO2 with dual active sites for selective photocatalytic CO2 reduction.Small2018;14:1702928

[82]

Li Y,Song M,Zhang X.TiO2-x/CoOx photocatalyst sparkles in photothermocatalytic reduction of CO2 with H2O steam.Appl Catal B Environ2019;243:760-70

[83]

Hou T,Cui Y.Selective reduction of CO2 to CO under visible light by controlling coordination structures of CeOx-S/ZnIn2S4 hybrid catalysts.Appl Catal B Environ2019;245:262-70

[84]

Mrowetz M,Prati L.Effects of Au nanoparticles on TiO2 in the photocatalytic degradation of an azo dye.Gold Bull2007;40:154-60

[85]

Yadav A,Liao TW.Enhanced methanol electro-oxidation activity of nanoclustered gold.Small2021;17:e2004541

[86]

Liao TW,Claes N.TiO2 films modified with Au nanoclusters as self-cleaning surfaces under visible light.Nanomaterials2018;8:30 PMCID:PMC5791117

[87]

Li Y,Chen G,Xiang Q.Au cluster anchored on TiO2/Ti3C2 hybrid composites for efficient photocatalytic CO2 reduction.Rare Met2022;41:3045-59

[88]

Xiao FX,Hsu SH,Chen HM.Light-induced in situ transformation of metal clusters to metal nanocrystals for photocatalysis.ACS Appl Mater Interfaces2015;7:28105-9

[89]

Liu S.Photo-induced transformation process at gold clusters-semiconductor interface: implications for the complexity of gold clusters-based photocatalysis.Sci Rep2016;6:22742

[90]

Zhou P,Jaroniec M.All-solid-state Z-scheme photocatalytic systems.Adv Mater2014;26:4920-35

[91]

Bard AJ.Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors.J Photochem1979;10:59-75

[92]

Li H,Zhou Y.Z-scheme photocatalytic systems for promoting photocatalytic performance: recent progress and future challenges.Adv Sci2016;3:1500389 PMCID:PMC5102663

[93]

Maeda K.Z-scheme water splitting using two different semiconductor photocatalysts.ACS Catal2013;3:1486-503

[94]

Xu Q,Cheng B,Yu J.S-scheme heterojunction photocatalyst.Chem2020;6:1543-59

[95]

Deng Y,Du P.Embedding ultrasmall Au clusters into the pores of a covalent organic framework for enhanced photostability and photocatalytic performance.Angew Chem Int Ed2020;132:6138-45

[96]

Xu Q,Al-ghamdi AA.Design principle of S-scheme heterojunction photocatalyst.J Mater Sci Technol2022;124:171-3

[97]

Li X,Gao X.Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity.J Hazard Mater2020;387:121690

[98]

Xia P,Zhu B.Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria.Angew Chem Int Ed2020;59:5218-25

[99]

Xu F,Cheng B,Xu J.Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction.Nat Commun2020;11:4613 PMCID:PMC7490390

[100]

Wageh S.Al-ghamdi A, Liu L. S-scheme heterojunction photocatalyst for CO2 photoreduction.Acta Physico-Chimica Sinica2021;37:2010024

[101]

Zhang L,Yu H.Emerging S-scheme photocatalyst.Adv Mater2022;34:e2107668

[102]

Ke X,Dai K,Liang C.Integrated S-scheme heterojunction of amine-functionalized 1D CdSe nanorods anchoring on ultrathin 2D SnNb2O6 Nanosheets for robust solar-driven CO2 conversion.Solar RRL2021;5:2000805

[103]

Férey G.Hybrid porous solids: past, present, future.Chem Soc Rev2008;37:191-214

[104]

Long JR.The pervasive chemistry of metal-organic frameworks.Chem Soc Rev2009;38:1213-4

[105]

Bernales V,Truhlar DG,Gagliardi L.Computational design of functionalized metal-organic framework nodes for catalysis.ACS Cent Sci2018;4:5-19 PMCID:PMC5785762

[106]

Choudhuri I.Photogenerated charge separation in a CdSe nanocluster encapsulated in a metal-organic framework for improved photocatalysis.J Phys Chem C2020;124:8504-13

[107]

Jiang Y,Zhang X.N-heterocyclic carbene-stabilized ultrasmall gold nanoclusters in a metal-organic framework for photocatalytic CO2 reduction.Angew Chem Int Ed2021;60:17388-93

[108]

Sakimoto KK,Yang P.Cyborgian material design for solar fuel production: the emerging photosynthetic biohybrid systems.ACC Chem Res2017;50:476-81

[109]

Zhang H,Tian Z.Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production.Nat Nanotechnol2018;13:900-5

AI Summary AI Mindmap
PDF

84

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/