Emerging microporous materials as novel templates for quantum dots

Jaeho Lee , Lianzhou Wang , Jingwei Hou

Microstructures ›› 2023, Vol. 3 ›› Issue (2) : 2023021

PDF
Microstructures ›› 2023, Vol. 3 ›› Issue (2) :2023021 DOI: 10.20517/microstructures.2023.08
Perspective

Emerging microporous materials as novel templates for quantum dots

Author information +
History +
PDF

Abstract

Microporous structures have attracted significant attention in recent years. In particular, metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have received considerable attention due to their tailorable structures that offer a wide range of choices in terms of molecular building blocks. Due to their high tunability, these materials are considered as ideal host matrices for templating and encapsulating guest materials, particularly quantum dots (QDs). QDs are investigated heavily for various applications such as light-emitting diodes (LED), biosensors, catalysts, and solar cells due to their unique properties from the quantum confinement effect. However, one of the drawbacks of QDs is their tendency to aggregate and exhibit low stability due to their small size and kinetic trapping in nanoparticle form. This perspective highlights promising approaches to enhance the performance and stability of QDs by using microporous materials as an encapsulation layer. Additionally, potential mitigating strategies are discussed to overcome current challenges and improve the practicality of QDs embedded in microporous nanocomposites.

Keywords

Metal-organic frameworks / covalent organic frameworks / zeolites / microstructures / QD encapsulation

Cite this article

Download citation ▾
Jaeho Lee, Lianzhou Wang, Jingwei Hou. Emerging microporous materials as novel templates for quantum dots. Microstructures, 2023, 3(2): 2023021 DOI:10.20517/microstructures.2023.08

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fujii M,Takada M.Silicon quantum dot supraparticles for fluorescence bioimaging.ACS Appl Nano Mater2020;3:6099-107

[2]

Kwon J,Choi SI.FeSe quantum dots for in vivo multiphoton biomedical imaging.Sci Adv2019;5:eaay0044 PMCID:PMC6897543

[3]

Shaik SA,Varma RS,Goswami A.Syntheses of N-doped carbon quantum dots (NCQDs) from bioderived precursors: a timely update.ACS Sustain Chem Eng2021;9:3-49

[4]

Sun Y,Liu L.The cost-effective preparation of green fluorescent carbon dots for bioimaging and enhanced intracellular drug delivery.Nanoscale Res Lett2020;15:55 PMCID:PMC7056761

[5]

Cho Y,Yun JS.Mixed 3D-2D passivation treatment for mixed-cation lead mixed-halide perovskite solar cells for higher efficiency and better stability.Adv Energy Mater2018;8:1703392

[6]

Cordero F,Trequattrini F.Stability of cubic FAPbI3 from X-ray diffraction, anelastic, and dielectric measurements.J Phys Chem Lett2019;10:2463-9

[7]

Rambabu D,Singh T.Stabilization of MAPbBr3 perovskite quantum dots on perovskite MOFs by a one-step mechanochemical synthesis.Inorg Chem2020;59:1436-43

[8]

Zhang Y,Ji F.Trash into treasure: δ-FAPbI3 polymorph stabilized MAPbI3 Perovskite with power conversion efficiency beyond 21.Adv Mater2018;30:e1707143

[9]

Iravani S.Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots: a review.Environ Chem Lett2020;18:703-27 PMCID:PMC7088420

[10]

Jouyandeh M,Habibzadeh S.Quantum dots for photocatalysis: synthesis and environmental applications.Green Chem2021;23:4931-54

[11]

Ye B,Yu Z.Pt(111) quantum dot engineered Fe-MOF nanosheet arrays with porous core-shell as an electrocatalyst for efficient overall water splitting.J Catal2019;380:307-17

[12]

Alsalloum AY,Zheng X.Low-temperature crystallization enables 21.9% efficient single-crystal MAPbI3 inverted perovskite solar cells.ACS Energy Lett2020;5:657-62

[13]

Chen Z,Li H,Zhu M.Investigation on charge carrier recombination of hybrid organic-inorganic perovskites doped with aggregation-induced emission luminogen under high photon flux excitation.Adv Opt Mater2018;6:1800221

[14]

Masi S,Mora-seró I.Stabilization of black perovskite phase in FAPbI3 and CsPbI3.ACS Energy Lett2020;5:1974-85

[15]

Wang D,Elumalai NK.Stability of perovskite solar cells.Solar Energy Mater Solar Cells2016;147:255-75

[16]

Hou J,Chen P,Cheetham AK.Intermarriage of halide perovskites and metal-organic framework crystals.Angew Chem Int Ed2020;59:19434-49

[17]

Hao M,Zeiske S.Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1-xFAxPbI3 quantum dot solar cells with reduced phase segregation.Nat Energy2020;5:79-88

[18]

Nagaraj G,Shekargoftar M.High-performance perovskite solar cells using the graphene quantum dot-modified SnO2/ZnO photoelectrode.Mater Today Energy2021;22:100853

[19]

Zhao H,Li C.Carbon quantum dots modified TiO2 composites for hydrogen production and selective glucose photoreforming.J Energy Chem2022;64:201-8

[20]

Yoo D,Cheon B.Carbon dots as an effective fluorescent sensing platform for metal ion detection.Nanoscale Res Lett2019;14:272 PMCID:PMC6692426

[21]

Abbas A,Bull SJ,Phan AN.High yield synthesis of graphene quantum dots from biomass waste as a highly selective probe for Fe3+ sensing.Sci Rep2020;10:21262 PMCID:PMC7718218

[22]

Ganganboina AB,Tran HL,Doong RA.Application of sulfur-doped graphene quantum dots@gold-carbon nanosphere for electrical pulse-induced impedimetric detection of glioma cells.Biosens Bioelectron2021;181:113151

[23]

Shi Y,Meng T.Red phosphorescent carbon quantum dot organic framework-based electroluminescent light-emitting diodes exceeding 5% external quantum efficiency.J Am Chem Soc2021;143:18941-51

[24]

Wang S,Cui F.Dual-color graphene quantum dots and carbon nanoparticles biosensing platform combined with Exonuclease III-assisted signal amplification for simultaneous detection of multiple DNA targets.Anal Chim Acta2021;1154:338346

[25]

Biswal BP,Pillai VK.Stabilization of graphene quantum dots (GQDs) by encapsulation inside zeolitic imidazolate framework nanocrystals for photoluminescence tuning.Nanoscale2013;5:10556-61

[26]

Swarnkar A,Sanehira EM.Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics.Science2016;354:92-5

[27]

Kar MR,Patra BK.State of the art and prospects of metal halide perovskite core@shell nanocrystals and nanocomposites.Mater Today Chem2021;20:100424

[28]

Yee PY,Mahadik NA.Cu2-x S/PbS core/shell nanocrystals with improved chemical stability.Chem Mater2021;33:6685-91

[29]

Zhao Y,Zhang X.CsPbX3 quantum dots embedded in zeolitic imidazolate framework-8 microparticles for bright white light-emitting devices.ACS Appl Nano Mater2021;4:5478-85

[30]

Pham T,Kim J.Enhancement of CO2 capture by using synthesized nano-zeolite.J Taiwan Inst Chem Eng2016;64:220-6

[31]

Zahmakiran M.Preparation and characterization of LTA-type zeolite framework dispersed ruthenium nanoparticles and their catalytic application in the hydrolytic dehydrogenation of ammonia-borane for efficient hydrogen generation.Mater Sci Eng B2012;177:606-13

[32]

Frentzel-beyme L,Pallach R.Porous purple glass - a cobalt imidazolate glass with accessible porosity from a meltable cobalt imidazolate framework.J Mater Chem A2019;7:985-90

[33]

Hou J,Krajnc A.Halogenated metal-organic framework glasses and liquids.J Am Chem Soc2020;142:3880-90

[34]

Fang Q,Zheng J,Qiu S.3D microporous base-functionalized covalent organic frameworks for size-selective catalysis.Angew Chem Int Ed2014;53:2878-82

[35]

Bhunia S,Gaharwar AK.2D covalent organic frameworks for biomedical applications.Adv Funct Mater2020;30:2002046

[36]

Chedid G.Recent trends in covalent and metal organic frameworks for biomedical applications.Nanomaterials2018;8:916 PMCID:PMC6265694

[37]

Feng L,Zhao Y.Recent advances in covalent organic framework-based nanosystems for bioimaging and therapeutic applications.ACS Mater Lett2020;2:1074-92

[38]

Ekimov A,Onushchenko A.Quantum size effect in semiconductor microcrystals.Solid State Commun1985;56:921-4

[39]

Davis ME.Ordered porous materials for emerging applications.Nature2002;417:813-21

[40]

Kianfar E.Synthesis and characterization of AlPO4/ZSM-5 catalyst for methanol conversion to dimethyl ether.Russ J Appl Chem2018;91:1711-20

[41]

Yin T,Jin L,Liu N.Prepared hydrophobic Y zeolite for adsorbing toluene in humid environment.Microporous Mesoporous Mater2020;305:110327

[42]

Campanile A,Ferone C,Aprea P.Zeolite-based monoliths for water softening by ion exchange/precipitation process.Sci Rep2022;12:3686 PMCID:PMC8901846

[43]

Wang S,Zhao P,Han S.One-step synthesis of water-soluble CdS quantum dots for silver-ion detection.ACS Omega2021;6:7139-46 PMCID:PMC7970548

[44]

Herron N,Eddy MM.Structure and optical properties of cadmium sulfide superclusters in zeolite hosts.J Am Chem Soc1989;111:530-40

[45]

Moller K,Herron N,Wang Y.Encapsulation of lead sulfide molecular clusters into solid matrixes. Structural analysis with X-ray absorption spectroscopy.Inorg Chem1989;28:2914-9

[46]

Jeong NC,Yoon KB.New insights into CdS quantum dots in zeolite-Y.J Phys Chem C2007;111:10298-312

[47]

Yin X,Guo Y,Xing Y.PbS QD-based photodetectors: future-oriented near-infrared detection technology.J Mater Chem C2021;9:417-38

[48]

Zheng S,Johansson EMJ.PbS colloidal quantum dot inks for infrared solar cells.iScience2020;23:101753 PMCID:PMC7672277

[49]

Kim HS,Jeong NC,Rhee BK.Very high third-order nonlinear optical activities of intrazeolite PbS quantum dots.J Am Chem Soc2006;128:15070-1

[50]

Kim HS.Increase of third-order nonlinear optical activity of PbS quantum dots in zeolite Y by increasing cation size.J Am Chem Soc2012;134:2539-42

[51]

Liu Y,Hu X.Ligands for CsPbBr3 perovskite quantum dots: the stronger the better?.Chem Eng J2023;453:139904

[52]

Sun J,Yang X.Facile two-step synthesis of all-inorganic perovskite CsPbX3 (X = Cl, Br, and I) Zeolite-Y composite phosphors for potential backlight display application.Adv Funct Mater2017;27:1704371

[53]

Wang HC,Tang AC.Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display.Angew Chem Int Ed2016;55:7924-9

[54]

Kim JY,Han JW,Heo NH.Quantum dots of [Na4Cs6PbBr4]8+, water stable in Zeolite X, luminesce sharply in the green.Adv Mater2020;32:e2001868

[55]

Côté AP,Ockwig NW,Matzger AJ.Porous, crystalline, covalent organic frameworks.Science2005;310:1166-70

[56]

Ding SY.Covalent organic frameworks (COFs): from design to applications.Chem Soc Rev2013;42:548-68

[57]

Wang H,Yuan X.Structure-performance correlation guided applications of covalent organic frameworks.Mater Today2022;53:106-33

[58]

Geng K,Liu R.Covalent organic frameworks: design, synthesis, and functions.Chem Rev2020;120:8814-933

[59]

Binu PJ,Muthukumaran S.Crystal structure, energy gap and photoluminescence investigation of Mn2+/Cr3+-doped ZnS nanostructures by precipitation method.J Mater Sci Mater Electron2021;32:23174-88

[60]

Liu Z,He Q,Huo D.New application of Mn-doped ZnS quantum dots: phosphorescent sensor for the rapid screening of chloramphenicol and tetracycline residues.Anal Methods2020;12:3513-22

[61]

Li F,Wu H,He X.A highly selective and sensitive fluorescent sensor based on molecularly imprinted polymer-functionalized Mn-doped ZnS quantum dots for detection of roxarsone in feeds.Nanomaterials2022;12:2997 PMCID:PMC9457937

[62]

Zhang Y,Jiang W.Determination of nereistoxin-related insecticide via quantum-dots-doped covalent organic frameworks in a molecularly imprinted network.Mikrochim Acta2020;187:464

[63]

Wang Y,Liu H.A novel fluorescence and SPE adsorption nanomaterials of molecularly imprinted polymers based on quantum dot-grafted covalent organic frameworks for the high selectivity and sensitivity detection of ferulic acid.Nanomaterials2019;9:305 PMCID:PMC6409819

[64]

Jana J,Chung JS,Hur SH.Blue emitting nitrogen-doped carbon dots as a fluorescent probe for nitrite ion sensing and cell-imaging.Anal Chim Acta2019;1079:212-9

[65]

Wang J,Zhi Zhang H,Zhang Z.Highly fluorescent carbon dots as selective and visual probes for sensing copper ions in living cells via an electron transfer process.Biosens Bioelectron2017;97:157-63

[66]

Fowley C,Devlin A,Raymo FM.Highly luminescent biocompatible carbon quantum dots by encapsulation with an amphiphilic polymer.Chem Commun2012;48:9361-3

[67]

Sharma A.Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine.J Nanobiotechnol2019;17:92 PMCID:PMC6709552

[68]

Wang F,Wang L,Kreiter M.One-step synthesis of highly luminescent carbon dots in noncoordinating solvents.Chem Mater2010;22:4528-30

[69]

Chen S,Zheng M.Carbon dots based nanoscale covalent organic frameworks for photodynamic therapy.Adv Funct Mater2020;30:2004680

[70]

Fonseca J,Jiao L.Metal-organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses.J Mater Chem A2021;9:10562-611

[71]

Hou J,Wang T.Unraveling the interfacial structure-performance correlation of flexible metal-organic framework membranes on polymeric substrates.ACS Appl Mater Interfaces2019;11:5570-7

[72]

Baumann AE,Liu B.Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices.Commun Chem2019;2

[73]

Howarth AJ,Vermeulen NA,Hupp JT.Best practices for the synthesis, activation, and characterization of metal-organic frameworks.Chem Mater2017;29:26-39

[74]

Hong DH,Ha J.MOF-on-MOF architectures: applications in separation, catalysis, and sensing.Bull Korean Chem Soc2021;42:956-69

[75]

Kalaj M,Ayala S Jr.MOF-polymer hybrid materials: from simple composites to tailored architectures.Chem Rev2020;120:8267-302

[76]

Kwon O,Park S.Computer-aided discovery of connected metal-organic frameworks.Nat Commun2019;10:3620 PMCID:PMC6689093

[77]

Tripathy SP,Parida K.Inter-MOF hybrid (IMOFH): a concise analysis on emerging core-shell based hierarchical and multifunctional nanoporous materials.Coord Chem Rev2021;434:213786

[78]

Chen P,Wang S,Yun J.Perovskite solar cells: in situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells.Adv Funct Mater2018;28:1870113

[79]

Peng J,Walter D.Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent.Nature2022;601:573-8

[80]

Shi L,Zhou L,Yan J.Facile in-situ preparation of MAPbBr3@UiO-66 composites for information encryption and decryption.J Solid State Chem2020;282:121062

[81]

Zhang Y,Qiu T.Halide perovskite single crystals: optoelectronic applications and strategical approaches.Energies2020;13:4250

[82]

He R,Chen C.Wide-bandgap organic-inorganic hybrid and all-inorganic perovskite solar cells and their application in all-perovskite tandem solar cells.Energy Environ Sci2021;14:5723-59

[83]

Lu H,Zakeeruddin SM,Hagfeldt A.Compositional and interface engineering of organic-inorganic lead halide perovskite solar cells.iScience2020;23:101359 PMCID:PMC7390817

[84]

Kong Z,Dong Y.Core@Shell CsPbBr3@Zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction.ACS Energy Lett2018;3:2656-62

[85]

Yuan S,Qin JS.Construction of hierarchically porous metal-organic frameworks through linker labilization.Nat Commun2017;8:15356 PMCID:PMC5458506

[86]

Aubert T,Samoli M.General expression for the size-dependent optical properties of quantum dots.Nano Lett2022;22:1778-85

[87]

Wang T,Hou J.Rational approach to guest confinement inside MOF cavities for low-temperature catalysis.Nat Commun2019;10:1340 PMCID:PMC6430784

[88]

Jiang Z,Huang H,Sun Y.Mechanochemistry-assisted linker exchange of metal-organic framework for efficient kinetic separation of propene and propane.Chem Eng J2023;454:140093

[89]

Qi SC,He QX.Generation of hierarchical porosity in metal-organic frameworks by the modulation of cation valence.Angew Chem Int Ed2019;58:10104-9

[90]

Yang P,Li Y,Gu J.Hierarchical porous Zr-based MOFs synthesized by a facile monocarboxylic acid etching strategy.Chemistry2018;24:2962-70

[91]

Qiao GY,Yuan S.Perovskite quantum dots encapsulated in a mesoporous metal-organic framework as synergistic photocathode materials.J Am Chem Soc2021;143:14253-60

[92]

Hou J,Bennett TD.Metal-organic framework gels and monoliths.Chem Sci2020;11:310-23 PMCID:PMC7021205

[93]

Tuffnell JM,Hou J.Novel metal-organic framework materials: blends, liquids, glasses and crystal-glass composites.Chem Commun2019;55:8705-15

[94]

Hou J,Collins SM.Metal-organic framework crystal-glass composites.Nat Commun2019;10:2580 PMCID:PMC6561910

[95]

Hou J,Shukla A.Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses.Science2021;374:621-5

[96]

Keen DA.Structural investigations of amorphous metal-organic frameworks formed via different routes.Phys Chem Chem Phys2018;20:7857-61

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/