Filled carbon-nanotube heterostructures: from synthesis to application

Yu Teng , Jing Li , Jian Yao , Lixing Kang , Qingwen Li

Microstructures ›› 2023, Vol. 3 ›› Issue (3) : 2023019

PDF
Microstructures ›› 2023, Vol. 3 ›› Issue (3) :2023019 DOI: 10.20517/microstructures.2023.07
Review

Filled carbon-nanotube heterostructures: from synthesis to application

Author information +
History +
PDF

Abstract

Carbon nanotubes (CNTs) have a one-dimensional (1D) hollow tubular structure formed by graphene curling with remarkable electronic, optical, mechanical, and thermal properties. Except for the applications based on their intrinsic properties, such as electronic devices, THz sensors, and conductive fiber, CNTs can also act as nano-vessels for nano-chemical reactions and hosts for encapsulating various materials to form heterostructures. In this review, we have summarized the research status on filled carbon-nanotube heterostructures from four aspects: synthesis, morphological and electronic structure analysis, potential applications, and perspective. We begin with an overview of the filling methods and mechanisms of the 1D heterostructures. Following that, we discuss their properties in terms of morphological and electronic structure. The burgeoning applications of 1D heterostructures in nano-electronic, energy, storage, catalysis, and other fields are then thoroughly overviewed. Finally, we offer a brief perspective on the possible opportunities and challenges of filled CNTs heterostructures.

Keywords

Filled carbon nanotubes heterostructures / confinement effect / morphological structure / electronic structure / applications

Cite this article

Download citation ▾
Yu Teng, Jing Li, Jian Yao, Lixing Kang, Qingwen Li. Filled carbon-nanotube heterostructures: from synthesis to application. Microstructures, 2023, 3(3): 2023019 DOI:10.20517/microstructures.2023.07

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Iijima S.Helical microtubules of graphitic carbon.Nature1991;354:56-8

[2]

Peng L,Qiu C.Carbon nanotube digital electronics.Nat Electron2019;2:499-505

[3]

Saito R,Hasdeo EH,Izumida W.Electronic and optical properties of single wall carbon nanotubes.Top Curr Chem2017;375:7

[4]

Yi C,Gou F.Direct measurements of the mechanical strength of carbon nanotube - aluminum interfaces.Carbon2017;125:93-102

[5]

Zhou K,Xie G.Thermal conductivity of carbon nanotube superlattices: comparative study with defective carbon nanotubes.Chin Phys B2018;27:026501

[6]

Wan H,Lo LW,Sepúlveda N.Flexible carbon nanotube synaptic transistor for neurological electronic skin applications.ACS Nano2020;14:10402-12

[7]

Zang M.Band theory of single-walled carbon nanotubes.IEEE Trans Nanotechnol2005;4:452-9

[8]

Desai SB,Sachid AB.MoS2 transistors with 1-nanometer gate lengths.Science2016;354:99-102

[9]

Srimani T,Yu A.Comprehensive study on high purity semiconducting carbon nanotube extraction.Adv Electron Mater2022;8:2101377

[10]

Dekker C.How we made the carbon nanotube transistor.Nat Electron2018;1:518-518

[11]

Clément P,Stoppiello CT.Direct synthesis of multiplexed metal-nanowire-based devices by using carbon nanotubes as vector templates.Angew Chem Int Ed2019;58:9928-32

[12]

Zhao C,Xie S.DFT study of electronic structure and properties of N, Si and Pd-doped carbon nanotubes.Ceram Int2018;44:21027-33

[13]

Ajayan PM.Capillarity-induced filling of carbon nanotubes.Nature1993;361:333-4

[14]

Giménez-López Mdel C,La Torre A.Encapsulation of single-molecule magnets in carbon nanotubes.Nat Commun2011;2:407

[15]

Haft M,Gellesch M.Tailored nanoparticles and wires of Sn, Ge and Pb inside carbon nanotubes.Carbon2016;101:352-60

[16]

Talyzin AV,Krasheninnikov AV.Synthesis of graphene nanoribbons encapsulated in single-walled carbon nanotubes.Nano Lett2011;11:4352-6

[17]

Kharlamova MV,Saito T.Diameter and metal-dependent growth properties of inner tubes inside metallocene-filled single-walled carbon nanotubes.Fuller Nanotub Carbon Nanostruct2020;28:20-6

[18]

Vasylenko A,Wynn JM.Electronic structure control of sub-nanometer 1D SnTe via Nanostructuring within single-walled carbon nanotubes.ACS Nano2018;12:6023-31

[19]

Koizumi R,Brunetto G.Mechano-chemical stabilization of three-dimensional carbon nanotube aggregates.Carbon2016;110:27-33

[20]

Pan X.The effects of confinement inside carbon nanotubes on catalysis.ACC Chem Res2011;44:553-62

[21]

Nieto-Ortega B,Vera-Hidalgo M,Burzurí E.Band-gap opening in metallic single-walled carbon nanotubes by encapsulation of an organic salt.Angew Chem Int Ed2017;56:12240-4

[22]

Ivanov VG,Sloan J.Vibrational dynamics of extreme 2 × 2 and 3 × 3 potassium iodide nanowires encapsulated in single-walled carbon nanotubes.Phys Rev B2018;98:125429

[23]

Chiu PW,Kim GT.Temperature-induced change from p to n conduction in metallofullerene nanotube peapods.Appl Phys Lett2001;79:3845-7

[24]

Chimowa G,Lonchambon P.Tailoring of double-walled carbon nanotubes for formaldehyde sensing through encapsulation of selected materials.Phys Status Solidi A2019;216:1900279

[25]

Kato T,Shishido J,Tohji K.P-N junction with donor and acceptor encapsulated single-walled carbon nanotubes.Appl Phys Lett2009;95:083109

[26]

Li Y,Miyanaga S.Synthesis and property characterization of c(69)n azafullerene encapsulated single-walled carbon nanotubes.ACS Nano2010;4:3522-6

[27]

Poudel YR.Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: a review.Mater Today Phys2018;7:7-34

[28]

Eliseev AA,Chernysheva MV.Preparation and properties of single-walled nanotubes filled with inorganic compounds.Russ Chem Rev2009;78:833-54

[29]

Yang Q,Bai S,Cheng H.Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes.Chem Phys Lett2001;345:18-24

[30]

Wilder JWG,Rinzler AG,Dekker C.Electronic structure of atomically resolved carbon nanotubes.Nature1998;391:59-62

[31]

Dujardin E,Hiura H.Capillarity and wetting of carbon nanotubes.Science1994;265:1850-2

[32]

Ruoff RS,Chan B,Subramoney S.Single crystal metals encapsulated in carbon nanoparticles.Science1993;259:346-8

[33]

Guerret-piécourt C,Lolseau A.Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes.Nature1994;372:761-5

[34]

Hsu W,Terrones H.Electrochemical production of low-melting metal nanowires.Chem Phys Lett1999;301:159-66

[35]

Hirahara K,Bandow S.One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes.Phys Rev Lett2000;85:5384-7

[36]

Tobias G,Salzmann CG,Green ML.Purification and opening of carbon nanotubes using steam.J Phys Chem B2006;110:22318-22

[37]

Ajayan PM,Ichihashi T,Tanigaki K.Opening carbon nanotubes with oxygen and implications for filling.Nature1993;362:522-5

[38]

Tsang SC,Harris PJF.A simple chemical method of opening and filling carbon nanotubes.Nature1994;372:159-62

[39]

Hernadi K,Thiên-nga L,Kiricsi I.Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes.Solid State Ion2001;141-142:203-9

[40]

Wiśniewski M,Hattori Y,Okino F.Hydrothermal opening of multiwall carbon nanotube with H2O2 solution.Chem Phys Lett2009;482:316-9

[41]

Ribeiro H,da Silva WM.Purification of carbon nanotubes produced by the electric arc-discharge method.Surf Interfaces2021;26:101389

[42]

Egemen E,Trevizo C.Predicting surface tension of liquid organic solvents.Environ Sci Technol2000;34:2596-600

[43]

Eliseev A,Kharlamova M.One-dimensional crystals inside single-walled carbon nanotubes: growth, structure and electronic properties. In: Electronic properties of carbon nanotubes. 2011.

[44]

Sloan J,Hutchison JL.Structural characterization of atomically regulated nanocrystals formed within single-walled carbon nanotubes using electron microscopy.ACC Chem Res2002;35:1054-62

[45]

Wang D,Javid M.Formation of Sn filled CNTs nanocomposite: study of their magnetic, dielectric properties and enhanced microwave absorption performance at gigahertz frequencies.Ceram Int2022;48:21961-71

[46]

Fujimori T,Zhu Z.Conducting linear chains of sulphur inside carbon nanotubes.Nat Commun2013;4:2162

[47]

Belandria E,Broto J.Pressure dependence of Raman modes in double wall carbon nanotubes filled with 1D Tellurium.Carbon2010;48:2566-72

[48]

Kitaura R,Saito T,Awaga K.High-yield synthesis of ultrathin metal nanowires in carbon nanotubes.Angew Chem Int Ed2009;48:8298-302

[49]

Kharlamova MV.Comparative analysis of electronic properties of tin, gallium, and bismuth chalcogenide-filled single-walled carbon nanotubes.J Mater Sci2014;49:8402-11

[50]

Stonemeyer S,Oh S.Stabilization of NbTe3, VTe3 and TiTe3 via nanotube encapsulation.J Am Chem Soc2021;143:4563-8

[51]

Pham T,Stetz P.Torsional instability in the single-chain limit of a transition metal trichalcogenide.Science2018;361:263-6

[52]

Kharlamova MV,Lukashin AV.Comparison of modification of electronic properties of single-walled carbon nanotubes filled with metal halogenide, chalcogenide, and pure metal.Appl Phys A2013;112:297-304

[53]

Kashtiban RJ,Ramasse Q,Sloan J.Picoperovskites: the smallest conceivable isolated halide perovskite structures formed within carbon nanotubes.Adv Mater2023;35:e2208575

[54]

Yu WJ,Zhang L.Synthesis and electrochemical lithium storage behavior of carbon nanotubes filled with iron sulfide nanoparticles.Adv Sci2016;3:1600113 PMCID:PMC5096038

[55]

Calatayud DG,Kuganathan N.Encapsulation of cadmium selenide nanocrystals in biocompatible nanotubes: DFT calculations, X-ray diffraction investigations, and confocal fluorescence imaging.Chem Eur2018;7:144-58 PMCID:PMC5792830

[56]

Norman LT,Rance GA,Kaiser U.Synthesis of ultrathin rhenium disulfide nanoribbons using nano test tubes.Nano Res2022;15:1282-7

[57]

Popple D,Hoang TV.Charge-induced phase transition in encapsulated HfTe2 nanoribbons.Phys Rev Mater2023;7:L013001

[58]

Wang Z,Li H.Ultra-narrow WS2 nanoribbons encapsulated in carbon nanotubes.J Mater Chem2011;21:171-80

[59]

Carter R,Lister S.Band gap expansion, shear inversion phase change behaviour and low-voltage induced crystal oscillation in low-dimensional tin selenide crystals.Dalton Trans2014;43:7391-9

[60]

Wang Z,Liu Z.Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes.J Am Chem Soc2010;132:13840-7

[61]

Koshino M,Nakamura E.Analysis of the reactivity and selectivity of fullerene dimerization reactions at the atomic level.Nat Chem2010;2:117-24

[62]

Simon F,Rauf H.Low temperature fullerene encapsulation in single wall carbon nanotubes: synthesis of N@C60@SWCNT.Chem Phys Lett2004;383:362-7

[63]

Shimada T,Okazaki T.Transport properties of C78, C90 and Dy@C82 fullerenes-nanopeapods by field effect transistors.Phys E Low Dimens Syst Nanostruct2004;21:1089-92

[64]

Luzzi DE,Russo R.Encapsulation of metallofullerenes and metallocenes in carbon nanotubes. In AIP Conference Proceedings; 2001, pp. 622-6.

[65]

Suenaga K,Bandow S.Core-level spectroscopy on the valence state of encaged metal in metallofullerene-peapods. In AIP Conference Proceedings; 2001, pp. 256-60.

[66]

Suenaga K,Shimada T,Shinohara H.Evidence for the intramolecular motion of Gd atoms in a Gd2@C92 nanopeapod.Nano Lett2003;3:1395-8

[67]

Kuzmany H,Simon F.The growth of nanophases in the clean room inside single-wall carbon nanotubes.Synth Met2005;155:690-3

[68]

Zhong R,Yang X.Preparation of carbon nanotubes with high filling rate of copper nanoparticles.Microporous Mesoporous Mater2022;344:112231

[69]

Lee J,Kahng SJ.Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes.Nature2002;415:1005-8

[70]

Botos A,Chamberlain TW.Carbon nanotubes as electrically active nanoreactors for multi-step inorganic synthesis: sequential transformations of molecules to nanoclusters and nanoclusters to nanoribbons.J Am Chem Soc2016;138:8175-83

[71]

Béjar L,Parra C.Analysis of Raman spectroscopy and SEM of carbon nanotubes obtain by CVD.Microsc Microanal2018;24:1092-3

[72]

Caccamo MT,Magazù S.Thermal investigations on carbon nanotubes by spectroscopic techniques.Appl Sci2020;10:8159

[73]

Banhart F.Irradiation of carbon nanotubes with a focused electron beam in the electron microscope.J Mater Sci2006;41:4505-11

[74]

Oxley MP,Pennycook SJ.Ultra-high resolution electron microscopy.Rep Prog Phys2017;80:026101

[75]

Urban KW,Houben L.Progress in atomic-resolution aberration corrected conventional transmission electron microscopy (CTEM).Prog Mater Sci2023;133:101037

[76]

Guan L,Shi Z,Iijima S.Polymorphic structures of iodine and their phase transition in confined nanospace.Nano Lett2007;7:1532-5

[77]

Qin J,Si M.Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes.Nat Electron2020;3:141-7

[78]

Fu C,Zhu Y.Confined lithium-sulfur reactions in narrow-diameter carbon nanotubes reveal enhanced electrochemical reactivity.ACS Nano2018;12:9775-84

[79]

Corio P,Santos P.Characterization of single wall carbon nanotubes filled with silver and with chromium compounds.Chem Phys Lett2004;383:475-80

[80]

Zhang J,Wei J.High-efficiency encapsulation of Pt nanoparticles into the channel of carbon nanotubes as an enhanced electrocatalyst for methanol oxidation.Chemistry2013;19:16087-92

[81]

Kozhuharova R,Elefant D.Synthesis and characterization of aligned Fe-filled carbon nanotubes on silicon substrates.J Mater Sci Mater Electron2003;14:789-91

[82]

Yao Y,Lian C.Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal.J Hazard Mater2016;314:129-39

[83]

Gao X,Chen X.Carbon nanotubes filled with metallic nanowires.Carbon2004;42:47-52

[84]

Shi L,Suenaga K.Confined linear carbon chains as a route to bulk carbyne.Nat Mater2016;15:634-9

[85]

Lenz K,Wagner K.Magnetization dynamics of an individual single-crystalline Fe-filled carbon nanotube.Small2019;15:e1904315

[86]

Aryee D.Shape anisotropy and hybridization enhanced magnetization in nanowires of Fe/MgO/Fe encapsulated in carbon nanotubes.J Magn Magn Mater2017;429:161-5

[87]

Xu S,Lu Y.In situ atomic-scale analysis of Rayleigh instability in ultrathin gold nanowires.Nano Res2018;11:625-32

[88]

Bingham JT,Vyas S.Understanding fragmentation of organic small molecules in atom probe tomography.J Phys Chem Lett2021;12:10437-43

[89]

Jordan JW,McSweeney RL.Host-guest hybrid redox materials self-assembled from polyoxometalates and single-walled carbon nanotubes.Adv Mater2019;31:e1904182

[90]

Smith BW,Luzzi DE.Encapsulated C60 in carbon nanotubes.Nature1998;396:323-4

[91]

Botos Á,Botka B.Investigation of fullerene encapsulation in carbon nanotubes using a complex approach based on vibrational spectroscopy.Phys Status Solidi B2010;247:2743-5

[92]

Ashino M,Haluska M.Atomically resolved mechanical response of individual metallofullerene molecules confined inside carbon nanotubes.Nat Nanotechnol2008;3:337-41

[93]

Khlobystov AN,Kanai M.Molecular motion of endohedral fullerenes in single-walled carbon nanotubes.Angew Chem Int Ed2004;43:1386-9

[94]

Morgan DA,Green ML.Direct imaging of o-carborane molecules within single walled carbon nanotubes.Chem Commun2002;20:2442-3

[95]

Khlobystov AN,Briggs GA.Molecules in carbon nanotubes.ACC Chem Res2005;38:901-9

[96]

Villalva J,Montenegro-Pohlhammer N.Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules.Nat Commun2021;12:1578 PMCID:PMC7952721

[97]

Lee CH,Park KS.The nano-memory devices of a single wall and peapod structural carbon nanotube field effect transistor.Jpn J Appl Phys2003;42:5392-4

[98]

Friedrichs S,Green MLH,Kirkland AI.Complete characterisation of a Sb2O3/(21,-8)SWNT inclusion composite.Chem Commun2001;10:929-30

[99]

Brown G,Sloan J.Electron beam induced in situ clusterisation of 1D ZrCl4 chains within single-walled carbon nanotubes.Chem Commun2001;9:845-6

[100]

Eliseev AA,Verbitskii NI.Chemical reactions within single-walled carbon nanotube channels.Chem Mater2009;21:5001-3

[101]

Nagata M,Nakanishi Y.Isolation of single-wired transition-metal monochalcogenides by carbon nanotubes.Nano Lett2019;19:4845-51

[102]

Eliseev A,Brzhezinskaya M.Structure and electronic properties of AgX (X = Cl, Br, I)-intercalated single-walled carbon nanotubes.Carbon2010;48:2708-21

[103]

Eliseev A,Verbitskiy N.Interaction between single walled carbon nanotube and 1D crystal in CuX@SWCNT (X = Cl, Br, I) nanostructures.Carbon2012;50:4021-39

[104]

Kharlamova MV,Volykhov AA.Acceptor doping of single-walled carbon nanotubes by encapsulation of zinc halogenides.Eur Phys J B2012;85:34

[105]

Li L,Doig J.Crystal-encapsulation-induced band-structure change in single-walled carbon nanotubes: photoluminescence and Raman spectra.Phys Rev B2006;74:245418

[106]

Stoppiello CT,Li ZY.A one-pot-one-reactant synthesis of platinum compounds at the nanoscale.Nanoscale2017;9:14385-94

[107]

Cain JD,Azizi A.Ultranarrow TaS2 nanoribbons.Nano Lett2021;21:3211-7

[108]

Meyer S,Oh S.Metal-insulator transition in quasi-one-dimensional HfTe3 in the few-chain limit.Phys Rev B2019;100:4

[109]

Cabana L,Batista E.Synthesis of PbI2 single-layered inorganic nanotubes encapsulated within carbon nanotubes.Adv Mater2014;26:2016-21

[110]

Wang L,Bouša D.Graphane nanostripes.Angew Chem Int Ed2016;55:13965-9

[111]

Fu L,Zhou S,Zhao J.Transition metal halide nanowires: a family of one-dimensional multifunctional building blocks.Appl Phys Lett2022;120:023103

[112]

Kharlamova MV.Kinetics, electronic properties of filled carbon nanotubes investigated with spectroscopy for applications.Nanomaterials2022;13:176 PMCID:PMC9823493

[113]

Nonnenmacher M.Optical absorption spectroscopy by scanning force microscopy.Ultramicroscopy1992;42-44:351-4

[114]

Kharlamova MV,Yashina LV.Study of the electronic structure of single-walled carbon nanotubes filled with cobalt bromide.JETP Lett2010;91:196-200

[115]

Kharlamova MV,Vinogradov AS.The formation and properties of one-dimensional FeHal2 (Hal = Cl, Br, I) nanocrystals in channels of single-walled carbon nanotubes.Nanotechnol Russ2009;4:634-46

[116]

Kharlamova MV,Lukashin AV.Charge transfer in single-walled carbon nanotubes filled with cadmium halogenides.J Mater Sci2013;48:8412-9

[117]

Kharlamova MV,Yashina LV,Lukashin AV.Experimental and theoretical studies on the electronic properties of praseodymium chloride-filled single-walled carbon nanotubes.J Mater Sci2015;50:5419-30

[118]

Kharlamova MV.Comparison of influence of incorporated 3d-, 4d- and 4f-metal chlorides on electronic properties of single-walled carbon nanotubes.Appl Phys A2013;111:725-31

[119]

Kharlamova MV.Novel approach to tailoring the electronic properties of single-walled carbon nanotubes by the encapsulation of high-melting gallium selenide using a single-step process.JETP Lett2013;98:272-7

[120]

Yashina LV,Kharlamova MV.Growth and characterization of one-dimensional SnTe crystals within the single-walled carbon nanotube channels.J Phys Chem C2011;115:3578-86

[121]

Si R.Electron affinities of at and its homologous elements Cl, Br, and I.Phys Rev A2018;98:052504

[122]

Jorio A.Raman spectroscopy for carbon nanotube applications.J Appl Phys2021;129:021102

[123]

Kharlamova MV,Yashina LV,Tretyakov YD.Synthesis of nanocomposites on basis of single-walled carbon nanotubes intercalated by manganese halogenides.J Phys Conf Ser2012;345:012034

[124]

Kharlamova MV,Eliseev AA.Single-walled carbon nanotubes filled with nickel halogenides: atomic structure and doping effect.Phys Status Solidi B2012;249:2328-32

[125]

Kharlamova MV,Mittelberger A.Raman spectroscopy study of the doping effect of the encapsulated terbium halogenides on single-walled carbon nanotubes.Appl Phys A2017;123:239

[126]

Kharlamova MV,Pichler T.Semiconducting response in single-walled carbon nanotubes filled with cadmium chloride: semiconducting response in SWCNTs filled with CdCl2.Phys Status Solidi B2016;253:2433-9

[127]

Kharlamova MV,Saito T.Doping of single-walled carbon nanotubes controlled via chemical transformation of encapsulated nickelocene.Nanoscale2015;7:1383-91

[128]

Nascimento VV,Alencar RS.Origin of the giant enhanced raman scattering by sulfur chains encapsulated inside single-wall carbon nanotubes.ACS Nano2021;15:8574-82

[129]

Li G,Oviedo MB.Giant Raman response to the encapsulation of sulfur in narrow diameter single-walled carbon nanotubes.J Am Chem Soc2016;138:40-3

[130]

Mijit E,Minicucci M.Development of a high temperature diamond anvil cell for x ray absorption experiments under extreme conditions.Radiat Phys Chem2020;175:108106

[131]

Fedoseeva YV,Chekhova GN.Single-walled carbon nanotube reactor for redox transformation of mercury dichloride.ACS Nano2017;11:8643-9

[132]

Gets AV.Conductivity of single-walled carbon nanotubes.J Exp Theor Phys2016;123:1084-9

[133]

Khosravi M,Habibinejad M.Optical properties of double walled carbon nanotubes.J Electron Spectros Relat Phenomena2021;248:147058

[134]

Shang Y,Xu W.Meter-long spiral carbon nanotube fibers show ultrauniformity and flexibility.Nano Lett2016;16:1768-75

[135]

Chen C,Yang J.Intramolecular p-i-n junction photovoltaic device based on selectively doped carbon nanotubes.Nano Energy2017;32:280-6

[136]

Chiba T,Takashiri M.Heat source free water floating carbon nanotube thermoelectric generators.Sci Rep2021;11:14707 PMCID:PMC8289987

[137]

Wang JG,Zhang X,Liu X.Green synthesis of hierarchically porous carbon nanotubes as advanced materials for high-efficient energy storage.Small2018;14:e1703950

[138]

Bychko IB,Lemesh NV.Catalytic activity of multiwalled carbon nanotubes in acetylene hydrogenation.ChemCatChem2017;9:4470-4

[139]

Liu J,Lin X.The electronic properties of chiral carbon nanotubes.Comput Mater Sci2017;129:290-4

[140]

Li Y,Kong J.Photoswitching in azafullerene encapsulated single-walled carbon nanotube FET devices.J Am Chem Soc2009;131:3412-3

[141]

Li YF,Shishido J,Kaneko T.Air-stable p-n junction diodes based on single-walled carbon nanotubes encapsulating Fe nanoparticles.Appl Phys Lett2007;90:173127

[142]

Xu L,Zhang H,Li C.Confined synthesis of FeS2 nanoparticles encapsulated in carbon nanotube hybrids for ultrastable lithium-ion batteries.ACS Sustain Chem Eng2016;4:4251-5

[143]

Yu WJ,Hou PX.Lithiation of silicon nanoparticles confined in carbon nanotubes.ACS Nano2015;9:5063-71

[144]

Li S,Guo P.Self-climbed amorphous carbon nanotubes filled with transition metal oxide nanoparticles for large rate and long lifespan anode materials in lithium ion batteries.ACS Appl Mater Interfaces2017;9:26818-25

[145]

Liu Y,Wang Z,Liu J.Fe3O4 nanoparticles encapsulated in multi-walled carbon nanotubes possess superior lithium storage capability.New J Chem2017;41:6241-50

[146]

Kim S,Jeong Y.Flexible catholyte@carbon nanotube film electrode for high-performance lithium sulfur battery.Carbon2017;113:371-8

[147]

Landi BJ,Cress CD,Raffaelle RP.Carbon nanotubes for lithium ion batteries.Energy Environ Sci2009;2:638

[148]

Raccichini R,Passerini S.The role of graphene for electrochemical energy storage.Nat Mater2015;14:271-9

[149]

Kodama T,Park W.Modulation of thermal and thermoelectric transport in individual carbon nanotubes by fullerene encapsulation.Nat Mater2017;16:892-7

[150]

Fukumaru T,Nakashima N.Development of n-type cobaltocene-encapsulated carbon nanotubes with remarkable thermoelectric property.Sci Rep2015;5:7951 PMCID:PMC4302313

[151]

Aygün M,Lebedeva MA.Comparison of alkene hydrogenation in carbon nanoreactors of different diameters: probing the effects of nanoscale confinement on ruthenium nanoparticle catalysis.J Mater Chem A2017;5:21467-77

[152]

Chamberlain TW,Anderson DP,Bourne RA.Catalytic nanoreactors in continuous flow: hydrogenation inside single-walled carbon nanotubes using supercritical CO2.Chem Commun2014;50:5200-2

[153]

Che G,Martin CR.Metal-nanocluster-filled carbon nanotubes:  catalytic properties and possible applications in electrochemical energy storage and production.Langmuir1999;15:750-8

[154]

Ellis JE.Carbon nanotube based gas sensors toward breath analysis.Chempluschem2016;81:1248-65

[155]

Tian R,Hu X.Novel approaches for highly selective, room-temperature gas sensors based on atomically dispersed non-precious metals.J Mater Chem A2020;8:23784-94

[156]

Qin M,Song Y.Toward high sensitivity: perspective on colorimetric photonic crystal sensors.Anal Chem2022;94:9497-507

[157]

Qin Z,Zhang H.A transparent, ultrastretchable and fully recyclable gelatin organohydrogel based electronic sensor with broad operating temperature.J Mater Chem A2020;8:4447-56

[158]

Luo C,Gong Y,Fu Q.Highly sensitive, durable, and multifunctional sensor inspired by a spider.ACS Appl Mater Interfaces2017;9:19955-62

[159]

liu H,Du F,Li Z.Flexible and degradable paper-based strain sensor with low cost.ACS Sustain Chem Eng2017;5:10538-43

[160]

Kim J,Lee J,Byun YT.Gas sensing properties of defect-induced single-walled carbon nanotubes.Sens Actuator A Phys2016;228:688-92

[161]

Quang NH,Lee B.Effect of NH3 gas on the electrical properties of single-walled carbon nanotube bundles.Sens Actuators B Chem2006;113:341-6

[162]

Nguyen H.Behavior of single-walled carbon nanotube-based gas sensors at various temperatures of treatment and operation.Sens Actuators B Chem2006;117:426-30

[163]

Qi P,Grecu M.Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection.Nano Lett2003;3:347-51

[164]

Ramachandran K,Babu KJ.Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications.Sci Rep2016;6:36583 PMCID:PMC5105137

[165]

Chimowa G,Akande AA.Improving methane gas sensing properties of multi-walled carbon nanotubes by vanadium oxide filling.Sens Actuators B Chem2017;247:11-8

[166]

Fedi F,Shiozawa H.Reversible changes in the electronic structure of carbon nanotube-hybrids upon NO2 exposure under ambient conditions.J Mater Chem A2020;8:9753-9

AI Summary AI Mindmap
PDF

51

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/