Structure, magnetism and low thermal expansion in Tb1-xErxCo2Mny intermetallic compounds

Yanming Sun , Yili Cao , Yang Ren , Saul H. Lapidus , Qiang Li , Jinxia Deng , Jun Miao , Kun Lin , Xianran Xing

Microstructures ›› 2023, Vol. 3 ›› Issue (4) : 2023028

PDF
Microstructures ›› 2023, Vol. 3 ›› Issue (4) :2023028 DOI: 10.20517/microstructures.2023.03
Research Article

Structure, magnetism and low thermal expansion in Tb1-xErxCo2Mny intermetallic compounds

Author information +
History +
PDF

Abstract

Here, we obtained a series of controllable thermal expansion alloys Tb1-xErxCo2Mny (x = 0-0.5, y = 0-0.4) by incorporating double rare earth doping and introducing non-stoichiometric Mn content. By varying the amount of Er or Mn, a low thermal expansion (LTE) is achieved in Tb0.6Er0.4Co2Mn0.1 (TECM, α1 = 1.23 × 10-6 K-1, 125~236 K). The macroscopic linear expansion and magnetic properties reveal that anomalous thermal expansion is closely related to the magnetic phase transition. Synchrotron X-ray powder diffraction results show that TECM is a cubic phase (space group: Fd-3m) at high temperatures, and a structural transition to a rhombohedral phase (space group: R-3m) occurs as temperature decreases. The negative thermal expansion c-axis compensates for the normal positive thermal expansion of the basal plane, resulting in the volumetric LTE. This study provides a new metallic and magnetic ZTE material.

Keywords

Zero thermal expansion / crystal structure / microstructure / magnetism

Cite this article

Download citation ▾
Yanming Sun, Yili Cao, Yang Ren, Saul H. Lapidus, Qiang Li, Jinxia Deng, Jun Miao, Kun Lin, Xianran Xing. Structure, magnetism and low thermal expansion in Tb1-xErxCo2Mny intermetallic compounds. Microstructures, 2023, 3(4): 2023028 DOI:10.20517/microstructures.2023.03

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guillaume C.Recherches sur les aciers au nickel.J Phys Theor Appl1898;7:262-74

[2]

Honda K.A new alloy, 'stainless-invar'.Nature1933;131:587-587

[3]

Huang Q,Lynn JW.Structure and magnetic order in La1-xCaxMnO3 (0 < x < ~0.33).Phys Rev B1998;58:2684-91

[4]

Li Q,Liu Z.Chemical diversity for tailoring negative thermal expansion.Chem Rev2022;122:8438-86

[5]

Chippindale AM,Bilbé EJ.Mixed copper, silver, and gold cyanides, (MxM'1-x)CN: tailoring chain structures to influence physical properties.J Am Chem Soc2012;134:16387-400

[6]

Poornaprakash B,Vattikuti SP.Achieving enhanced ferromagnetism in ZnTbO nanoparticles through Cu co-doping.Ceram Int2019;45:16347-52

[7]

Tan Z,Hagihala M.Room temperature zero thermal expansion in a cubic cobaltite.J Phys Chem Lett2020;11:6785-90

[8]

Guo X,Li J.Designing mechanical metamaterials with kirigami-inspired, hierarchical constructions for giant positive and negative thermal expansion.Adv Mater2021;33:e2004919

[9]

Xu J,Huang H.Significant zero thermal expansion via enhanced magnetoelastic coupling in kagome magnets.Adv Mater2023;35:e2208635

[10]

Song Y,Yokoyama T.Transforming thermal expansion from positive to negative: the case of cubic magnetic compounds of (Zr,Nb)Fe2.J Phys Chem Lett2020;11:1954-61

[11]

Shiga M.Magnetovolume effects and invar characters of (Zr1-xNbx)Fe2.J Phys Soc Jpn1979;47:1446-51

[12]

Wada H,Shiga M.Thermal and transport properties of Sc1-xTixFe2.J Phys Soc Jpn1994;63:283-8

[13]

Ren Q,Wang J.Negative thermal expansion of Ni-doped MnCoGe at room-temperature magnetic tuning.ACS Appl Mater Interfaces2019;11:17531-8

[14]

Shen F,Hu F.Cone-spiral magnetic ordering dominated lattice distortion and giant negative thermal expansion in Fe-doped MnNiGe compounds.Mater Horizons2020;7:804-10

[15]

Hu F,Sun J,Rao G.Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6.Appl Phys Lett2001;78:3675-7

[16]

Fujita A,Wang J.Large magnetovolume effects and band structure of itinerant-electron metamagnetic La(FexSi1-x)13 compounds.Phys Rev B2003;68:104431

[17]

Khmelevskyi S.Theory of invar anomalies in the laves phase RCo2 (R = Ho, Dy) intermetallic compounds.J Magn Magn Mater2004;272-276:525-6

[18]

Hu J,Cao Y.Adjustable magnetic phase transition inducing unusual zero thermal expansion in Cubic RCo2-based intermetallic compounds (R = Rare earth).Inorg Chem2019;58:5401-5

[19]

Yang N,Mccallum R,Zhang Y.Spontaneous magnetostriction in R2Fe14B (R=Y, Nd, Gd, Tb, Er).J Magn Magn Mater2005;295:65-76

[20]

Kuchin A,Gaviko V.Magnetovolume properties of Y2Fe17-xMx alloys (M = Si or Al).J Alloys Compd1999;289:18-23

[21]

Cao Y,Khmelevskyi S.Ultrawide temperature range super-invar behavior of R2(Fe,Co)17 materials (R = Rare Earth).Phys Rev Lett2021;127:055501

[22]

Weiss RJ.The origin of the ‘invar’ effect.Proc Phys Soc1963;82:281-8

[23]

Fang C,Hong F.Tuning the magnetic and structural transitions in TbCo2Mnx compounds.Phys Rev B2017;96:064425

[24]

Bloch D.Metallic alloys and exchange-enhanced paramagnetism. application to rare-earth-cobalt alloys.Phys Rev B1970;2:2648-50

[25]

Duc NH. Handbook on the physics and chemistry of rare earths. Amsterdam: Elsevier B.V.; 1999. pp. 1-413.

[26]

Inishev AA,Mushnikov NV,Gaviko VS.Structure, magnetic and magnetocaloric properties of nonstoichiometric TbCo2Mnx compounds.Phys Met Metallogr2018;119:1036-42

[27]

Gerasimov E,Mushnikov N,Gaviko V.Magnetocaloric effect, heat capacity and exchange interactions in nonstoichiometric Er0.65Gd0.35Co2Mn compounds.Intermetallics2022;140:107386

[28]

Bentouaf A,Rached H,Reshak A.Theoretical investigation of the structural, electronic, magnetic and elastic properties of binary cubic C15-Laves phases TbX2 (X = Co and Fe).J Alloys Compd2016;689:885-93

[29]

Gerasimov E,Terentev P,Mushnikov N.Magnetostriction and thermal expansion of nonstoichiometric TbCo2Mnx compounds.J Magn Magn Mater2021;523:167628

[30]

Koley B,Misra S.Rh8Cd43: a rhombohedral variant of a cubic giant cell structure.J Alloy Compd2017;695:3760-6

AI Summary AI Mindmap
PDF

28

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/