Low-pressure-driven barocaloric effects at colinear-to-triangular antiferromagnetic transitions in Mn3-xPt1+x

Xueting Zhao , Kun Zhang , Ji Qi , Peng Liu , Zhao Zhang , Lin Qu , Zhidong Zhang , Bing Li

Microstructures ›› 2023, Vol. 3 ›› Issue (3) : 2023022

PDF
Microstructures ›› 2023, Vol. 3 ›› Issue (3) :2023022 DOI: 10.20517/microstructures.2022.46
Research Article

Low-pressure-driven barocaloric effects at colinear-to-triangular antiferromagnetic transitions in Mn3-xPt1+x

Author information +
History +
PDF

Abstract

A large driving pressure is required for barocaloric effects (BCEs) in intermetallics, usually above 100 MPa. Here, we report barocaloric effects in Mn3-xPt1+xalloys saturated at about 60 MPa, the lowest pressure reported in intermetallics to date. A first-order phase transition occurs from the colinear antiferromagnetic phase to the triangular antiferromagnetic phase as temperature decreases. The transition temperature strongly depends on the composition x, ranging from 331 K for x = 0.18 to 384 K for x = 0.04, and is sensitive to pressure, with dTt/dP up to 139 K/GPa. However, the maximum pressure-induced entropy changes are as small as 13.79 J kg-1 K-1, attributed to the mutual cancellation of lattice and magnetic entropy changes. The small driving pressure and total entropy changes are due to the special magnetic geometric frustration.

Keywords

Barocaloric effects / magnetoelastic coupling / magnetic transition / geometrical spin frustration / colinear antiferromagnetic

Cite this article

Download citation ▾
Xueting Zhao, Kun Zhang, Ji Qi, Peng Liu, Zhao Zhang, Lin Qu, Zhidong Zhang, Bing Li. Low-pressure-driven barocaloric effects at colinear-to-triangular antiferromagnetic transitions in Mn3-xPt1+x. Microstructures, 2023, 3(3): 2023022 DOI:10.20517/microstructures.2022.46

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sari O.From conventional to magnetic refrigerator technology.Int J Refrig2014;37:8-15

[2]

Müller K, Fauth F, Fischer S, Koch M, Furrer A, Lacorre P. Cooling by adiabatic pressure application in Pr1-xLaxNiO3.Appl Phys Lett1998;73:1056-8

[3]

Strässle T,Lacorre P.A novel principle for cooling by adiabatic pressure application in rare-earth compounds.J Alloys Compd2000;303-304:228-31

[4]

Mañosa L,Planes A.Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy.Nat Mater2010;9:478-81

[5]

Mañosa L,Planes A.Inverse barocaloric effect in the giant magnetocaloric La-Fe-Si-Co compound.Nat Commun2011;2:595

[6]

Fujieda S,Fukamichi K.Strong pressure effect on the curie temperature of itinerant-electron metamagnetic La(Fe0.88Si0.12)13Hy and La0.7Ce0.3(Fe0.88Si0.12)13Hy.Mater Trans2009;50:483-6

[7]

Yuce S,Emre B.Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2.Appl Phys Lett2012;101:071906

[8]

Wu RR,Hu FX.Giant barocaloric effect in hexagonal Ni2In-type Mn-Co-Ge-In compounds around room temperature.Sci Rep2015;5:18027 PMCID:PMC4682185

[9]

Stern-taulats E,Planes A.Reversible adiabatic temperature changes at the magnetocaloric and barocaloric effects in Fe49Rh51.Appl Phys Lett2015;107:152409

[10]

Stern-taulats E,Lloveras P.Barocaloric and magnetocaloric effects in Fe49Rh51.Phys Rev B2014;89:214105

[11]

Aznar A,Romanini M.Giant barocaloric effects over a wide temperature range in superionic conductor AgI.Nat Commun2017;8:1851 PMCID:PMC5705726

[12]

Bermúdez-García JM,Castro-García S,Artiaga R.Giant barocaloric effect in the ferroic organic-inorganic hybrid [TPrA][Mn(dca)3] perovskite under easily accessible pressures.Nat Commun2017;8:15715 PMCID:PMC5461497

[13]

Lloveras P,Barrio M.Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate.Nat Commun2015;6:8801 PMCID:PMC4674762

[14]

Mikhaleva E,Bondarev V,Flerov I.Comparative analysis of elastocaloric and barocaloric effects in single-crystal and ceramic ferroelectric (NH4)2SO4.Scripta Mater2021;191:149-54

[15]

Yu C,Qi J.Giant barocaloric effects in formamidinium iodide.APL Mater2022;10:011109

[16]

Salgado-beceiro J,Silva RX.Near-room-temperature reversible giant barocaloric effects in [(CH3)4N]Mn[N3]3 hybrid perovskite.Mater Adv2020;1:3167-70

[17]

Ranke P, Alho B, Ribeiro P. First indirect experimental evidence and theoretical discussion of giant refrigeration capacity through the reversible pressure induced spin-crossover phase transition.J Alloys Compd2018;749:556-60

[18]

Szafrański M,Wang Z,Katrusiak A.Research update: tricritical point and large caloric effect in a hybrid organic-inorganic perovskite.APL Mater2018;6:100701

[19]

Bom NM,Usuda EO,Carvalho AMG.Giant barocaloric effects in natural rubber: a relevant step toward solid-state cooling.ACS Macro Lett2018;7:31-6

[20]

Miliante CM,Usuda EO.Unveiling the origin of the giant barocaloric effect in natural rubber.Macromolecules2020;53:2606-15

[21]

Sagotra AK,Cazorla C.Room-temperature mechanocaloric effects in lithium-based superionic materials.Nat Commun2018;9:3337 PMCID:PMC6102246

[22]

Cazorla C.Giant mechanocaloric effects in fluorite-structured superionic materials.Nano Lett2016;16:3124-9

[23]

Ma N.Barocaloric effect on graphene.Sci Rep2017;7:13257 PMCID:PMC5643550

[24]

Li B,Ohira-Kawamura S.Colossal barocaloric effects in plastic crystals.Nature2019;567:506-10

[25]

Aznar A,Barrio M.Reversible and irreversible colossal barocaloric effects in plastic crystals.J Mater Chem A2020;8:639-47

[26]

Lloveras P.Advances and obstacles in pressure-driven solid-state cooling: a review of barocaloric materials.MRS Energy Sustain2021;8;3-15

[27]

Tao K,Lin J.Giant reversible barocaloric effect with low hysteresis in antiperovskite PdNMn3 compound.Scripta Mater2021;203:114049

[28]

Matsunami D,Takenaka K.Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN.Nat Mater2015;14:73-8

[29]

Boldrin D,Zemen J.Multisite exchange-enhanced barocaloric response in Mn3NiN.Phys Rev X2018;8:041035

[30]

Dusek M.Towards the routine application of computing system Jana2000.Acta Crystallogr A Found Crystallogr2005;61:c104-5

[31]

Krén E,Pál L,Szabó P.Magnetic structures and exchange interactions in the Mn-Pt system.Phys Rev1968;171:574-85

[32]

Krén E,Pál L.Investigation of the first-order magnetic transformation in Mn3Pt.J Appl Phys1967;38:1265-6

[33]

Tomiyoshi S,Kaneko T.Magnetic excitations in Mn3Pt at high energies by the TOF method.J Magn Magn Mater1990;90-91:203-4

[34]

Zuniga-Cespedes BE,Noad HML.Observation of an anomalous hall effect in single-crystal Mn3Pt.Mater Sci2022;2209:05865

[35]

An N,Hu S.Structure and strain tunings of topological anomalous hall effect in cubic noncollinear antiferromagnet Mn3Pt epitaxial films.Sci China Phys Mech Astron2020;63:297511

[36]

Yasui H,Yoshida H,Kamigaki K.Pressure dependence of magnetic transition temperatures and lattice parameter in an antiferromagnetic ordered alloy Mn3Pt.J Phys Soc Jpn1987;56:4532-9

[37]

Yasui H,Abe S.Magnetic order-order transformation in Mn3Pt.J Magn Magn Mater1992;104-107:927-8

[38]

Ricodeau JA.Model of the antiferromagnetic-antiferromagnetic transition in Mn3Pt alloys.J Phys F Met Phys1974;4:1285-303

[39]

Boldrin D.Fantastic barocalorics and where to find them.Appl Phys Lett2021;118:170502

[40]

Ehrenreich H. Solid state physics: advances in research and applications. Amsterdam Boston: Academic Press; 2006.

[41]

Hemberger J,Tsurkan V.Large magnetostriction and negative thermal expansion in the frustrated antiferromagnet ZnCr2Se4.Phys Rev Lett2007;98:147203

[42]

Broholm C,Espinosa GP.Antiferromagnetic fluctuations and short-range order in a Kagomé lattice.Phys Rev Lett1990;65:3173-6

[43]

Li B,Zhang Q.Magnetostructural coupling and magnetocaloric effect in Ni-Mn-In.Appl Phys Lett2009;95:172506

[44]

Zhang K,Qi J.Colossal barocaloric effect in carboranes as a performance tradeoff.Adv Funct Mater2022;32:2112622

[45]

Ren Q,Yu D.Ultrasensitive barocaloric material for room-temperature solid-state refrigeration.Nat Commun2022;13:2293 PMCID:PMC9051211

[46]

Zhang Z,Lin S.Thermal batteries based on inverse barocaloric effects.Sci Adv2023;9:eadd0374 PMCID:PMC9937572

[47]

Lloveras P,Barrio M.Giant reversible barocaloric response of MnNiSi)1-x(FeCoGe)x (x = 0.39, 0.40, 0.41).APL Mater2019;7:061106

[48]

Greca LG,Tardy BL,Rojas OJ.Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route.Mater Horiz2018;5:408-15

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/