Triethanolamine assisted synthesis of bimetallic nickel cobalt nitride/nitrogen-doped carbon hollow nanoflowers for supercapacitor

Qiao Luo , Congcong Lu , Lingran Liu , Maiyong Zhu

Microstructures ›› 2023, Vol. 3 ›› Issue (2) : 2023011

PDF
Microstructures ›› 2023, Vol. 3 ›› Issue (2) :2023011 DOI: 10.20517/microstructures.2022.41
Research Article

Triethanolamine assisted synthesis of bimetallic nickel cobalt nitride/nitrogen-doped carbon hollow nanoflowers for supercapacitor

Author information +
History +
PDF

Abstract

Supercapacitors (SCs) have drawn growing attention due to their advantages in fast charge/discharge over batteries. Benefiting from their prominent electrical conductivity and metal-like characteristics, transition metal nitrides have emerged as promising electrode materials for SCs. Traditional ways to prepare metal nitrides through ammonolysis are inconvenient and induce severe environmental pollution. Herein, we report a facile synthetic method toward heterogenous Ni3N-Co2N0.67/nitrogen-doped carbon (Ni3N-Co2N0.67/NC) hollow nanoflower via pyrolyzing NiCo-TEOA (triethanolamine) complex precursor applying urea as nitrogen source. Electrochemical tests demonstrate that the Ni3N-Co2N0.67/NC nanoflower delivers good specific capacitance (1582 F g-1 at 1 A g-1) and steady cycle performance (83.79% after 5000 cycles). Moreover, the as-assembled Ni3N-Co2N0.67/NC//AC cell can reach a peak energy density of 32.4 W h kg-1 at a power density of 851.3 W kg-1. The excellent electrochemical performance confirms extensive application prospects of the Ni3N-Co2N0.67/NC nanoflower.

Keywords

Nanoflower / hollow structure / transition metal nitride / nitrogen-doped carbon / supercapacitor

Cite this article

Download citation ▾
Qiao Luo, Congcong Lu, Lingran Liu, Maiyong Zhu. Triethanolamine assisted synthesis of bimetallic nickel cobalt nitride/nitrogen-doped carbon hollow nanoflowers for supercapacitor. Microstructures, 2023, 3(2): 2023011 DOI:10.20517/microstructures.2022.41

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu S,Jiao T.An aqueous Zn-Ion hybrid supercapacitor with high energy density and ultrastability up to 80,000 cycles.Adv Energy Mater2019;9:1902915

[2]

Yu Z,Abbitt D.Highly ordered MnO2 nanopillars for enhanced supercapacitor performance.Adv Mater2013;25:3302-6

[3]

Ji J,Ji H.Nanoporous Ni(OH)2 thin film on 3D Ultrathin-graphite foam for asymmetric supercapacitor.ACS Nano2013;7:6237-43

[4]

Dubal DP,Ruiz V.Hybrid energy storage: the merging of battery and supercapacitor chemistries.Chem Soc Rev2015;44:1777-90

[5]

Xu B,Mei H.Recent progress in metal-organic framework-based supercapacitor electrode materials.Coord Chem Rev2020;420:213438

[6]

Ma R,Zhao D.Ti3C2Tx MXene for electrode materials of supercapacitors.J Mater Chem A2021;9:11501-29

[7]

Li K,Zhang H.3D porous honeycomb-like CoN-Ni3N/N-C nanosheets integrated electrode for high-energy-density flexible supercapacitor.Adv Funct Mater2021;31:2103073

[8]

Meng L,Gao X.Heterostructure Co2N-Ni3N/NF nanoarrays synthesized by in situ nitriding treatment for high-performance supercapacitor.J Alloys Compd2022;909:164721

[9]

Zhu C,Chao D.A 2.0 V capacitive device derived from shape-preserved metal nitride nanorods.Nano Energy2016;26:1-6

[10]

Xiao X,Jin H.Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors.Adv Mater2013;25:5091-7

[11]

Xiao X,Jin H.Salt-templated synthesis of 2D metallic mon and other nitrides.ACS Nano2017;11:2180-6

[12]

Wang H,Li K.Transition metal nitrides for electrochemical energy applications.Chem Soc Rev2021;50:1354-90

[13]

Yang H,Cao H.Selectively anchored vanadate host for self-boosting catalytic synthesis of ultra-fine vanadium nitride/nitrogen-doped hierarchical carbon hybrids as superior electrode materials.Electrochim Acta2020;332:135387

[14]

Jin T,Unocic RR.Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy.Adv Mater2018;30:e1707512

[15]

Patra S,Madhuri R.Agar based bimetallic nanoparticles as high-performance renewable adsorbent for removal and degradation of cationic organic dyes.J Ind Eng Chem2016;33:226-38

[16]

Patra S,Madhuri R.Nanocomposite of bimetallic nanodendrite and reduced graphene oxide as a novel platform for molecular imprinting technology.Anal Chim Acta2016;918:77-88

[17]

Aziz ST,Riyajuddin S,Nessim GD.Bimetallic phosphides for hybrid supercapacitors.J Phys Chem Lett2021;12:5138-49

[18]

Ren F,Chen F,Tian J.Flower-like bimetal Ni/Co-based metal-organic-framework materials with adjustable components toward high performance solid-state supercapacitors.Mater Chem Front2021;5:7333-42

[19]

Huang K,Zhang Y,Zhang W.Hollow-structured metal oxides as oxygen-related catalysts.Adv Mater2019;31:e1801430

[20]

Zhu M,Luo Q,Zhang Q.A review of synthetic approaches to hollow nanostructures.Mater Chem Front2021;5:2552-87

[21]

Liu X,Xiao D.Hierarchical bimetallic Ni-Co-P microflowers with ultrathin nanosheet arrays for efficient hydrogen evolution reaction over all pH values.ACS Appl Mater Interfaces2019;11:42233-42

[22]

Dong J,Yue J,Kang X.Valence modulation in hollow carbon nanosphere/manganese oxide composite for high performance supercapacitor.Appl Surf Sci2019;480:1116-25

[23]

Yang Y.Boron and nitrogen co-doped carbon nanospheres for supercapacitor electrode with excellent specific capacitance.Nanotechnology2022;33:185403

[24]

Yang M,Xiao L,Zhang F.Mn3O4/MnS heterostructure for electrode and asymmetric supercapacitor under high charge/discharge current.Electrochim Acta2022;424:140630

[25]

Qiu L,Zhao Q.NiS nanoflake-coated carbon nanofiber electrodes for supercapacitors.ACS Appl Nano Mater2022;5:6192-200

[26]

Ran F,Xu X,Liu Y.Green activation of sustainable resources to synthesize nitrogen-doped oxygen-riched porous carbon nanosheets towards high-performance supercapacitor.Chem Eng J2021;412:128673

[27]

Liang J,Chai Y,Li L.TEOA-mediated formation of hollow core-shell structured CoNi2S4 nanospheres as a high-performance electrode material for supercapacitors.J Power Sources2017;362:123-30

[28]

Chen Y,Xin X.Multi-stepwise charge transfer via MOF@MOF/TiO2 dual-heterojunction photocatalysts towards hydrogen evolution.J Mater Chem A2022;10:9717-25

[29]

Zhang H,Lan D,Ma L.N-doped carbon/V2O3 microfibers as high-rate and ultralong-life cathode for rechargeable aqueous zinc-ion batteries.J Alloys Compd2021;861:158560

[30]

Rezaei B,Keller SS.Stereolithography-derived three-dimensional pyrolytic carbon/Mn3O4 nanostructures for free-standing hybrid supercapacitor electrodes.ACS Appl Nano Mater2022;5:1808-19

[31]

Xing M,Liang Y.Defect-engineered 3D cross-network Co3O4-xNx nanostructure for high-performance solid-state asymmetric supercapacitors.ACS Appl Energy Mater2021;4:888-98

[32]

Rabani I,Subalakshmi K,Bathula C.A facile mechanochemical preparation of Co3O4@g-C3N4 for application in supercapacitors and degradation of pollutants in water.J Hazard Mater2021;407:124360

[33]

Vanaraj R,Periyasamy T.Capacitance enhancement of metal-organic framework (MOF) materials by their morphology and structural formation.Energy Fuels2022;36:4978-91

[34]

Chen L,Liang H,Yu S.Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors.Adv Funct Mater2014;24:5104-11

[35]

Dong Z,Xiao Y.One-pot-synthesized CoFe-glycerate hollow spheres with rich oxyhydroxides for efficient oxygen evolution reaction.ACS Sustain Chem Eng2020;8:5464-77

[36]

Zhao J,Su J,Zhou LJ.Synthesis and photocatalytic activity of porous anatase TiO2 microspheres composed of {010}-faceted nanobelts.Dalton Trans2013;42:4365-8

[37]

Hua W,Liu H,Wang J.Interface engineered NiMoN/Ni3N heterostructures for enhanced alkaline hydrogen evolution reaction.Appl Surf Sci2021;540:148407

[38]

Hu Y,Guo M.Interface engineering of Co2N0.67/CoMoO4 heterostructure nanosheets as a highly active electrocatalyst for overall water splitting and Zn-H2O cell.Chem Eng J2022;435:134795

[39]

Sun J,Huang C.Modification of Ni3N with a cobalt-doped carbon shell for high-performance hydrogen evolution in alkaline media.ACS Sustain Chem Eng2021;9:1994-2002

[40]

Tong R,Huang H.Co2N0.67/MoO2 heterostructure as high-efficiency electrocatalysts for the hydrogen evolution reaction.ACS Appl Energy Mater2022;5:440-8

[41]

Wang M,Lv Z,Jian K.Co-doped Ni3N nanosheets with electron redistribution as bifunctional electrocatalysts for efficient water splitting.J Phys Chem Lett2021;12:1581-7

[42]

Inagaki M,Soneda Y.Nitrogen-doped carbon materials.Carbon2018;132:104-40

[43]

Shi B,Chen A,Liu X.Continuous fabrication of Ti3C2Tx MXene-based braided coaxial Zinc-Ion hybrid supercapacitors with improved performance.Nanomicro Lett2021;14:34

[44]

Ma J,Liang Z,Du Y.Layered double hydroxide hollowcages with adjustable layer spacing for high performance hybrid supercapacitor.Small2021;17:e2104423

[45]

Wang J,Han X,Zhang S.A flexible Zinc-Ion hybrid supercapacitor constructed by porous carbon with controllable structure.Appl Surf Sci2022;579:152247

[46]

Peçenek H,Onses MS,Sahmetlioglu E.Outstanding supercapacitor performance with intertwined flower-like NiO/MnO2/CNT electrodes.Mater Res Bull2022;149:111745

[47]

Wang H,Duan D,Song Y.Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance.Chem Eng J2018;350:523-33

[48]

Houpt D,Yang D.High-performance supercapacitor electrodes based on composites of MoS2 nanosheets, carbon nanotubes, and ZIF-8 metal-organic framework nanoparticles.ACS Appl Nano Mater2022;5:1491-9

[49]

Yesuraj J,Yang R.Self-assembly of hausmannite Mn3O4 triangular structures on cocosin protein scaffolds for high energy density symmetric supercapacitor application.Langmuir2022;38:2928-41

[50]

Li H,He Y.Interfacial engineering and a low-crystalline strategy for high-performance supercapacitor negative electrodes: Fe2P2O7 nanoplates anchored on N/P co-doped graphene nanotubes.ACS Appl Mater Interfaces2022;14:3363-73

[51]

Kim SJ,Kshetri T,Lee JH.Freestanding binder-free electrodes with nanodisk-needle-like MnCuCo-LTH and Mn1Fe2S2 porous microthorns for high-performance quasi-solid-state supercapacitors.ACS Appl Mater Interfaces2022;14:12523-37

[52]

Peng H,Sun K.A high-performance asymmetric supercapacitor designed with a three-dimensional interconnected porous carbon framework and sphere-like nickel nitride nanosheets.New J Chem2019;43:12623-9

[53]

Gao J,Zhao Z.Solid-phase synthesis and electrochemical pseudo-capacitance of nitrogen-atom interstitial compound Co3N.Sustain Energy Fuels2018;2:1178-88

[54]

Wang Z,Wang C.Modified Co4N by B-doping for high-performance hybrid supercapacitors.Nanoscale2020;12:18400-8

[55]

Wang M,Wu M.Self-template synthesis of nickel cobalt sulfide hollow nanotubes for high-performance battery-type supercapacitors.J Electrochem Soc2021;168:060510

[56]

Yu Z,Huang Y.Bi2O3 nanosheet-coated NiCo2O4 nanoneedle arrays for high-performance supercapacitor electrodes.J Energy Storage2022;55:105486

[57]

Zhang Y,Wang Y.Metal organic frameworks derived hierarchical hollow Ni0.85Se|P composites for high-performance hybrid supercapacitor and efficient hydrogen evolution.Electrochim Acta2019;303:94-104

[58]

Li B,Zhao J,Feng Y.Advanced Se3P4@C anode with exceptional cycling life for high performance potassium-ion batteries.Small2020;16:e1906595

AI Summary AI Mindmap
PDF

51

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/