Elastic properties and Ion-mediated domain switching of self-assembled heterostructures CuInP2S6-In4/3P2S6

Xiangping Zhang , Xingan Jiang , Guoshuai Du , Qi Ren , Wenfu Zhu , Jiaqian Kang , Yingzhuo Lun , Tingjun Wang , Bofang Bai , Zixuan Yu , Jianming Deng , Yabin Chen , Xueyun Wang , Jiawang Hong

Microstructures ›› 2023, Vol. 3 ›› Issue (2) : 2023010

PDF
Microstructures ›› 2023, Vol. 3 ›› Issue (2) :2023010 DOI: 10.20517/microstructures.2022.39
Research Article

Elastic properties and Ion-mediated domain switching of self-assembled heterostructures CuInP2S6-In4/3P2S6

Author information +
History +
PDF

Abstract

Van der Waals (vdW) ferroelectric CuInP2S6 (CIPS) has attracted intense research interest due to its unique ferroelectric properties that make it promising for potential applications in flexible electronic devices. A mechanical mean, or so-called strain gradient engineering, has been proven as an effective method to modulate its ferroelectric properties, but the key parameter elastic constants Cij has not been accurately measured. Here, we utilized nanoindentation and contact resonance atomic force microscopy (CR-AFM) techniques to measure the elastic modulus on the (001) plane of nanoscale phase separated CuInP2S6-In4/3P2S6 (CIPS-IPS). The Young’s modulus of the CIPS was slightly less than that of the IPS. Density Functional Theory was introduced to obtain the accurate full elastic constant Cij of CIPS and IPS, and we deduced their respective Young’s moduli, all of which are in good agreement with our experimental values. We further discovered the asymmetrical domain switching and proposed an ion-mediated domain switching model. The results provide a reliable experimental reference for strain gradient engineering in the phase field simulation in CIPS-IPS.

Keywords

CuInP2S6-In4/3P2S6 / ferroelectric / elastic modulus / nanoindentation / CR-AFM

Cite this article

Download citation ▾
Xiangping Zhang, Xingan Jiang, Guoshuai Du, Qi Ren, Wenfu Zhu, Jiaqian Kang, Yingzhuo Lun, Tingjun Wang, Bofang Bai, Zixuan Yu, Jianming Deng, Yabin Chen, Xueyun Wang, Jiawang Hong. Elastic properties and Ion-mediated domain switching of self-assembled heterostructures CuInP2S6-In4/3P2S6. Microstructures, 2023, 3(2): 2023010 DOI:10.20517/microstructures.2022.39

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

You L,Zhou S.Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric.Sci Adv2019;5:eaav3780 PMCID:PMC6474765

[2]

Brehm JA,Tao L.Tunable quadruple-well ferroelectric van der Waals crystals.Nat Mater2020;19:43-8

[3]

Niu L,Zeng Q.Controlled synthesis and room-temperature pyroelectricity of CuInP2S6 ultrathin flakes.Nano Energy2019;58:596-603

[4]

Si M,Liao PY.Room-temperature electrocaloric effect in layered ferroelectric CuInP2S6 for solid-state refrigeration.ACS Nano2019;13:8760-5

[5]

Zhou S,Chaturvedi A.Anomalous polarization switching and permanent retention in a ferroelectric ionic conductor.Mater Horiz2020;7:263-74

[6]

Xu D,Zhao Y.Unconventional out-of-plane domain inversion via in-plane ionic migration in a van der Waals ferroelectric.J Mater Chem C2020;8:6966-71

[7]

Neumayer SM,Tao L.Local strain and polarization mapping in ferrielectric materials.ACS Appl Mater Interfaces2020;12:38546-53

[8]

Si M,Qiu G,Ye PD.Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der waals heterostructure.ACS Nano2018;12:6700-5

[9]

Huang W,Yin L.Gate-coupling-enabled robust hysteresis for nonvolatile memory and programmable rectifier in van der waals ferroelectric heterojunctions.Adv Mater2020;32:e1908040

[10]

Singh P,Yoo HH,Park JH.Two-dimensional CIPS-InSe van der Waal heterostructure ferroelectric field effect transistor for nonvolatile memory applications.ACS Nano2022;16:5418-26

[11]

Liu F,Seyler KL.Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes.Nat Commun2016;7:12357 PMCID:PMC4987531

[12]

Wang X,Lei Z.Van der Waals negative capacitance transistors.Nat Commun2019;10:3037 PMCID:PMC6620276

[13]

Neumayer SM,O’hara A.The concept of negative capacitance in ionically conductive van der Waals ferroelectrics.Adv Energy Mater2020;10:2001726

[14]

Li B,Wang H.An electronic synapse based on 2D ferroelectric CuInP2S6.Adv Electron Mater2020;6:2000760

[15]

Yue K,Lake RK.A brain-plausible neuromorphic on-the-fly learning system implemented with magnetic domain wall analog memristors.Sci Adv2019;5:eaau8170 PMCID:PMC6486231

[16]

Jiang X,Wang X.Manipulation of current rectification in van der Waals ferroionic CuInP2S6.Nat Commun2022;13:574

[17]

Chen J,Cao G.Mimicking neuroplasticity via ion migration in van der waals layered copper indium thiophosphate.Adv Mater2022;34:e2104676

[18]

Guo R,Wu L.Control of synaptic plasticity learning of ferroelectric tunnel memristor by nanoscale interface engineering.ACS Appl Mater Interfaces2018;10:12862-9

[19]

Zhang D,Yao Y.Anisotropic ion migration and electronic conduction in van der Waals ferroelectric CuInP2S6.Nano Lett2021;21:995-1002

[20]

Susner MA,Borisevich A.High-Tc layered ferrielectric crystals by coherent spinodal decomposition.ACS Nano2015;9:12365-73

[21]

Susner MA,Puretzky AA.Cation-eutectic transition via sublattice melting in CuInP2S6-In4/3P2S6 van der Waals layered crystals.ACS Nano2017;11:7060-73

[22]

Rao R,Conner BS.Ferrielectric-paraelectric phase transitions in layered CuInP2S6 and CuInP2S6-In4/3P2S6 heterostructures: a Raman spectroscopy and x-ray diffraction study.Phys Rev Mater2022; 6:045001

[23]

Checa M,Neumayer SM.Correlative piezoresponse and micro-Raman imaging of CuInP2S6-In4/3P2S6 flakes unravels phase-specific phononic fingerprint via unsupervised learning.Appl Phys Lett2022;121:062901

[24]

Neumayer SM,Susner MA.Giant negative electrostriction and dielectric tunability in a van der Waals layered ferroelectric.Phys Rev Mater2019;3:024401

[25]

Chen C,Lai Q.Large-scale domain engineering in two-dimensional ferroelectric CuInP2S6 via giant flexoelectric effect.Nano Lett2022;22:3275-82

[26]

Rao R,Selhorst R.Pressure-driven phase transformations and phase segregation in ferrielectric CuInP2S6-In4/3P2S6 self-assembled heterostructures.Phys Rev B2021;104:235421

[27]

Ming W,Zheng S.Flexoelectric engineering of van der Waals ferroelectric CuInP2S6.Sci Adv2022;8:eabq1232

[28]

Eliseev EA,Kalinin SV,Maksymovich P.Labyrinthine domains in ferroelectric nanoparticles: manifestation of a gradient-induced morphological transition.Phys Rev B2018;98:054101

[29]

Checa M,Millan-Solsona R.Revealing fast cu-ion transport and enhanced conductivity at the CuInP2S6-In4/3P2S6 heterointerface.ACS Nano2022;16:15347-57

[30]

Blöchl PE,Andersen OK.Improved tetrahedron method for Brillouin-zone integrations.Phys Rev B Condens Matter1994;49:16223-33

[31]

Perdew JP,Ernzerhof M.Generalized gradient approximation made simple.Phys Rev Lett1996;77:3865-8

[32]

Kresse G.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys Rev B1996;54:11169-86

[33]

Kresse G.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set.Comput Mater Sci1996;6:15-50

[34]

Grimme S,Ehrlich S.A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu.J Chem Phys2010;132:154104

[35]

Grimme S,Goerigk L.Effect of the damping function in dispersion corrected density functional theory.J Comput Chem2011;32:1456-65

[36]

Maisonneuve V,Payen C,Molinié P.Room-temperature crystal structure of the layered phase CuInP2S6.J Alloys Compd1995;218:157-64

[37]

Diehl R.The structural chemistry of indium phosphorus chalcogenides.Acta Crystallogr B Struct Sci1978;34:1097-105

[38]

Fang X,Ding K.Nanoindentation pop-in in oxides at room temperature: dislocation activation or crack formation?.J Am Ceram Soc2021;104:4728-41

[39]

Oliver W.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments.J Mater Res1992;7:1564-83

[40]

Xiao J,Zhou K,Xie X.Anisotropic friction behaviour of highly oriented pyrolytic graphite.Carbon2013;65:53-62

[41]

Zhu Q,Xie S,Li J.Nanomechanics of multiferroic composite nanofibers via local excitation piezoresponse force microscopy.J Mech Phys Solids2019;126:76-86

[42]

Hurley DC.Contact resonance force microscopy techniques for nanomechanical measurements. In Applied scanning probe methods XI. Heidelberg, Berlin: Springer, 2009; pp. 97-138.

[43]

Zhang C,Du A.Intrinsic ultrahigh negative Poisson’s ratio in two-dimensional ferroelectric ABP2x6 materials.Acta Physico-Chimica Sinica2019;35:1128-33

[44]

Ming W,Li J.Decoupling competing electromechanical mechanisms in dynamic atomic force microscopy.J Mech Phys Solids2022;159:104758

AI Summary AI Mindmap
PDF

42

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/