Trilayer PVDF nanocomposites with significantly enhanced energy density and energy efficiency using 0.55Bi0.5Na0.5TiO3-0.45(Sr0.7Bi0.2)TiO3 nanofibers

Yuan Liu , Hang Luo , Haoran Xie , Zhida Xiao , Fan Wang , Xun Jiang , Xuefan Zhou , Dou Zhang

Microstructures ›› 2023, Vol. 3 ›› Issue (1) : 2023008

PDF
Microstructures ›› 2023, Vol. 3 ›› Issue (1) :2023008 DOI: 10.20517/microstructures.2022.31
Research Article

Trilayer PVDF nanocomposites with significantly enhanced energy density and energy efficiency using 0.55Bi0.5Na0.5TiO3-0.45(Sr0.7Bi0.2)TiO3 nanofibers

Author information +
History +
PDF

Abstract

The development of dielectric capacitors with high energy density and energy efficiency is of great significance in the modern electronic components market. To reduce the high energy loss of Bi0.5Na0.5TiO3, 0.55Bi0.5Na0.5TiO3-0.45(Sr0.7Bi0.2)TiO3 (BNT-BST) nanofibers with a high aspect ratio are synthesized via electrospinning. To achieve a high energy density, the design of a symmetric trilayer nanocomposite consisting of a BNT-BST/polyvinylidene difluoride (PVDF) layer with a high dielectric constant sandwiched between two layers of pure PVDF is herein described. The trilayer structure can effectively alleviate the electric field concentration effect, resulting in a considerably enhanced breakdown strength and improved discharge energy density. The maximum discharge energy density of 17.37 J/cm3 at 580 kV/mm could be achieved in the symmetric trilayer nanocomposite with a BNT-BST/PVDF middle layer, which is 90.5% greater than that achieved using pure PVDF (9.21 J/cm3 at 450 kV/mm). This study presents a new case for developing dielectric capacitors with high energy density.

Keywords

Trilayer structure / electrospinning / 0.55Bi0.5Na0.5TiO3-0.45(Sr0.7Bi0.2)TiO3 nanofibers / breakdown strength / energy density

Cite this article

Download citation ▾
Yuan Liu, Hang Luo, Haoran Xie, Zhida Xiao, Fan Wang, Xun Jiang, Xuefan Zhou, Dou Zhang. Trilayer PVDF nanocomposites with significantly enhanced energy density and energy efficiency using 0.55Bi0.5Na0.5TiO3-0.45(Sr0.7Bi0.2)TiO3 nanofibers. Microstructures, 2023, 3(1): 2023008 DOI:10.20517/microstructures.2022.31

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ren X,Ventura L.Ultra-high energy density integrated polymer dielectric capacitors.J Mater Chem A2022;10:10171-80

[2]

Feng QK,Pei JY.Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors.Chem Rev2022;122:3820-78

[3]

Liu S,Hu J.Realizing superior redox kinetics of hollow bimetallic sulfide nanoarchitectures by defect-induced manipulation toward flexible solid-state supercapacitors.Small2022;18:e2104507

[4]

Kang L,Zhang J.Dual-defect surface engineering of bimetallic sulfide nanotubes towards flexible asymmetric solid-state supercapacitors.J Mater Chem A2020;8:24053-64

[5]

Yang L,Li F.Perovskite lead-free dielectrics for energy storage applications.Prog Mater Sci2019;102:72-108

[6]

Luo H,Guo R.Progress on polymer dielectrics for electrostatic capacitors application.Adv Sci2022;9:e2202438 PMCID:PMC9561874

[7]

Thakur VK, Gupta RK. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects.Chem Rev2016;116:4260-317

[8]

Li H,Ren L.Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers.Adv Mater2019;31:e1900875

[9]

Zhou Y,Chen S,Zhang D.Optimising the dielectric property of carbon nanotubes/P(VDF-CTFE) nanocomposites by tailoring the shell thickness of liquid crystalline polymer modified layer.IET Nanodielectr2019;2:142-50

[10]

Cheng R,Men R.High-energy-density polymer dielectrics via compositional and structural tailoring for electrical energy storage.iScience2022;25:104837 PMCID:PMC9391588

[11]

Dong J,Niu Y.Enhancing high-temperature capacitor performance of polymer nanocomposites by adjusting the energy level structure in the micro-/meso-scopic interface region.Nano Energy2022;99:107314

[12]

Luo H,Ellingford C.Interface design for high energy density polymer nanocomposites.Chem Soc Rev2019;48:4424-65

[13]

Li L,Cheng Y.Significant improvements in dielectric constant and energy density of ferroelectric polymer nanocomposites enabled by ultralow contents of nanofillers.Adv Mater2021;33:e2102392

[14]

Cheng Y,Bai H.Two-dimensional fillers induced superior electrostatic energy storage performance in trilayered architecture nanocomposites.ACS Appl Mater Interfaces2022;14:8448-57

[15]

Liu Y,Zhai D.Symmetric trilayer dielectric composites with high energy density using a low loading of KNbO3 nanosheets.ACS Sustain Chem Eng2021;9:15983-94

[16]

Zhang H,Xie B.Polymer matrix nanocomposites with 1D ceramic nanofillers for energy storage capacitor applications.ACS Appl Mater Interfaces2020;12:1-37

[17]

Pan Z,Zhai J,Shen B.Ultrafast discharge and high-energy-density of polymer nanocomposites achieved via optimizing the structure design of barium titanates.ACS Sustain Chem Eng2017;5:4707-17

[18]

Song Y,Liu H,Li M.Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymermatrix.J Mater Chem2012;22:16491

[19]

Zhou X,Luo H,Zhang D.Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics.Prog Mater Sci2021;122:100836

[20]

Shen Y,Zhao J.Constructing novel binary Bi0.5Na0.5TiO3-based composite ceramics for excellent energy storage performances via defect engineering.Chem Eng J2022;439:135762

[21]

Ma Y,Sun Y.Topochemical synthesis and structural characteristics of orientation-controlled (Bi0.5Na0.5)0.94Ba0.06TiO3 perovskite microplatelets.Microstructures2022;2:2022006

[22]

Li J,Xu Z.Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency.Adv Mater2018;30:e1802155

[23]

You D,Yan Z.Enhanced dielectric energy storage performance of 0.45Na0.5Bi0.5TiO3-0.55Sr0.7Bi0.2TiO3/AlN 0-3 type lead-free composite ceramics.ACS Appl Mater Interfaces2022;14:17652-61

[24]

Ang C.High remnant polarization in Sr0.7Bi0.2TiO3-Na0.5Bi0.5TiO3 solid solutions.Appl Phys Lett2009;95:232908

[25]

Xue J,Dai Y.Electrospinning and electrospun nanofibers: methods, materials, and applications.Chem Rev2019;119:5298-415 PMCID:PMC6589095

[26]

Chen J,Wang Z,Yuan Q.Laminated ferroelectric polymer composites exhibit synchronous ultrahigh discharge efficiency and energy density via utilizing multiple-interface barriers.J Mater Chem A2022;10:20402-13

[27]

Feng M,Zhang T.Recent advances in multilayer-structure dielectrics for energy storage application.Adv Sci2021;8:e2102221 PMCID:PMC8655226

[28]

Wang Y,Ma R.Design strategy of barium titanate/polyvinylidene fluoride-based nanocomposite films for high energy storage.J Mater Chem A2020;8:884-917

[29]

Guo R,Yan M,Zhou K.Significantly enhanced breakdown strength and energy density in sandwich-structured nanocomposites with low-level BaTiO3 nanowires.Nano Energy2021;79:105412

[30]

Zhang Y,Yang T.Bioinspired elastic piezoelectric composites for high-performance mechanical energy harvesting.J Mater Chem A2018;6:14546-52

[31]

Liu Y,Gao Z.Electrospinning synthesis of Na0.5Bi0.5TiO3 nanofibers for dielectric capacitors in energy storage application.Nanomaterials2022;12:906 PMCID:PMC8955899

[32]

Li J,Chen X.Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications.Nat Mater2020;19:999-1005

[33]

Liu Y,Zhai D.Improved energy density and energy efficiency of poly(vinylidene difluoride) nanocomposite dielectrics using 0.93Na0.5Bi0.5TiO3-0.07BaTiO3 nanofibers.ACS Appl Mater Interfaces2022;14:19376-87

[34]

Ma Y,Zhou X.Suppressed polarization by epitaxial growth of SrTiO3 on BaTiO3 nanoparticles for high discharged energy density and efficiency nanocomposites.Nanoscale2020;12:8230-6

[35]

Zhou X,Zhai D,Luo H.Excellent catalytic performance of molten-salt-synthesized Bi0.5Na0.5TiO3 nanorods by the piezo-phototronic coupling effect.Nano Energy2021;84:105936

[36]

Wang Y,Yuan Q,Bai Y.Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites.Adv Mater2015;27:6658-63

[37]

Pei JY,Zhong SL.Suppressing the loss of polymer-based dielectrics for high power energy storage.Adv Mater2022;e2203623

[38]

Jiang J,Qian J.Synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage.Nano Energy2019;62:220-9

[39]

Lin Y,Zhan S.Synergistically ultrahigh energy storage density and efficiency in designed sandwich-structured poly(vinylidene fluoride)-based flexible composite films induced by doping Na0.5Bi0.5TiO3 whiskers.J Mater Chem A2020;8:23427-35

[40]

Wang Z,Tang H.Effects of Nanofibers orientation and aspect ratio on dielectric properties of nanocomposites: a phase-field simulation.ACS Appl Mater Interfaces2022;14:42513-21

[41]

Yuan M,Zhang S,Lanagan MT.High-field dielectric properties of oriented poly(vinylidene fluoride-co-hexafluoropropylene): structure-dielectric property relationship and implications for energy storage applications.ACS Appl Polym Mater2020;2:1356-68

AI Summary AI Mindmap
PDF

50

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/