The influence of A/B-sites doping on antiferroelectricity of PZO energy storage films
Dongxu Li , Qinghu Guo , Minghe Cao , Zhonghua Yao , Hanxing Liu , Hua Hao
Microstructures ›› 2023, Vol. 3 ›› Issue (1) : 2023007
The influence of A/B-sites doping on antiferroelectricity of PZO energy storage films
Antiferroelectrics are a kind of unique dielectric materials, mainly due to their polarization behavior, and composition-induced antiferroelectricity stability also draws considerable attention. In this work, single orthorhombic phase (Pb0.95Bi0.05)ZrO3 (PBZ), Pb(Zr0.95Bi0.05)O3 (PZB), and PbZrO3 (PZO) films with good density and flatten surface was prepared on Pt/Ti/SiO2/Si substrate via sol-gel method. Compared with pure PZO films, the PBZ and PZB films possess increased switching electric field difference Δ E due to enhanced forward switching field and the late response of backward switching field. In terms of stabilizing AFE phase, changing the tolerance factor t has the similar effect as Bi-doping the A/B sites in PZO, with the modification of the A-site being more effective than that of the B-site. PBZ films achieve a high recoverable energy density (Wrec) of 26.4 J/cm3 with energy efficiency (η) of 56.2% under an electric field of 1278 kV/cm, which exceeds other pure AFE materials. This work provides a fundamental understanding of the crystal structure-related antiferroelectricity of PZO materials and broadens the chemical doping route to enhance the electric properties of AFE materials.
Antiferroelectrics / energy storage / PbZrO3 / thin film / switching field
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
/
| 〈 |
|
〉 |