Environmental embrittlement behavior of high-entropy alloys

Bo Xiao , Shaofei Liu , Jianyang Zhang , Yinghao Zhou , Qian Li , Jinxiong Hou , Weicheng Xiao , Jixun Zhang , Yilu Zhao , Chain Tsuan Liu , Lianyong Xu , Tao Yang

Microstructures ›› 2023, Vol. 3 ›› Issue (1) : 2023006

PDF
Microstructures ›› 2023, Vol. 3 ›› Issue (1) :2023006 DOI: 10.20517/microstructures.2022.26
Review

Environmental embrittlement behavior of high-entropy alloys

Author information +
History +
PDF

Abstract

High entropy alloys (HEAs), as a new class of structural materials, have attracted extensive interest from numerous metallurgical scientists and engineers. Benefiting from their unique microstructural features and outstanding mechanical performance, HEAs have shown significant potential for applications in many engineering fields, even under extreme conditions. In particular, when exposed to hydrogen and/or intermediate-temperature environments, these HEAs inevitably suffer from severe environmental embrittlement (EE) issues, e.g., hydrogen embrittlement (HE) and intermediate-temperature embrittlement (ITE), resulting in serious premature intergranular failure. In this work, we critically review the state-of-the-art advances of EE in previously reported HEA systems. Particular focus is given to novel strategies to enhance the resistance to EE in different HEAs. Two critical embrittlement phenomena, namely, HE and ITE, are highlighted separately. Finally, we provide perspectives on future research directions and opportunities for EE-resistant HEAs.

Keywords

High-entropy alloys (HEAs) / environmental embrittlement (EE) / hydrogen embrittlement / intermediate-temperature embrittlement / EE-resistant HEAs

Cite this article

Download citation ▾
Bo Xiao, Shaofei Liu, Jianyang Zhang, Yinghao Zhou, Qian Li, Jinxiong Hou, Weicheng Xiao, Jixun Zhang, Yilu Zhao, Chain Tsuan Liu, Lianyong Xu, Tao Yang. Environmental embrittlement behavior of high-entropy alloys. Microstructures, 2023, 3(1): 2023006 DOI:10.20517/microstructures.2022.26

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jiang S,Wu Y.Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation.Nature2017;544:460-4

[2]

Liu G,Jiang F.Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility.Nat Mater2013;12:344-50

[3]

Liddicoat PV,Zhao Y.Nanostructural hierarchy increases the strength of aluminium alloys.Nat Commun2010;1:63

[4]

Nutor RK,Wei R.A dual-phase alloy with ultrahigh strength-ductility synergy over a wide temperature range.Sci Adv2021;7:eabi4404 PMCID:PMC8378815

[5]

He BB,Yen HW.High dislocation density-induced large ductility in deformed and partitioned steels.Science2017;357:1029-32

[6]

Kong H,Lu J.Low-carbon advanced nanostructured steels: microstructure, mechanical properties, and applications.Sci China Mater2021;64:1580-97

[7]

Kürnsteiner P,Weisheit A,Jägle EA.High-strength damascus steel by additive manufacturing.Nature2020;582:515-9

[8]

Xiao B,Cayron C,Sha G.Solute-dislocation interactions and creep-enhanced Cu precipitation in a novel ferritic-martensitic steel.Acta Mater2020;195:199-208

[9]

Zhang Q,Gao X,Hutchinson C.Training high-strength aluminum alloys to withstand fatigue.Nat Commun2020;11:5198 PMCID:PMC7566492

[10]

Wu G,Sun L.Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity.Nat Commun2019;10:5099 PMCID:PMC6841713

[11]

Zhang T,Yang T.In situ design of advanced titanium alloy with concentration modulations by additive manufacturing.Science2021;374:478-82

[12]

Zhang J,Sha G.Designing against phase and property heterogeneities in additively manufactured titanium alloys.Nat Commun2022;13:4660 PMCID:PMC9363443

[13]

Suzuki A,Pollock TM.L12-strengthened cobalt-base superalloys.Annu Rev Mater Res2015;45:345-68

[14]

Pollock TM,Tsunekane M,Suzuki A.New co-based γ-γ′ high-temperature alloys.JOM2010;62:58-63

[15]

Sato J,Oikawa K,Kainuma R.Cobalt-base high-temperature alloys.Science2006;312:90-1

[16]

Smith TM,Antolin N.Phase transformation strengthening of high-temperature superalloys.Nat Commun2016;7:13434 PMCID:PMC5121413

[17]

Ju J,Kang M,Wang J.On the preferential grain boundary oxidation of a Ni-Co-based superalloy.Corros Sci2022;199:110203

[18]

Ding Q,Chen X.Tuning element distribution, structure and properties by composition in high-entropy alloys.Nature2019;574:223-7

[19]

Fan L,Zhao Y.Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures.Nat Commun2020;11:6240 PMCID:PMC7721903

[20]

Yang T,Tong Y.Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys.Science2018;362:933-7

[21]

Wei S,Kang J.Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility.Nat Mater2020;19:1175-81

[22]

Miracle D.A critical review of high entropy alloys and related concepts.Acta Mater2017;122:448-511

[23]

Feng R,Liu C.Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy.Nat Commun2021;12:3588 PMCID:PMC8196174

[24]

Chen S,Pattamatta S.Simultaneously enhancing the ultimate strength and ductility of high-entropy alloys via short-range ordering.Nat Commun2021;12:4953 PMCID:PMC8368001

[25]

Xiao B,Zhao S.Achieving thermally stable nanoparticles in chemically complex alloys via controllable sluggish lattice diffusion.Nat Commun2022;13:4870 PMCID:PMC9388539

[26]

Yang T,Fan L.Control of nanoscale precipitation and elimination of intermediate-temperature embrittlement in multicomponent high-entropy alloys.Acta Mater2020;189:47-59

[27]

Li X,Zhang J.Hydrogen embrittlement and failure mechanisms of multi-principal element alloys: A review.J Mater Sci Technol2022;122:20-32

[28]

Ronchi MR. Hydrogen-induced transformations in metastable high entropy alloys. Available from: https://dspace.mit.edu/handle/1721.1/139329 [Last accessed on 16 Nov 2022].

[29]

Xu Y,Shimizu K.Suppressed hydrogen embrittlement of high-strength Al alloys by Mn-rich intermetallic compound particles.Acta Mater2022;236:118110

[30]

Chen YS,Gerstl SS.Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel.Science2017;355:1196-9

[31]

López Freixes M,Zhao H.Revisiting stress-corrosion cracking and hydrogen embrittlement in 7xxx-Al alloys at the near-atomic-scale.Nat Commun2022;13:4290 PMCID:PMC9314352

[32]

Chung H,Jung W.Intermediate temperature brittleness of Ni based superalloy Nimonic263.Mater Charact2018;140:9-14

[33]

Jiang L,Cui C.Intermediate temperature embrittlement of one new Ni-26W-6Cr based superalloy for molten salt reactors.Mater Sci Eng A2016;668:137-45

[34]

Yin S,Chang TH,Zhu Y.Hydrogen embrittlement in metallic nanowires.Nat Commun2019;10:2004 PMCID:PMC6494841

[35]

Song J.Atomic mechanism and prediction of hydrogen embrittlement in iron.Nat Mater2013;12:145-51

[36]

Bechtle S,Somerday B,Ritchie R.Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials.Acta Mater2009;57:4148-57

[37]

Zheng L,Meng Y,Schlesiger R.Mechanism of intermediate temperature embrittlement of Ni and Ni-based superalloys.Crit Rev Solid State Mater Sci2012;37:181-214

[38]

Wang C,Wang XD.Intermediate temperature brittleness in metallic glasses.Adv Mater2017;29:1605537

[39]

Cao B,Zhang X.Intermediate temperature embrittlement in a precipitation-hardened high-entropy alloy: the role of heterogeneous strain distribution and environmentally assisted intergranular damage.Mater Today Phys2022;24:100653

[40]

Zheng L,Schlesiger R.Intermediate temperature embrittlement in high-purity Ni and binary Ni(Bi) alloy.Scr Mater2011;65:428-31

[41]

Sun B,Gault B.Chemical heterogeneity enhances hydrogen resistance in high-strength steels.Nat Mater2021;20:1629-34 PMCID:PMC8610813

[42]

Zhao H,Ponge D.Hydrogen trapping and embrittlement in high-strength Al alloys.Nature2022;602:437-41 PMCID:PMC8850197

[43]

Wang S,Sofronis P,Hashimoto N.Hydrogen-induced intergranular failure of iron.Acta Mater2014;69:275-82

[44]

Koyama M,Akiyama E,Raabe D.Hydrogen-assisted decohesion and localized plasticity in dual-phase steel.Acta Mater2014;70:174-87

[45]

Cotterill P.The hydrogen embrittlement of metals.Prog Mater Sci1961;9:205-301

[46]

Rogers HC.Hydrogen embrittlement of metals.Science1968;159:3819

[47]

Mcmahon C.Hydrogen-induced intergranular fracture of steels.Eng Fract Mech2001;68:773-88

[48]

Pouillier E,Tanguy D.A study of intergranular fracture in an aluminium alloy due to hydrogen embrittlement.Int J Plast2012;34:139-53

[49]

Chen XH,Mo JW.Enhanced resistance to hydrogen embrittlement in a CrCoNi-based medium-entropy alloy via grain-boundary decoration of boron.Mater Res Lett2022;10:278-86

[50]

Zhao Y,Seok M.Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement.Scr Mater2017;135:54-8

[51]

Soundararajan CK,Raabe D.Hydrogen resistance of a 1 GPa strong equiatomic CoCrNi medium entropy alloy.Corros Sci2020;167:108510

[52]

Luo H,Lu W.A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion.Nat Commun2020;11:3081

[53]

Lee J.The effect of lattice defects induced by cathodic hydrogen charging on the apparent diffusivity of hydrogen in pure iron.J Mater Sci1987;22:3939-48

[54]

Yin Y,Wang T.Eutectic modification of Fe-enriched high-entropy alloys through minor addition of boron.J Mater Sci2020;55:14571-87

[55]

Yi J,He J,Liu W.Effect of Mo doping on the gaseous hydrogen embrittlement of a CoCrNi medium-entropy alloy.Corros Sci2021;189:109628

[56]

Li Q,Ma S.Defeating hydrogen-induced grain-boundary embrittlement via triggering unusual interfacial segregation in FeCrCoNi-type high-entropy alloys.Acta Mater2022;241:118410

[57]

Li C,Dong L.Simultaneously improved mechanical strength and corrosion resistance of Mg-Li-Al alloy by solid solution treatment.Mater Lett2021;301:130305

[58]

Zhou L,Chen S,Fan S.Correlation between stress corrosion cracking resistance and grain-boundary precipitates of a new generation high Zn-containing 7056 aluminum alloy by non-isothermal aging and re-aging heat treatment.J Alloys Compd2021;850:156717

[59]

Pan S,Linsley C,Li X.Corrosion behavior of nano-treated AA7075 alloy with TiC and TiB2 nanoparticles.Corros Sci2022;206:110479

[60]

Ichii K,Tasan CC.Comparative study of hydrogen embrittlement in stable and metastable high-entropy alloys.Scr Mater2018;150:74-7

[61]

Pu Z,Dai L.Strong resistance to hydrogen embrittlement of high-entropy alloy.Mater Sci Eng A2018;736:156-66

[62]

Luo H,Raabe D.Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy.Sci Rep2017;7:9892 PMCID:PMC5575320

[63]

Luo H,Fang X,Li Z.Beating hydrogen with its own weapon: Nano-twin gradients enhance embrittlement resistance of a high-entropy alloy.Mater Today2018;21:1003-9

[64]

Koyama M,Tsuzaki K.Grain refinement effect on hydrogen embrittlement resistance of an equiatomic CoCrFeMnNi high-entropy alloy.Int J Hydrog Energy2019;44:17163-7

[65]

Koyama M,Verma VK,Akiyama E.Effects of Mn content and grain size on hydrogen embrittlement susceptibility of face-centered cubic high-entropy alloys.Metall Mater Trans A2020;51:5612-6

[66]

Mohammadi A,Arita M.Gradient-structured high-entropy alloy with improved combination of strength and hydrogen embrittlement resistance.Corros Sci2022;200:110253

[67]

Fu Z,Gan K.Improving the hydrogen embrittlement resistance of a selective laser melted high-entropy alloy via modifying the cellular structures.Corros Sci2021;190:109695

[68]

Zhou X,Curtin WA.Mechanism and prediction of hydrogen embrittlement in fcc stainless steels and high entropy alloys.Phys Rev Lett2021;127:175501

[69]

Xie Z,Lu C.Sluggish hydrogen diffusion and hydrogen decreasing stacking fault energy in a high-entropy alloy.Mater Today Commun2021;26:101902

[70]

Zhao Y,Han B.Exceptional nanostructure stability and its origins in the CoCrNi-based precipitation-strengthened medium-entropy alloy.Mater Res Lett2019;7:152-8

[71]

Yang T,Liu W,Liu C.L12-strengthened high-entropy alloys for advanced structural applications.J Mater Res2018;33:2983-97

[72]

Zhao Y,Zhu J.Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates.Scr Mater2018;148:51-5

[73]

Hou J,Cao B.Designing nanoparticles-strengthened high-entropy alloys with simultaneously enhanced strength-ductility synergy at both room and elevated temperatures.Acta Mater2022;238:118216

[74]

Cao B,Fan L.Heterogenous columnar-grained high-entropy alloys produce exceptional resistance to intermediate-temperature intergranular embrittlement.Scr Mater2021;194:113622

[75]

Wu S,Cao B.Multicomponent Ni-rich high-entropy alloy toughened with irregular-shaped precipitates and serrated grain boundaries.Scr Mater2021;204:114066

[76]

Wang Z,Wu Y.Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering.Mater Today2022;54:83-9

[77]

Xie D,Li M.Hydrogenated vacancies lock dislocations in aluminium.Nat Commun2016;7:13341 PMCID:PMC5097162

[78]

Nag S.Effect of solute-solute interactions on strengthening of random alloys from dilute to high entropy alloys.Acta Mater2020;200:659-73

[79]

Kamachali R, Wang L. Elastic energy of multi-component solid solutions and strain origins of phase stability in high-entropy alloys.Scr Mater2022;206:114226

[80]

Chen YS,Liang J.Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates.Science2020;367:171-5

[81]

Gong P,Rivera-Diaz-Del-Castillo PEJ.Hydrogen embrittlement through the formation of low-energy dislocation nanostructures in nanoprecipitation-strengthened steels.Sci Adv2020;6:eabb6152 PMCID:PMC7673732

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/