An ultraviolet-visible distinguishable broadband photodetector based on the positive and negative photoconductance effects of a graphene/ZnO quantum dot heterostructure

Xun Yang , Chao-Jun Wang , Shaobo Cheng , Xi-Gui Yang , Jin-Hao Zang , Chong-Xin Shan

Microstructures ›› 2023, Vol. 3 ›› Issue (1) : 2023005

PDF
Microstructures ›› 2023, Vol. 3 ›› Issue (1) :2023005 DOI: 10.20517/microstructures.2022.24
Research Article

An ultraviolet-visible distinguishable broadband photodetector based on the positive and negative photoconductance effects of a graphene/ZnO quantum dot heterostructure

Author information +
History +
PDF

Abstract

Broadband photodetectors covering the ultraviolet (UV) to visible range are significant for applications in communication and imaging. Broadband photodetectors with the capacity to distinguish wavelength bands are highly desirable because they can provide additional spectral information. Herein, we report a UV-visible distinguishable broadband photodetector based on a graphene/ZnO quantum dot heterostructure. The photodetector exhibits negative photoconductance under visible illumination because the adsorbents on graphene act as scattering centers to reduce the carrier mobility. In contrast, under UV illumination, the photodetector shows positive photoconductance as the photogenerated electrons in the ZnO quantum dots transfer to the graphene, thereby increasing the conductivity. Thus, the detection and distinction of UV and visible illumination can be realized by utilizing the opposing photoconductivity changes. These results offer inspiration for the design of multifunctional broadband photodetectors.

Keywords

Graphene / ZnO / positive photoconductance / negative photoconductance / broadband photodetector

Cite this article

Download citation ▾
Xun Yang, Chao-Jun Wang, Shaobo Cheng, Xi-Gui Yang, Jin-Hao Zang, Chong-Xin Shan. An ultraviolet-visible distinguishable broadband photodetector based on the positive and negative photoconductance effects of a graphene/ZnO quantum dot heterostructure. Microstructures, 2023, 3(1): 2023005 DOI:10.20517/microstructures.2022.24

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Du S,Ali A.A broadband fluorographene photodetector.Adv Mater2017;29:1700463

[2]

Clifford JP,Johnston KW,Levina L.Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors.Nat Nanotechnol2009;4:40-4

[3]

Patel M,Kim J.Polarity flipping in an isotype heterojunction (p-SnS/p-Si) to enable a broadband wavelength selective energy-efficient photodetector.J Mater Chem C2018;6:6899-904

[4]

Bao C,Bai S.High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications.Adv Mater2018;30:e1803422

[5]

Li Y,Li X.Photodetectors based on inorganic halide perovskites: materials and devices.Chinese Phys B2019;28:017803

[6]

Guo Q,Bhuiyan M.Black phosphorus mid-infrared photodetectors with high gain.Nano Lett2016;16:4648-55

[7]

Liu CH,Norris TB.Graphene photodetectors with ultra-broadband and high responsivity at room temperature.Nat Nanotechnol2014;9:273-8

[8]

Rogalski A.Infrared detectors: status and trends.Prog Quantum Electron2003;27:59-210

[9]

Clark J.Organic photonics for communications.Nat Photon2010;4:438-46

[10]

Ding N,Xu W.A novel approach for designing efficient broadband photodetectors expanding from deep ultraviolet to near infrared.Light Sci Appl2022;11:91 PMCID:PMC9001727

[11]

Li C,Wang F.Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging.Light Sci Appl2020;9:31 PMCID:PMC7054320

[12]

Yao J.2D material broadband photodetectors.Nanoscale2020;12:454-76

[13]

Nanda Kumar Reddy N,Mohan Kumar K.Evaluation of temperature dependent electrical transport parameters in Fe3O4/SiO2/n-Si metal-insulator-semiconductor (MIS) type Schottky barrier heterojunction in a wide temperature range.J Mater Sci Mater Electron2019;30:8955-66

[14]

Chesnokov S,Ivanchik I.Far infrared high-performance lead telluride-based photodetectors for space-born applications.Infrared Phys Technol1994;35:23-31

[15]

Kind H,Messer B,Yang PD.Nanowire ultraviolet photodetectors and optical switches.Adv Mater2002;14:158-60

[16]

Schaffer M.Requirements and constraints for the design of smart photodetector arrays for page-oriented optical memories.IEEE J Select Topics Quantum Electron1998;4:856-65

[17]

Hu W,Chen X.Recent progress on advanced infrared photodetectors.Acta Phys Sin2019;68:35

[18]

Long M,Fang H.Progress, challenges, and opportunities for 2D material based photodetectors.Adv Funct Mater2019;29:1803807

[19]

Zhang X.Broadband light-trapping enhancement of graphene absorptivity.Phys Rev B2019;99

[20]

Jia W,Tian Y.Dynamically tunable optical properties in graphene-based plasmon-induced transparency metamaterials.Chinese Phys B2019;28:026102

[21]

Xia C,Wang T,Jia Y.Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals heterostructures.Appl Phys Lett2015;107:193107

[22]

Du H,Sun Q.Single vacancy defects diffusion at the initial stage of graphene growth: a first-principles study.Phys Lett A2015;379:1270-3

[23]

Cui B,Han J.Negative photoconductivity in low-dimensional materials.Chinese Phys B2021;30:028507

[24]

Biswas C,Duong DL.Negative and positive persistent photoconductance in graphene.Nano Lett2011;11:4682-7

[25]

Sun Z,Li J,Lau SP.Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity.Adv Mater2012;24:5878-83

[26]

Nakanishi H,Kowalczyk B.Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles.Nature2009;460:371-5

[27]

Hayden O,Lieber CM.Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection.Nat Mater2006;5:352-6

[28]

Han Y,Fu M.Negative photoconductivity of InAs nanowires.Phys Chem Chem Phys2016;18:818-26

[29]

Wei P,Yang M.Room-temperature negative photoconductivity in degenerate InN thin films with a supergap excitation.Phys Rev B2010;81

[30]

Chen X,Zhou D.Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO Isotype Heterostructures.ACS Appl Mater Interfaces2017;9:36997-7005

[31]

Wu JY,Li S.Broadband MoS2 field-effect phototransistors: ultrasensitive visible-light photoresponse and negative infrared photoresponse.Adv Mater2018;30:1705880

[32]

Yang Y,Kim HS.Hot carrier trapping induced negative photoconductance in inas nanowires toward novel nonvolatile memory.Nano Lett2015;15:5875-82

[33]

Tielrooij KJ,Jensen SA.Photoexcitation cascade and multiple hot-carrier generation in graphene.Nat Phys2013;9:248-52

[34]

Nomura K.Quantum hall ferromagnetism in graphene.Phys Rev Lett2006;96:256602

[35]

Kong WY,Wang KY.Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV Photodetector application.Adv Mater2016;28:10725-31

[36]

Haque MA,Abdelhady AL.Transition from positive to negative photoconductance in doped hybrid perovskite semiconductors.Adv Opt Mater2019;7:1900865

[37]

Yang X,Jing P.Room temperature electrically driven ultraviolet plasmonic lasers.Adv Opt Mater2019;7:1801681

[38]

Yang X,Ni PN.Electrically driven lasers from van der Waals heterostructures.Nanoscale2018;10:9602-7

[39]

Lu Y,Shan C.ZnO-based deep-ultraviolet light-emitting devices.Chinese Phys B2017;26:047703

[40]

Shi ZF,Wu D.Semi-transparent all-oxide ultraviolet light-emitting diodes based on ZnO/NiO-core/shell nanowires.Nanoscale2016;8:9997-10003

[41]

Shi ZF,Wu D.High-performance planar green light-emitting diodes based on a PEDOT:PSS/CH3NH3PbBr3/ZnO sandwich structure.Nanoscale2016;8:10035-42

[42]

Guo W,Wu Z,Loy MM.Oxygen-assisted charge transfer between ZnO quantum dots and graphene.Small2013;9:3031-6

[43]

Liu X,Xing X.Grey level replaces fluorescent intensity: fluorescent paper sensor based on ZnO nanoparticles for quantitative detection of Cu2+ without photoluminescence spectrometer.Sensor Actuat B Chem2018;255:2356-66

[44]

Barui AK,Mukherjee S.Zinc oxide nanoflowers make new blood vessels.Nanoscale2012;4:7861-9

[45]

Kim K,Choi K,Lee J.ZnO hierarchical nanostructures grown at room temperature and their C2H5OH sensor applications.Sensor Actuat B Chem2011;155:745-51

[46]

Pichat P. Powder photocatalysts: characterization by isotopic exchanges and photoconductivity; potentialities for metal recovery, catalyst preparation and water pollutant removal. In Schiavello M. editor, Photocatalysis and environment: trends and applications. Dordrecht: Springer Netherlands. 1988. pp 399-424.

[47]

Tan Y,Weng T.Self-powered photodetector based on poly(3-hexylthiophene)/Zinc oxide quantum dots Organic-inorganic hybrid heterojunction.Chem Phys Lett2022;806:140033

[48]

Zhou YH,Xu P,Wang B.UV-visible photodetector based on I-type heterostructure of ZnO-QDs/monolayer MoS2.Nanoscale Res Lett2019;14:364 PMCID:PMC6893006

[49]

Zhang J,Ding Y.ZnO/graphene/Ag composite as recyclable surface-enhanced Raman scattering substrates.Appl Opt2016;55:9105-12

[50]

Zhang BY,Meng B.Broadband high photoresponse from pure monolayer graphene photodetector.Nat Commun2013;4:1811

[51]

Zhou H,Yu F.Thickness-dependent morphologies and surface-enhanced raman scattering of Ag deposited on n-layer graphenes.J Phys Chem C2011;115:11348-54

[52]

Wang Q,Ichii T.Decoration of reduced graphene oxide by gold nanoparticles: an enhanced negative photoconductivity.Nanoscale2017;9:14703-9

[53]

Bhatt V,Kim J,Yun J.Persistent photoconductivity in Al-doped ZnO photoconductors under air, nitrogen and oxygen ambiance: role of oxygen vacancies induced DX centers.Ceram Int2019;45:8561-70

[54]

Wang Y,Liu L.Stacking-dependent optical conductivity of bilayer graphene.ACS Nano2010;4:4074-80

[55]

Fernando JFS,Firestein K,Golberg DV.ZnO quantum dots anchored in multilayered and flexible amorphous carbon sheets for high performance and stable lithium ion batteries.J Mater Chem A2019;7:8460-71

[56]

Zhou Z,Wang Z,Zhang R.Distinctive roles of graphene oxide, ZnO quantum dots, and their nanohybrids in anti-corrosion and anti-fouling performance of waterborne epoxy coatings.Chem Eng J2022;439:135765

[57]

Nowak E,Stachowiak A.A comprehensive study of structural and optical properties of ZnO bulk crystals and polycrystalline films grown by sol-gel method.Appl Phys A2020;126

[58]

Kim HH,Lee YJ.Realization of excitation wavelength independent blue emission of ZnO quantum dots with intrinsic defects.ACS Photonics2020;7:723-34

[59]

Han J,Yang M.Graphene/Organic semiconductor heterojunction phototransistors with broadband and bi-directional photoresponse.Adv Mater2018;30:e1804020

[60]

Williams G.Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide.Langmuir2009;25:13869-73

[61]

Li QH,Wang YG.Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements.Appl Phys Lett2005;86:123117

[62]

Fan Z,Lu JG.Photoluminescence and polarized photodetection of single ZnO nanowires.Appl Phys Lett2004;85:6128-30

AI Summary AI Mindmap
PDF

51

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/