Modulation of photogenerated holes for enhanced photoelectrocatalytic performance

Naiyun Liu , Yixian Liu , Yunliang Liu , Yaxi Li , Yuanyuan Cheng , Haitao Li

Microstructures ›› 2023, Vol. 3 ›› Issue (1) : 2023001

PDF
Microstructures ›› 2023, Vol. 3 ›› Issue (1) :2023001 DOI: 10.20517/microstructures.2022.23
Review

Modulation of photogenerated holes for enhanced photoelectrocatalytic performance

Author information +
History +
PDF

Abstract

Utilizing clean energy derived from photoelectrocatalytic reactions is expected to be an excellent choice to fundamentally solve the problem of the human energy crisis. Photoelectrochemical (PEC) cell can effectively promote charge separation and improve solar energy conversion efficiency since it combines the advantages of photocatalysis and electrocatalysis. However, the hole transfer and subsequent oxidation reaction in the PEC process are slow, resulting in the rapid recombination of photogenerated electron-hole pairs and low PEC performance. The half-oxidation reaction involving photogenerated holes is the bottleneck of PEC water splitting. Therefore, hole modulation has been an important research area in the field of catalysis. However, compared with electron modulation, research on hole modulation is limited and still faces great challenges. It is therefore of great significance to develop effective modulation strategies for photogenerated holes. This review summarizes the hole modulation strategies developed in the last five years, including hole sacrificial agents, nanostructural modification, heterostructure construction and cocatalyst modification. Hole modulation dynamics studies, such as transient absorption spectroscopy, time-resolved photoluminescence spectroscopy, transient photovoltage and scanning electrochemical microscopy, are also summarized. Moreover, relevant conclusions and an outlook are proposed.

Keywords

Photoelectrocatalysis / hole modulation / charge separation / interfacial kinetics

Cite this article

Download citation ▾
Naiyun Liu, Yixian Liu, Yunliang Liu, Yaxi Li, Yuanyuan Cheng, Haitao Li. Modulation of photogenerated holes for enhanced photoelectrocatalytic performance. Microstructures, 2023, 3(1): 2023001 DOI:10.20517/microstructures.2022.23

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fang Y,Fu X.Semiconducting polymers for oxygen evolution reaction under light illumination.Chem Rev2022;122:4204-56

[2]

Kranz C.Characterizing photocatalysts for water splitting: from atoms to bulk and from slow to ultrafast processes.Chem Soc Rev2021;50:1407-37

[3]

Morikawa T,Sekizawa K,Arai T.Solar-driven CO2 reduction using a semiconductor/molecule hybrid photosystem: from photocatalysts to a monolithic artificial leaf.Acc Chem Res2022;55:933-43

[4]

Pan J,Chen L,Yin S.Core-shell photoanodes for photoelectrochemical water oxidation.Adv Funct Mater2021;31:2104269

[5]

Thalluri SM,Lv C,Hu X.Strategies for semiconductor/electrocatalyst coupling toward solar-driven water splitting.Adv Sci2020;7:1902102 PMCID:PMC7080548

[6]

Niu F,Li F,Shen S.Hybrid photoelectrochemical water splitting systems: from interface design to system assembly.Adv Energy Mater2020;10:1900399

[7]

Fujishima A.Electrochemical photolysis of water at a semiconductor electrode.Nature1972;238:37-8

[8]

Zhao E,Yin PF.Advancing photoelectrochemical energy conversion through atomic design of catalysts.Adv Sci2022;9:e2104363 PMCID:PMC8728826

[9]

Marwat MA,Afridi MW.Advanced catalysts for photoelectrochemical water splitting.ACS Appl Energy Mater2021;4:12007-31

[10]

Corby S,Steier L.The kinetics of metal oxide photoanodes from charge generation to catalysis.Nat Rev Mater2021;6:1136-55

[11]

Yao T,Han H,Li C.Photoelectrocatalytic materials for solar water splitting.Adv Energy Mater2018;8:1800210

[12]

Zhuang Z,Yu R.Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes.Nat Catal2022;5:300-10

[13]

Zhuang Z,Li Y,Mai L.The holy grail in platinum-free electrocatalytic hydrogen evolution: molybdenum-based catalysts and recent advances.ChemElectroChem2019;6:3570-89

[14]

Huang J,Zhao Y.Back-gated van der waals heterojunction manipulates local charges toward fine-tuning hydrogen evolution.Angew Chem Int Ed Engl2022;61:e202203522

[15]

Sun R,Li Z.Review on photogenerated hole modulation strategies in photoelectrocatalysis for solar fuel production.ChemCatChem2019;11:5875-84

[16]

Rahman MZ,Gascon J.Hole utilization in solar hydrogen production.Nat Rev Chem2022;6:243-58

[17]

Sahoo PP,Hušeková K.Si-based metal-insulator-semiconductor structures with RuO2-(IrO2) films for photoelectrochemical water oxidation.ACS Appl Energy Mater2021;4:11162-72

[18]

Zhang B,Dai Y.Nitrogen-incorporation activates NiFeOx catalysts for efficiently boosting oxygen evolution activity and stability of BiVO4 photoanodes.Nat Commun2021;12:6969 PMCID:PMC8630083

[19]

Wang J,Wei Z,Guo J.Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: an electronic structure tuning strategy.Small Methods2021;5:e2000988

[20]

Liu G,Li Y.Band structure engineering toward low-onset-potential photoelectrochemical hydrogen production.ACS Mater Lett2020;2:1555-60

[21]

Li F,Zhang M,Wei Q.Modulating the 0D/2D interface of hybrid semiconductors for enhanced photoelectrochemical performances.Small Methods2021;5:e2100109

[22]

Tashakory A,Abisdris L,Shalom M.Mediated growth of carbon nitride films via spray-coated seeding layers for photoelectrochemical applications.Adv Sustain Syst2021;5:2100005

[23]

Karjule N,Barrio J.Carbon nitride-based photoanode with enhanced photostability and water oxidation kinetics.Adv Funct Mater2021;31:2101724

[24]

Thorne JE,Liu EY.Understanding the origin of photoelectrode performance enhancement by probing surface kinetics.Chem Sci2016;7:3347-54 PMCID:PMC6006950

[25]

Wang X,Tian Y.Conjugated π electrons of MOFs drive charge separation at heterostructures interface for enhanced photoelectrochemical water oxidation.Small2021;17:e2100367

[26]

Dotan H,Grätzel M,Warren SC.Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger.Energy Environ Sci2011;4:958-64

[27]

Jiang P,Yuan H.Encapsulating Ag nanoparticles into ZIF-8 as an efficient strategy to boost uranium photoreduction without sacrificial agents.J Mater Chem A2021;9:9809-14

[28]

Zhang T.Sacrificial agents for photocatalytic hydrogen production: effects, cost, and development.Chem Catalysis2022;2:1502-5

[29]

Shen S,Chen X.Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics.Energy Environ Sci2016;9:2744-75

[30]

Prasad U,Johnson JC.Enhancing interfacial charge transfer in a WO3/BiVO4 photoanode heterojunction through gallium and tungsten co-doping and a sulfur modified Bi2O3 interfacial layer.J Mater Chem A2021;9:16137-49

[31]

Sun D,Shi A.Metal-free boron doped g-C3N5 catalyst: efficient doping regulatory strategy for photocatalytic water splitting.Appl Surface Sci2022;601:154186

[32]

Nyarige JS,Krüger TPJ.Mono-Doped and Co-Doped nanostructured hematite for improved photoelectrochemical water splitting.Nanomaterials2022;12:366 PMCID:PMC8839683

[33]

Meng L,Tian W,Yan X.Simultaneous manipulation of O-doping and metal vacancy in atomically thin Zn10In16S34 nanosheet arrays toward improved photoelectrochemical performance.Angew Chem Int Ed Engl2018;57:16882-7

[34]

Yang R,Fan Y,Chen Q.In situ synthesis of C-doped BiVO4 with natural leaf as a template under different calcination temperatures.RSC Adv2019;9:14004-10 PMCID:PMC9064008

[35]

Wen L,Zhang R.Oxygen vacancy engineering of MOF-derived Zn-doped Co3O4 nanopolyhedrons for enhanced electrochemical nitrogen fixation.ACS Appl Mater Interfaces2021;13:14181-8

[36]

Wang S,Liu B.Vacancy defect engineering of BiVO4 photoanodes for photoelectrochemical water splitting.Nanoscale2021;13:17989-8009

[37]

Pan JB,Wang JB.Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation.Angew Chem Int Ed Engl2021;60:1433-40

[38]

Zhang R,Wang Z.Significantly promoting the photogenerated charge separation by introducing an oxygen vacancy regulation strategy on the FeNiOOH Co-catalyst.Small2022;18:e2107938

[39]

Ji M,Di J.Oxygen vacancies modulated Bi-rich bismuth oxyiodide microspheres with tunable valence band position to boost the photocatalytic activity.J Colloid Interface Sci2019;533:612-20

[40]

Zhao Q,Guo Z,Yan W.The collaborative mechanism of surface S-vacancies and piezoelectric polarization for boosting CdS photoelectrochemical performance.Chem Eng J2022;433:133226

[41]

Ma M,Li P,Jeong MJ.Dual Oxygen and tungsten vacancies on a WO3 Photoanode for enhanced water oxidation.Angew Chem Int Ed Engl2016;55:11819-23

[42]

Fernández-climent R,García-tecedor M.The role of oxygen vacancies in water splitting photoanodes.Sustain Energy Fuels2020;4:5916-26

[43]

Xu W,Meng L,Li L.Interfacial chemical bond-modulated z-scheme charge transfer for efficient photoelectrochemical water splitting.Adv Energy Mater2021;11:2003500

[44]

Li J,Zhang W.Advances in Z-scheme semiconductor photocatalysts for the photoelectrochemical applications: A review.Carbon Energy2022;4:294-331

[45]

Mane P,Burungale V.Interface-engineered Z-scheme of BiVO4/g-C3N4 photoanode for boosted photoelectrochemical water splitting and organic contaminant elimination under solar light.Chemosphere2022;308:136166

[46]

Maity D,Pal D,Khan GG.One-dimensional p-ZnCo2O4/n-ZnO nanoheterojunction photoanode enabling photoelectrochemical water splitting.ACS Appl Energy Mater2021;4:11599-608

[47]

Ho W,Wu J.Epitaxial, energetic, and morphological synergy on photocharge collection of the Fe2TiO5/ZnO nanodendrite heterojunction array photoelectrode for photoelectrochemical water oxidation.ACS Sustain Chem Eng2021;9:8868-78

[48]

Hao J,Cao K.Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts.Nat Commun2022;13:2662 PMCID:PMC9106752

[49]

Dong G,Huang X,Bi Y.Rapid activation of Co3O4 cocatalysts with oxygen vacancies on TiO2 photoanodes for efficient water splitting.J Mater Chem A2018;6:21003-9

[50]

Cao X,Lin J.Ultrathin CoOx nanolayers derived from polyoxometalate for enhanced photoelectrochemical performance of hematite photoanodes.J Mater Chem A2019;7:6294-303

[51]

Li H,Li X.Enhanced photoelectrochemical water oxidation performance in bilayer TiO2/α-Fe2O3 Nanorod Arrays Photoanode with Cu:NiOx as hole transport layer and Co-Pi as Cocatalyst.ChemSusChem2021;14:2331-40

[52]

Wei J,Xin Y,Zhao L.Cooperation effect of heterojunction and co-catalyst in BiVO4/Bi2S3/NiOOH photoanode for improving photoelectrochemical performances.New J Chem2018;42:19415-22

[53]

Zhang B,Hu H,Bi Y.Defect-rich and ultrathin CoOOH nanolayers as highly efficient oxygen evolution catalysts for photoelectrochemical water splitting.J Mater Chem A2019;7:4415-9

[54]

Wang T,Wei S.Boosting hole transfer in the fluorine-doped hematite photoanode by depositing ultrathin amorphous FeOOH/CoOOH Cocatalysts.ACS Appl Mater Interfaces2020;12:49705-12

[55]

Vo T,Chiang C.Novel hierarchical ferric phosphate/bismuth vanadate nanocactus for highly efficient and stable solar water splitting.Appl Catalysis B Environ2019;243:657-66

[56]

Klahr B,Fabregat-Santiago F,Hamann TW.Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co-Pi”-coated hematite electrodes.J Am Chem Soc2012;134:16693-700

[57]

Li M,Yang Y.Zipping Up NiFe(OH)x-encapsulated hematite to achieve an ultralow turn-on potential for water oxidation.ACS Energy Lett2019;4:1983-90

[58]

Zhang K,Wang L.Near-complete suppression of oxygen evolution for photoelectrochemical H2O oxidative H2O2 synthesis.J Am Chem Soc2020;142:8641-8

[59]

Liu Z,Zhang P,Wang D.Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon.Matter2021;4:3161-94

[60]

Kaplan A,Benck JD.Current and future directions in electron transfer chemistry of graphene.Chem Soc Rev2017;46:4530-71

[61]

Rai S,Sahai S,Shrivastav R.CNT based photoelectrodes for PEC generation of hydrogen: a review.Inter J Hydrog Energy2017;42:3994-4006

[62]

Kang Z.Carbon dots: advances in nanocarbon applications.Nanoscale2019;11:19214-24

[63]

Ali M,Sikandar U.A review on the recent developments in zirconium and carbon-based catalysts for photoelectrochemical water-splitting.Inter J Hydrog Energy2021;46:18257-83

[64]

Zhao Z,Hu W.Synergistic effect of silane and graphene oxide for enhancing the photoelectrochemical water oxidation performance of WO3NS arrays.Electrochimica Acta2018;292:322-30

[65]

Ðorđević L,Cacioppo M.A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications.Nat Nanotechnol2022;17:112-30

[66]

Zhai Y,Shi R.Carbon dots as new building blocks for electrochemical energy storage and electrocatalysis.Advan Energy Mater2022;12:2103426

[67]

Liang Q,Li Z.Replacing Ru complex with carbon dots over MOF-derived Co3O4/In2O3 catalyst for efficient solar-driven CO2 reduction.J Mater Chem A2022;10:4279-87

[68]

Li F,Chen Q.Transient photovoltage study of the kinetics and synergy of electron/hole co-extraction in MoS2/Ag-In-Zn-S/carbon dot photocatalysts for promoted hydrogen production.Chem Eng J2022;439:135759

[69]

Ye K,Gu J.Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes.Energy Environ Sci2017;10:772-9

[70]

Wang Y,Durrant JR.Efficient Hole trapping in carbon dot/oxygen-modified carbon nitride heterojunction photocatalysts for enhanced methanol production from CO2 under neutral conditions.Angew Chem Int Ed Engl2021;60:20811-6 PMCID:PMC8519127

[71]

Wang Y,Han X.Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water.Nat Commun2020;11:2531 PMCID:PMC7242399

[72]

Zhou T,Wang J.Dramatically enhanced solar-driven water splitting of BiVO4 photoanode via strengthening hole transfer and light harvesting by co-modification of CQDs and ultrathin β-FeOOH layers.Chem Eng J2021;403:126350

[73]

Choi Y,Kim B.Atomically-dispersed cobalt ions on polyphenol-derived nanocarbon layers to improve charge separation, hole storage, and catalytic activity of water-oxidation photoanodes.J Mater Chem A2021;9:13874-82

[74]

Rombach FM,Macdonald TJ.Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells.Energy Environ Sci2021;14:5161-90

[75]

Gao B,Li Y.Boosting the stability and photoelectrochemical activity of a BiVO4 photoanode through a bifunctional polymer coating.J Mater Chem A2021;9:3309-13

[76]

Gu X,Li Y.Polyaniline/carbon dots composite as a highly efficient metal-free dual-functional photoassisted electrocatalyst for overall water splitting.ACS Appl Mater Interfaces2021;13:24814-23

[77]

Li F,Mao B.Carbon-dots-mediated highly efficient hole transfer in I-III-VI quantum dots for photocatalytic hydrogen production.Appl Catalysis B Environ2021;292:120154

[78]

Liu Y,Shen C.Hydrogen-bonding-assisted charge transfer: significantly enhanced photocatalytic H2 evolution over g-C3N4 anchored with ferrocene-based hole relay.Catal Sci Technol2018;8:2853-9

[79]

Olshansky JH,Ding TX,Lee YV.Temperature-dependent hole transfer from photoexcited quantum dots to molecular species: evidence for trap-mediated transfer.ACS Nano2017;11:8346-55

[80]

Niu F,Liu R.Photoinduced hole hopping across CdS quantum dot surfaces for photoelectrochemical water oxidation.ACS Appl Energy Mater2022;5:1244-51

[81]

Niu F,Han Y.Rapid hole extraction based on cascade band alignment boosts photoelectrochemical water oxidation efficiency.ACS Catal2022;12:10028-38

[82]

Wu K,Tang H,Lian T.Efficient extraction of trapped holes from colloidal CdS nanorods.J Am Chem Soc2015;137:10224-30

[83]

Li XB,Wen M.Hole-accepting-ligand-modified CdSe QDs for dramatic enhancement of photocatalytic and photoelectrochemical hydrogen evolution by solar energy.Adv Sci2016;3:1500282 PMCID:PMC5063123

[84]

Forster M,Gardner AM.Potential and pitfalls: on the use of transient absorption spectroscopy for in situ and operando studies of photoelectrodes.J Chem Phys2020;153:150901

[85]

Tamaki Y,Murai M,Katoh R.Dynamics of efficient electron-hole separation in TiO2 nanoparticles revealed by femtosecond transient absorption spectroscopy under the weak-excitation condition.Phys Chem Chem Phys2007;9:1453-60

[86]

Lian Z,Kobayashi Y.Anomalous photoinduced hole transport in type I core/mesoporous-shell nanocrystals for efficient photocatalytic H2 evolution.ACS Nano2019;13:8356-63

[87]

Andrews JL,Wangoh L.Hole extraction by design in photocatalytic architectures interfacing CdSe quantum dots with topochemically stabilized tin vanadium oxide.J Am Chem Soc2018;140:17163-74

[88]

Taheri MM,Yang S.Distinguishing electron and hole dynamics in functionalized CdSe/CdS core/shell quantum dots using complementary ultrafast spectroscopies and kinetic modeling.J Phys Chem C2021;125:31-41

[89]

Yu S,Wang X.Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots.Nat Commun2018;9:4009 PMCID:PMC6167351

[90]

Fan XB,Wang X.Susceptible surface sulfide regulates catalytic activity of CdSe quantum dots for hydrogen photogeneration.Adv Mater2019;31:e1804872

[91]

Bredar ARC,Burton AR.Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications.ACS Appl Energy Mater2020;3:66-98

[92]

Gimenez S,Rodenas P.Carrier density and interfacial kinetics of mesoporous TiO2 in aqueous electrolyte determined by impedance spectroscopy.J Electroanal Chem2012;668:119-25

[93]

Cui J,Regue M.2D bismuthene as a functional interlayer between BiVO4 and NiFeOOH for enhanced oxygen-evolution photoanodes.Adv Funct Mater2022;2207136-48

[94]

Abbas MA.Anomalous transition of hole transfer pathways in gold nanocluster-sensitized TiO2 photoelectrodes.ACS Energy Lett2020;5:3718-24

[95]

Kolay A,Kalluri A.New antimony selenide/nickel oxide photocathode boosts the efficiency of graphene quantum-dot co-sensitized solar cells.ACS Appl Mater Interfaces2017;9:34915-26

[96]

Wijayantha KG, Saremi-Yarahmadi S, Peter LM. Kinetics of oxygen evolution at α-Fe2O3 photoanodes: a study by photoelectrochemical impedance spectroscopy.Phys Chem Chem Phys2011;13:5264-70

[97]

Cummings CY,Peter LM,Tahir AA.New insights into water splitting at mesoporous α-Fe2O3 films: a study by modulated transmittance and impedance spectroscopies.J Am Chem Soc2012;134:1228-34

[98]

Peter LM, Wong LH, Abdi FF. Revealing the influence of doping and surface treatment on the surface carrier dynamics in hematite nanorod photoanodes.ACS Appl Mater Interfaces2017;9:41265-72

[99]

Zheng H,Ye KH.Atomically thin photoanode of InSe/graphene heterostructure.Nat Commun2021;12:91 PMCID:PMC7782821

[100]

Bard AJ. Scanning electrochemical microscopy, 2nd ed.; New York: Marcel Dekker. 2001.

[101]

Liu N,Han M.Investigation of regeneration kinetics of a carbon-dot-sensitized metal oxide semiconductor with scanning electrochemical microscopy.ACS Appl Energy Mater2018;1:1483-8

[102]

Yu Z,Jiang X.Effect of a cocatalyst on a photoanode in water splitting: a study of scanning electrochemical microscopy.Anal Chem2021;93:12221-9

AI Summary AI Mindmap
PDF

82

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/