BaTiO3-NaNbO3 energy storage ceramics with an ultrafast charge-discharge rate and temperature-stable power density

Peiyao Zhao , Longtu Li , Xiaohui Wang

Microstructures ›› 2023, Vol. 3 ›› Issue (1) : 2023002

PDF
Microstructures ›› 2023, Vol. 3 ›› Issue (1) :2023002 DOI: 10.20517/microstructures.2022.21
Research Article

BaTiO3-NaNbO3 energy storage ceramics with an ultrafast charge-discharge rate and temperature-stable power density

Author information +
History +
PDF

Abstract

Dielectric capacitors with ultrafast charge-discharge rates are extensively used in electrical and electronic systems. To meet the growing demand for energy storage applications, researchers have devoted significant attention to dielectric ceramics with excellent energy storage properties. As a result, the awareness of the importance of the pulsed discharge behavior of dielectric ceramics and conducting characterization studies has been raised. However, the temperature stability of pulsed discharge behavior, which is significant for pulsed power applications, is still not given the necessary consideration. Here, we systematically investigate the microstructures, energy storage properties and discharge behaviors of nanograined (1-x)BaTiO3-xNaNbO3 ceramics prepared by a two-step sintering method. The 0.60BaTiO3-0.40NaNbO3 ceramics with relaxor ferroelectric characteristics possess an optimal discharge energy density of 3.07 J cm-3, a high energy efficiency of 92.6%, an ultrafast discharge rate of 39 ns and a high power density of 100 MW cm-3. In addition to stable energy storage properties in terms of frequency, fatigue and temperature, the 0.60BaTiO3-0.40NaNbO3 ceramics exhibit temperature-stable power density, thereby illustrating their significant potential for power electronics and pulsed power applications.

Keywords

BaTiO3-NaNbO3 / energy storage properties / charge-discharge rate / temperature-stable power density

Cite this article

Download citation ▾
Peiyao Zhao, Longtu Li, Xiaohui Wang. BaTiO3-NaNbO3 energy storage ceramics with an ultrafast charge-discharge rate and temperature-stable power density. Microstructures, 2023, 3(1): 2023002 DOI:10.20517/microstructures.2022.21

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao P,Wu L.Perspectives and challenges for lead-free energy-storage multilayer ceramic capacitors.J Adv Ceram2021;10:1153-93.

[2]

Wang G,Li Y.Electroceramics for high-energy density capacitors: current status and future perspectives.Chem Rev2021;121:6124-72. PMCID:PMC8277101

[3]

Palneedi H,Hwang G-T,Ryu J.High-performance dielectric ceramic films for energy storage capacitors: progress and outlook.Adv Funct Mater2018;28:1803665

[4]

Li Q,Gadinski MR.Flexible high-temperature dielectric materials from polymer nanocomposites.Nature2015;523:576-9.

[5]

Whittingham MS.Materials challenges facing electrical energy storage.MRS Bull2008;33:411-9.

[6]

Li J,Chen X.Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications.Nat Mater2020;19:999-1005.

[7]

Xu R,Wei X.Analysis on nonlinearity of antiferroelectric multilayer ceramic capacitor (MLCC) for energy storage.IEEE Trans Dielect Electr Insul2019;26:2005-11.

[8]

Love GR.Energy storage in ceramic dielectrics.J Am Ceram Soc1990;73:323-8

[9]

Jow TR,Ennis JB.Pulsed power capacitor development and outlook. In 2015 IEEE Pulsed Power Conference (PPC); 2015, pp. 1-7.

[10]

Wang Y,Chen Q,Zhang QM.Recent development of high energy density polymers for dielectric capacitors.IEEE Trans Dielect Electr Insul2010;17:1036-42.

[11]

Kim J,Acharya M.Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films.Science2020;369:81-4.

[12]

Liu Z,Ye J.Antiferroelectrics for energy storage applications: a review.Adv Mater Technol2018;3:1800111.

[13]

Hong K,Suh JM,Jang HW.Perspectives and challenges in multilayer ceramic capacitors for next generation electronics.J Mater Chem C2019;7:9782-802

[14]

Li F,Shen B.Recent progress of ecofriendly perovskite-type dielectric ceramics for energy storage applications.J Adv Dielect2019;8:1830005.

[15]

Zhang H,Zhang Q.A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors.J Mater Chem C2020;8:16648-67.

[16]

Yao Z,Hao H.Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances.Adv Mater2017;29:1601727.

[17]

Ogihara H,Trolier-McKinstry S.High-energy density capacitors utilizing 0.7BaTiO3-0.3BiScO3 ceramics.J Am Ceram Soc2009;92:1719-24.

[18]

Wang Z,Liu W.(Bi0.5Na0.5)TiO3-based relaxor ferroelectrics with medium permittivity featuring enhanced energy-storage density and excellent thermal stability.Chem Eng J2022;427

[19]

Yang L,Cheng Z.Ultra-high energy storage performance with mitigated polarization saturation in lead-free relaxors.J Mater Chem A2019;7:8573-80.

[20]

Yang L,Cheng Z.Enhanced energy density and electric cycling reliability via MnO2 modification in sodium niobate-based relaxor dielectric capacitors.J Mater Res2021, 36:1214-1222.

[21]

Wang X,Zhao P.Optimizing the grain size and grain boundary morphology of (K,Na)NbO3-based ceramics: Paving the way for ultrahigh energy storage capacitors.J Mater2021;7:780-9.

[22]

Zhao P,Wu L.High-performance relaxor ferroelectric materials for energy storage applications.Adv Energy Mater2019;9:1803048.

[23]

Pan H,Liu Y.Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design.Science2019;365:578-82

[24]

Yuan Q,Yao F-Z.Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics.Nano Energy2018;52:203-10

[25]

Wu L,Li L.Lead-free BaTiO3-Bi(Zn2/3Nb1/3)O3 weakly coupled relaxor ferroelectric materials for energy storage.RSC Adv2016;6:14273-82.

[26]

Zhou M,Zhou Z.Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy.J Mater Chem A2018;6:17896-904.

[27]

Zhao P,Chen L.Ultra-high energy storage performance in lead-free multilayer ceramic capacitors via a multiscale optimization strategy.Energy Environ Sci2020;13:4882-90.

[28]

Zhao P,Li L.Ultrahigh energy density with excellent thermal stability in lead-free multilayer ceramic capacitors via composite strategy design.J Mater Chem A2021;9:25914-21.

[29]

Chen L,Zhao P.Effect of MnO2 on the dielectric properties of Nb-doped BaTiO3-(Bi0.5Na0.5)TiO3 ceramics for X9R MLCC applications.J Am Ceram Soc2018;102:2781-90.

[30]

Hui K,Cen Z.KNN based high dielectric constant X9R ceramics with fine grain structure and energy storage ability.J Am Ceram Soc2021;104:5815-25.

[31]

Li T,Zuo R.X9R-type Ag1-3xBixNbO3 based lead-free dielectric ceramic capacitors with excellent energy-storage properties.Ceram Int2022;48:2533-7.

[32]

Zhu C,Luo B.High temperature lead-free BNT-based ceramics with stable energy storage and dielectric properties.J Mater Chem A2020;8:683-92.

[33]

Yang Z,Jin L.Realizing high comprehensive energy storage performance in lead-free bulk ceramics via designing an unmatched temperature range.J Mater Chem A2019;7:27256-66.

[34]

Cai Z,Wang H.High-temperature lead-free multilayer ceramic capacitors with ultrahigh energy density and efficiency fabricated via two-step sintering.J Mater Chem A2019;7:14575-82.

[35]

Chen I-W.Sintering dense nanocrystalline ceramics without final-stage grain growth.Nature2000;404:168.

[36]

Wang XH,Bai H-L.Two-step sintering of ceramics with constant grain-size, II: BaTiO3 and Ni-Cu-Zn ferrite.J Am Ceram Soc2006;89:438-43.

[37]

Shen Z,Luo B.BaTiO3-BiYbO3 perovskite materials for energy storage applications.J Mater Chem A2015;3:18146-53.

[38]

Zhu C,Guo L.Simultaneously achieved ultrastable dielectric and energy storage properties in lead-free Bi0.5Na0.5TiO3-based ceramics.ACS Appl Energy Mater2022;5:1560-70.

[39]

Yang L,Li F.Perovskite lead-free dielectrics for energy storage applications.Prog Mater Sci2019;102:72-108.

[40]

Hao X.A review on the dielectric materials for high energy-storage application.J Adv Dielectr2013;03:1330001.

[41]

Li J,Xu Z.Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency.Adv Mater2018;30:1802155.

[42]

Yang D,Shu L.Lead-free antiferroelectric niobates AgNbO3 and NaNbO3 for energy storage applications.J Mater Chem A2020;8:23724-37.

AI Summary AI Mindmap
PDF

79

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/