Chemical unit co-substitution enabling broadband and tunable near-infrared emission in garnet-type Lu3Sc2Ga3O12:Cr3+ phosphors

Taoze Wang , Gaochao Liu , Zhiguo Xia

Microstructures ›› 2022, Vol. 2 ›› Issue (4) : 2022020

PDF
Microstructures ›› 2022, Vol. 2 ›› Issue (4) :2022020 DOI: 10.20517/microstructures.2022.19
Research Article

Chemical unit co-substitution enabling broadband and tunable near-infrared emission in garnet-type Lu3Sc2Ga3O12:Cr3+ phosphors

Author information +
History +
PDF

Abstract

Although near-infrared phosphor-converted light-emitting diodes (NIR pc-LEDs) are desired for non-visible light source applications, the design of broadband NIR phosphors remains a challenge. Inspired by the chemical unit co-substitution strategy for the modification of composition and local structure, we realize a tunable redshift emission from 706 to 765 nm in garnet-type Lu3Sc2Ga3O12:Cr3+ with a broadened full width at half maximum and enhanced photoluminescence intensity by introducing a [Mg2+-Si4+] unit into the [Sc3+-Ga3+] couple. Structural and spectral analyzes demonstrate that the co-substitution reduces the local symmetry and crystal field strength of the [CrO6] octahedra, thus leading to inhomogeneous widening of the 4T24A2 emission and enhanced blue absorption. Furthermore, the 4T24A2 emission exhibits a phonon-assisted character at low temperatures due to the thermal coupling effect with the 2E level. The fabricated NIR pc-LED based on the optimized NIR phosphor exhibits excellent potential in night vision and imaging applications.

Keywords

Near-infrared (NIR) / garnet structure / Cr3+-doped phosphor / co-substitution

Cite this article

Download citation ▾
Taoze Wang, Gaochao Liu, Zhiguo Xia. Chemical unit co-substitution enabling broadband and tunable near-infrared emission in garnet-type Lu3Sc2Ga3O12:Cr3+ phosphors. Microstructures, 2022, 2(4): 2022020 DOI:10.20517/microstructures.2022.19

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu G,Xia Z.Structural rigidity control toward Cr3+ -based broadband near-infrared luminescence with enhanced thermal stability.Chem Mater2022;34:1376-84

[2]

Li J,Huang J.Organic semiconducting pro-nanostimulants for near-infrared photoactivatable cancer immunotherapy.Angew Chem Int Ed Engl2019;58:12680-7

[3]

Zhang L,Yang K.Mitochondria-targeted artificial “nano-rbcs” for amplified synergistic cancer phototherapy by a single NIR irradiation.Adv Sci (Weinh)2018;5:1800049 PMCID:PMC6097143

[4]

Zou X,Zhang H.A highly efficient and suitable spectral profile Cr3+-doped garnet near-infrared emitting phosphor for regulating photomorphogenesis of plants.Chem Eng J2022;428:132003

[5]

Liu D,Dang P.Simultaneous broadening and enhancement of Cr3+ photoluminescence in LiIn2 SbO6 by chemical unit cosubstitution: night-vision and near-infrared spectroscopy detection applications.Angew Chem Int Ed Engl2021;60:14644-9

[6]

Nguyen DT,Pham TD.Presentation attack detection for iris recognition system using NIR camera sensor.Sensors (Basel)2018;18:1315 PMCID:PMC5981581

[7]

Rajendran V,Liu R.Recent progress on broadband near-infrared phosphors-converted light emitting diodes for future miniature spectrometers.Opt Mater2019;1:100011

[8]

Zhang Y.Near-infrared emitting iridium complexes: molecular design, photophysical properties, and related applications.iScience2021;24:102858 PMCID:PMC8340135

[9]

Lukovic M,Belca I,Stanimirovic I.LED-based vis-NIR spectrally tunable light source - the optimization algorithm.J Eur Opt Soc -Rapid Publ2016;12

[10]

Liu H,Zheng F.Near-infrared lead chalcogenide quantum dots: synthesis and applications in light emitting diodes*.Chin Phys B2019;28:128504

[11]

Liu G,Molokeev MS.Li/Na substitution and Yb3+ co-doping enabling tunable near-infrared emission in LiIn2SbO6:Cr3+ phosphors for light-emitting diodes.iScience2021;24:102250 PMCID:PMC7995531

[12]

Qiao J,Zhou Y,Xia Z.Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes.Nat Commun2019;10:5267 PMCID:PMC6868216

[13]

Dai D,Xing Z.Broad band emission near-infrared material Mg3Ga2GeO8:Cr3+: substitution of Ga-In, structural modification, luminescence property and application for high efficiency LED.J Alloys Compd2019;806:926-38

[14]

Berezovskaya I,Voloshinovskii A.Near infrared emission of Eu2+ ions in Ca3Sc2Si3O12.Chem Phys Lett2013;585:11-4

[15]

Qiao J,Zhou X,Gautier R.Near-infrared light-emitting diodes utilizing a Europium-activated calcium oxide phosphor with external quantum efficiency of up to 54.7%.Adv Mater2022;34:e2201887

[16]

Xiong PX,Peng MY.Recent advances in super broad infrared luminescence bismuth-doped crystals.IScience2020;23:101578 PMCID:PMC7549122

[17]

Matuszewska C.The influence of host material on NIR II and NIR III emitting Ni2+-based luminescent thermometers in ATiO3: Ni2+ (A = Sr, Ca, Mg, Ba) nanocrystals.J Lumin2020;223:117221

[18]

Du J.Near-infrared persistent luminescence in Mn4+ doped perovskite type solid solutions.Ceram Int2019;45:8345-53

[19]

Nie W,Chen G.A novel Cr3+-doped Lu2CaMg2Si3O12 garnet phosphor with broadband emission for near-infrared applications.Dalton Trans2021;50:8446-56

[20]

Nie W,Zuo J.Cr3+-activated Na3 X2 Li3 F12 (X = Al, Ga, or In) garnet phosphors with broadband NIR emission and high luminescence efficiency for potential biomedical application.J Mater Chem C2021;9:15230-41

[21]

You L,Zhou T.Broadband near-infrared phosphor BaMgAl10O17:Cr3+ realized by crystallographic site engineering.Chem Eng J2021;417:129224

[22]

Zeng H,Wang L.Two-site occupation for exploring ultra-broadband near-infrared phosphor-double-perovskite La2MgZrO6:Cr3+.Chem Mater2019;31:5245-53

[23]

Yan W,Lu YY,Yin M.Near infrared long-persistent phosphorescence in La3Ga5GeO14:Cr3+ phosphor.Opt Express2010;18:20215-21

[24]

Xu X,Yao L,Jiang J.Highly efficient and thermally stable Cr3+-activated silicate phosphors for broadband near-infrared LED applications.Chem Eng J2020;383:123108

[25]

Huang D,Deng Z.A highly efficient and thermally stable broadband Cr3+-activated double borate phosphor for near-infrared light-emitting diodes.J Mater Chem C2021;9:164-72

[26]

Lin Q,Liao M.Trivalent chromium ions doped fluorides with both broad emission bandwidth and excellent luminescence thermal stability.ACS Appl Mater Interfaces2021;13:18274-82

[27]

Bindhu A,Ganesanpotti S.Distortion and energy transfer assisted tunability in garnet phosphors.Crit Rev Solid State Mater Sci2022;47:621-64

[28]

Jia Z,Liu Y.Strategies to approach high performance in Cr3+-doped phosphors for high-power NIR-LED light sources.Light Sci Appl2020;9:86 PMCID:PMC7229223

[29]

Basore ET,Liu X,Qiu J.Broadband near-infrared garnet phosphors with near-unity internal quantum efficiency.Adv Optical Mater2020;8:2000296

[30]

Mao N,Song Z,Liu Q.A broadband near-infrared phosphor Ca3Y2Ge3O12:Cr3+ with garnet structure.J Alloys Comp2021;863:158699

[31]

Meng X,Shi X.Designing a super broadband near infrared material Mg3Y2Ge3O12:Cr3+ using cation inversion for future light sources.RSC Adv2020;10:19106-16 PMCID:PMC9053909

[32]

Dumesso MU,Zheng G.Efficient, stable, and ultra-broadband near-infrared garnet phosphors for miniaturized optical applications.Adv Opt Mater2022;10:2200676

[33]

Zhou JY,Du F.Efficient and tunable luminescence in Ga2-xInxO3:Cr3+ for near-infrared imaging.ACS Appl Mater Interf2021;13:31835-42

[34]

Xia Z,Molokeev MS,Rickert K.Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7:Eu2+ phosphor.J Am Chem Soc2015;137:12494-7

[35]

Shannon RD.Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides.Acta Cryst A1976;32:751-67

[36]

Zhang L,Hao Z.Cr3+-Doped broadband NIR garnet phosphor with enhanced luminescence and its application in NIR spectroscopy.Adv Opt Mater2019;7:1900185

[37]

Tanabe Y.On the absorption spectra of complex ions II.J Phys Soc Jpn1954;5;766-79

[38]

Mao M,Zeng H.Broadband near-infrared (NIR) emission realized by the crystal-field engineering of Y3-xCaxAl5-xSixO12:Cr3+ (x = 0-2.0) garnet phosphors.J Mater Chem C2020;8:1981-8

[39]

Zhang S,Li Z.Achieving high quantum efficiency independent on luminescence center through sub-lattice cage engineering.Chem Eng J2021;426:130734

[40]

Lian H,Sharafudeen K.Highly thermotolerant metal halide perovskite solids.Adv Mater2020;32:e2002495

[41]

Malysa B,Jüstel T.Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12 (X = Lu, Y, Gd, La).J Lumin2018;202:523-31

[42]

Kayanuma Y.On the line shape of phonon side-band in photo-absorption of localized centers.J Phys Soc Jpn1999;68:1061-1061

[43]

Tang F,Ye H.A set of manganese ion activated fluoride phosphors (A2BF6Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 °C and efficient room-temperature photoluminescence.J Mater Chem C2016;4:9561-8

[44]

Kitzmann WR,Heinze K.Spin-flip luminescence.Photochem Photobiol Sci2022;21:1309-31

[45]

Macfarlane P,Henderson B.Cr3+ luminescence in calcium and strontium gallogermanate.Opt Mater1994;3:15-24

AI Summary AI Mindmap
PDF

47

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/