Detwinning/twin growth-induced phase transformation in a metastable compositionally complex alloy

Wenjun Lu , Fengchao An , Christian H. Liebscher

Microstructures ›› 2022, Vol. 2 ›› Issue (4) : 2022017

PDF
Microstructures ›› 2022, Vol. 2 ›› Issue (4) :2022017 DOI: 10.20517/microstructures.2022.14
Research Article

Detwinning/twin growth-induced phase transformation in a metastable compositionally complex alloy

Author information +
History +
PDF

Abstract

Extensive experiments have shown that the transformation from the face-centered cubic to hexagonal close-packed ε phase usually occurs around coherent Σ3 boundaries. However, in this letter, we reveal a different transformation mechanism in a metastable dual-phase compositionally complex alloy via a systematic high-resolution scanning transmission electron microscopy analysis. The face-centered cubic γ matrix can be transformed to the hexagonal close-packed ɛ phase (as small as one unit) around an incoherent Σ3 boundary (~30 nm), i.e., the facet of the coherent Σ3 boundary. This transformation is assisted by the detwinning/twin growth of a coherent Σ3 boundary during annealing treatment (900 °C for 60 min).

Keywords

Detwinning/twin growth / incoherent Σ3 boundary / 9R structure / displacive transformation / compositionally complex alloy

Cite this article

Download citation ▾
Wenjun Lu, Fengchao An, Christian H. Liebscher. Detwinning/twin growth-induced phase transformation in a metastable compositionally complex alloy. Microstructures, 2022, 2(4): 2022017 DOI:10.20517/microstructures.2022.14

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Koizumi Y,Yamanaka K.Strain-induced martensitic transformation near twin boundaries in a biomedical Co-Cr-Mo alloy with negative stacking fault energy.Acta Materialia2013;61:1648-61

[2]

Harjo S,Abe J.Martensite phase stress and the strengthening mechanism in TRIP steel by neutron diffraction.Sci Rep2017;7:15149 PMCID:PMC5680272

[3]

Sohn SS,Jo MC,Kim HS.Novel 1.5 GPa-strength with 50%-ductility by transformation-induced plasticity of non-recrystallized austenite in duplex steels.Sci Rep2017;7:1255 PMCID:PMC5430639

[4]

Ding L,Idrissi H.Potential TRIP/TWIP coupled effects in equiatomic CrCoNi medium-entropy alloy.Acta Materialia2022;234:118049

[5]

Chandan AK,Hung PT.Effect of nickel addition on enhancing nano-structuring and suppressing TRIP effect in Fe40Mn40Co10Cr10 high entropy alloy during high-pressure torsion.Int J Plast2022;150:103193

[6]

Zhang Z,Xie Y,Liang J.Multiple deformation mechanisms induced by pre-twinning in CoCrFeNi high entropy alloy.Scripta Materialia2022;207:114266

[7]

Fu Y,Shi J,Dong H.Effects of cold rolling reduction on retained austenite fraction and mechanical properties of high-Si TRIP steel.J Iron Steel Res Int2013;20:50-6

[8]

Li Z,Deng Y,Tasan CC.Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.Nature2016;534:227-30

[9]

Li Z,Pradeep KG.A TRIP-assisted dual-phase high-entropy alloy: grain size and phase fraction effects on deformation behavior.Acta Materialia2017;131:323-35

[10]

Li Z,Grabowski B,Raabe D.Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity.Acta Materialia2017;136:262-70

[11]

Lu W,Dehm G,Li Z.Bidirectional transformation enables hierarchical nanolaminate dual-phase high-entropy alloys.Adv Mater2018;30:e1804727

[12]

Gao X,Zhang X,Qin G.Precipitation phase and twins strengthening behaviors of as-cast non-equiatomic CoCrFeNiMo high entropy alloys.J Alloys Comp2022;918:165584

[13]

Lu K,Suresh S.Strengthening materials by engineering coherent internal boundaries at the nanoscale.Science2009;324:349-52

[14]

Ma L,Nie Z.Reversible deformation-induced martensitic transformation in Al0.6CoCrFeNi high-entropy alloy investigated by in situ synchrotron-based high-energy X-ray diffraction.Acta Materialia2017;128:12-21

[15]

Moon J,Tabachnikova E.Deformation-induced phase transformation of Co20Cr26Fe20Mn20Ni14 high-entropy alloy during high-pressure torsion at 77 K.Mater Lett2017;202:86-8

[16]

Hou J,Lu W.Twin boundary-assisted precipitation of sigma phase in a high-entropy alloy.Mater Lett2021;300:130198

[17]

Heinz A.Crack initiation during high cycle fatigue of an austenitic steel.Acta Metallurgica Materialia1990;38:1933-40

[18]

García ADJ, Medrano AM, Rodríguez AS. Formation of hcp martensite during the isothermal aging of an fcc Co-27Cr-5Mo-0.05C orthopedic implant alloy.Metall Mat Trans A1999;30:1177-84

[19]

Hung CY,Bai Y,Murayama M.Investigating the dislocation reactions on Σ3{111} twin boundary during deformation twin nucleation process in an ultrafine-grained high-manganese steel.Sci Rep2021;11:19298 PMCID:PMC8481298

[20]

Zhu Q,Lu H.Revealing extreme twin-boundary shear deformability in metallic nanocrystals.Sci Adv2021;7:eabe4758 PMCID:PMC8442924

[21]

Wang J,Hirth JP,Zhang X.Dislocation structures of Σ3 {112} twin boundaries in face centered cubic metals.Appl Phys Lett2009;95:021908

[22]

Liu L,Gong SK.High resolution transmission electron microscope observation of zero-strain deformation twinning mechanisms in Ag.Phys Rev Lett2011;106:175504

[23]

Li Q,Wang J.High-strength nanotwinned Al alloys with 9R phase.Adv Mater2018;30:1704629

[24]

Zhang Y,Yuan F.Atomic scale observation of FCC twin, FCC→9R and 9R→12R’ transformations in cold-rolled Hafnium.Scripta Materialia2022;207:114284

[25]

Liebscher C,Dahmen U.A hierarchical microstructure due to chemical ordering in the bcc lattice: early stages of formation in a ferritic Fe-Al-Cr-Ni-Ti alloy.Acta Materialia2015;92:220-32

[26]

Lu W,Liebscher C.Formation of eta carbide in ferrous martensite by room temperature aging.Acta Materialia2018;158:297-312

[27]

Wang J,Anderoglu O.Detwinning mechanisms for growth twins in face-centered cubic metals.Acta Materialia2010;58:2262-70

[28]

Zhu Q,Tian Y.Hierarchical twinning governed by defective twin boundary in metallic materials.Sci Adv2022;8:eabn8299 PMCID:PMC9122314

[29]

Tschopp MA,Mcdowell DL.Symmetric and asymmetric tilt grain boundary structure and energy in Cu and Al (and transferability to other fcc metals).Integr Mater Manuf Innov2015;4:176-89

[30]

Zhang Z,Wang Z.Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy.Nat Commun2017;8:14390 PMCID:PMC5321736

[31]

Lu L,Chen X,Lu K.Ultrahigh strength and high electrical conductivity in copper.Science2004;304:422-6

[32]

Lu L,Huang X.Revealing the maximum strength in nanotwinned copper.Science2009;323:607-10

AI Summary AI Mindmap
PDF

68

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/