Tunable negative thermal expansion in La(Fe, Si)13/resin composites with high mechanical property and long-term cycle stability

He Zhou , Yuwei Liu , Rongjin Huang , Bo Chen , Min Xia , Ziyuan Yu , Haodong Chen , Kaiming Qiao , Junzhuang Cong , Sergey V. Taskaev , Ke Chu , Hu Zhang

Microstructures ›› 2022, Vol. 2 ›› Issue (4) : 2022018

PDF
Microstructures ›› 2022, Vol. 2 ›› Issue (4) :2022018 DOI: 10.20517/microstructures.2022.13
Research Article

Tunable negative thermal expansion in La(Fe, Si)13/resin composites with high mechanical property and long-term cycle stability

Author information +
History +
PDF

Abstract

Materials with tunable negative thermal expansion (NTE) are highly demanded in various functional devices. La(Fe, Si)13-based compounds are promising NTE materials due to their outstanding NTE properties. However, their poor mechanical properties and related short service life restrict their practical applications. In this work, epoxy resin with positive thermal expansion is used to synthesize La-Fe-Si/resin composites. The NTE of La-Fe-Si/resin composites can be manipulated by optimizing the La-Fe-Si particle size and resin content, and tailoring resin content could tune the NTE more effectively. The average linear coefficient of thermal expansion of the composites decreases from -275.0 × 10-6 K-1 to -4.9 × 10-6 K-1 over the magnetic transition temperature range as the resin content increases from 3 wt.% to 80 wt.%. In addition, zero thermal expansion is achieved in the La-Fe-Si/resin composite with 20 wt.% resin. The resin would reinforce the binding force by filling the pores between the particles. The La-Fe-Si/resin composite with 80 wt.% resin exhibits highly improved mechanical properties; for example, its compressive strength of 205 MPa is 75% higher than that of the La-Fe-Si/resin composite with 3 wt.% resin. The prepared La-Fe-Si/resin composites can be machined into different shapes for practical applications, such as thin plates, strips, and rods. Furthermore, the La-Fe-Si/resin composites can undergo 1000 thermal cycles without NTE performance degradation and mechanical integrity loss, indicating durable cycle stability. Hence, significantly tunable NTE with high mechanical properties and long-term cycle stability makes La-Fe-Si/resin composites present great application potential as NTE materials.

Keywords

Negative thermal expansion (NTE) / La-Fe-Si compounds / mechanical properties

Cite this article

Download citation ▾
He Zhou, Yuwei Liu, Rongjin Huang, Bo Chen, Min Xia, Ziyuan Yu, Haodong Chen, Kaiming Qiao, Junzhuang Cong, Sergey V. Taskaev, Ke Chu, Hu Zhang. Tunable negative thermal expansion in La(Fe, Si)13/resin composites with high mechanical property and long-term cycle stability. Microstructures, 2022, 2(4): 2022018 DOI:10.20517/microstructures.2022.13

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Evans JSO,Jorgensen JD,Short S.Compressibility, phase transitions, and oxygen migration in zirconium tungstate, ZrW2O8.Science1997;275:61-5

[2]

Mary TA,Vogt T.Negative thermal expansion from 0.3 to 1050 kelvin in ZrW2O8.Science1996;272:90-2.

[3]

Iikubo S,Takenaka K,Takigawa M.Local lattice distortion in the giant negative thermal expansion material Mn3Cu1-xGexN.Phys Rev Lett2008;101:205901

[4]

Gao Q,Sanson A.Discovering large isotropic negative thermal expansion in framework compound AgB(CN)4 via the concept of average atomic volume.J Am Chem Soc2020;142:6935-9

[5]

Zhao YY,Bao LF.Giant negative thermal expansion in bonded MnCoGe-based compounds with Ni2In-type hexagonal structure.J Am Chem Soc2015;137:1746-9

[6]

Katayama N,Mitamura M,Okamoto Y.Microstructural effects on negative thermal expansion extending over a wide temperature range in β-Cu1.8Zn0.2V2O7.Appl Phys Lett2018;113:181902

[7]

Song Y,Deng S,Chen J.Negative thermal expansion in magnetic materials.Progr Mater Sci2021;121:100835

[8]

Li CW,Muñoz JA.Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3.Phys Rev Lett2011;107:195504

[9]

Chen J,Sun C.Zero thermal expansion in PbTiO3-based perovskites.J Am Chem Soc2008;130:1144-5

[10]

Shen BG,Hu FX,Cheng ZH.Recent Progress in exploring magnetocaloric materials.Adv Mater2009;21:4545-64

[11]

Liu Y,Yu Q,Liu J.Significant reduction of phase-transition hysteresis for magnetocaloric (La1-xCex)2Fe11Si2Hy alloys by microstructural manipulation.Acta Materialia2021;207:116687

[12]

Wang Y,Liu E.Outstanding comprehensive performance of La(Fe, Si)13Hy/In composite with durable service life for magnetic refrigeration.Adv Electron Mater2018;4:1700636

[13]

Fujita A,Hasegawa Y.Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1-x)13 compounds and their hydrides.Phys Rev B2003;67:104416

[14]

Jia L,Zhang HW,Dong C.Magnetovolume effect in intermetallics LaFe13-xSix.J Phys Condens Matter2006;18:9999-10007

[15]

Huang R,Fan W.Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds.J Am Chem Soc2013;135:11469-72

[16]

Li W,Wang W.Enhanced negative thermal expansion in La(1-x)PrxFe10.7Co0.8Si1.5 compounds by doping the magnetic rare-earth element praseodymium.Inorg Chem2014;53:5869-73

[17]

Li S,Zhao Y,Han Y.Zero thermal expansion achieved by an electrolytic hydriding method in La(Fe,Si)13 compounds.Adv Funct Mater2017;27:1604195

[18]

Li S,Zhao Y,Li L.Cryogenic abnormal thermal expansion properties of carbon-doped La(Fe,Si)13 compounds.Phys Chem Chem Phys2015;17:30999-1003

[19]

Li S,Zhao Y.Broad negative thermal expansion operation-temperature window achieved by adjusting Fe-Fe magnetic exchange coupling in La(Fe,Si)13 compounds.Inorg Chem2015;54:7868-72

[20]

Wang J,Liu J.Balancing negative and positive thermal expansion effect in dual-phase La(Fe,Si)13/α-Fe in-situ composite with improved compressive strength.J Alloys Compd2018;769:233-8

[21]

Zhang H,Niu E,Sun J.Enhanced mechanical properties and large magnetocaloric effects in bonded La(Fe, Si)13-based magnetic refrigeration materials.Appl Phys Lett2014;104:062407

[22]

Toby BH.EXPGUI, a graphical user interface for GSAS.J Appl Crystallogr2001;34:210-3

[23]

Bird M,Hawkes C.Numerical modeling of fluid and electrical currents through geometries based on synchrotron X-ray tomographic images of reservoir rocks using Avizo and COMSOL.Comput Geosci2014;73:6-16

[24]

Sun XM,Ren Y.Giant negative thermal expansion in Fe-Mn-Ga magnetic shape memory alloys.Appl Phys Lett2018;113:041903

[25]

Li S,Li W,Zhao Y.Low-temperature negative thermal expansion behavior of LaFe11.2Al1.8-xSix compounds.J Alloys Compd2015;646:119-23

[26]

Lin JC,Tong W.Tunable negative thermal expansion related with the gradual evolution of antiferromagnetic ordering in antiperovskite manganese nitrides Ag1-xNMn3+x (0 ≤ x ≤ 0.6).Appl Phys Lett2015;106:082405

[27]

Xia W,Sun N,Ou Z.Influence of powder bonding on mechanical properties and magnetocaloric effects of La0.9Ce0.1(Fe,Mn)11.7Si1.3H1.8.J Alloys Compd2015;635:124-8

[28]

Shao Y,Zhang M.High-performance solid-state cooling materials: Balancing magnetocaloric and non-magnetic properties in dual phase La-Fe-Si.Acta Materialia2017;125:506-12

[29]

Wang W,Dai H.Tunable near-zero thermal expansion in the C-doped La(Fe, Si)13 compounds at cryogenic temperatures.Mater Lett2019;237:26-8

[30]

Hu J,Cao Y.Adjustable magnetic phase transition inducing unusual zero thermal expansion in cubic RCO2-based intermetallic compounds (R = rare earth).Inorg Chem2019;58:5401-5

[31]

Song Y,Liu X.Zero Thermal expansion in magnetic and metallic Tb(Co,Fe)2 intermetallic compounds.J Am Chem Soc2018;140:602-5

[32]

Fujita A,Yamada M.Influence of pressure on itinerant electron metamagnetic transition in La(FexSi1-x)13 compounds.J Appl Phys2003;93:7263-5

[33]

Lyubina J,Martin N,Gutfleisch O.Novel design of La(Fe,Si)13 alloys towards high magnetic refrigeration performance.Adv Mater2010;22:3735-9

AI Summary AI Mindmap
PDF

32

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/