High strength and ductility in partially recrystallized Fe40Mn20Cr20Ni20 high-entropy alloys at cryogenic temperature

Qi-Xin Ma , Hui-Jun Yang , Zhong Wang , Xiao-Hui Shi , Peter K. Liaw , Jun-Wei Qiao

Microstructures ›› 2022, Vol. 2 ›› Issue (3) : 2022015

PDF
Microstructures ›› 2022, Vol. 2 ›› Issue (3) :2022015 DOI: 10.20517/microstructures.2022.12
Research Article

High strength and ductility in partially recrystallized Fe40Mn20Cr20Ni20 high-entropy alloys at cryogenic temperature

Author information +
History +
PDF

Abstract

The effects of cold rolling and subsequent annealing on the microstructures and mechanical properties of Fe40Mn20Cr20Ni20 high-entropy alloys (HEAs) are investigated. The Cr-rich secondary phases with a tetragonal structure (σ phases) in the Fe40Mn20Cr20Ni20 HEAs are precipitated upon annealing at 600 °C-900 °C for 2 h. The prepared Fe40Mn20Cr20Ni20 HEA annealed at 800 °C for 2 h after cold rolling has a good combination of strength and elongation, with a high yield strength of 438 MPa, a high ultimate tensile strength of 676 MPa, and an excellent elongation to fracture of 32%. The mechanical properties at cryogenic temperature are better than those at room temperature. Typically, for the incompletely recrystallized alloy annealed at 700 °C, the yield strength, tensile strength, and elongation after fracture are increased by 26%, 22%, and 100%, respectively. This trend mainly depends on dislocation and twinning strengthening. The σ phases also improve the cryogenic tensile properties. Furthermore, the recrystallization kinetics of the Fe40Mn20Cr20Ni20 HEAs are explored to correlate with the deformation behavior.

Keywords

High-entropy alloys / mechanical properties / plastic deformation / recrystallization kinetics / cryogenic temperature

Cite this article

Download citation ▾
Qi-Xin Ma, Hui-Jun Yang, Zhong Wang, Xiao-Hui Shi, Peter K. Liaw, Jun-Wei Qiao. High strength and ductility in partially recrystallized Fe40Mn20Cr20Ni20 high-entropy alloys at cryogenic temperature. Microstructures, 2022, 2(3): 2022015 DOI:10.20517/microstructures.2022.12

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Z,Deng Y,Tasan CC.Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.Nature2016;534:227-30

[2]

Zhang Z,Wang Z.Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy.Nat Commun2017;8:14390 PMCID:PMC5321736

[3]

Jo YH,Choi WM.Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy.Nat Commun2017;8:15719 PMCID:PMC5494191

[4]

Otto F,Somsen C,Eggeler G.The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy.Acta Materialia2013;61:5743-55

[5]

Rao J,Ocelík V.Secondary phases in AlxCoCrFeNi high-entropy alloys: an in-situ TEM heating study and thermodynamic appraisal.Acta Materialia2017;131:206-20

[6]

Yeh J.Alloy design strategies and future trends in high-entropy alloys.JOM2013;65:1759-71

[7]

Yeh J,Hong Y,Lin S.Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements.Mater Chem Phys2007;103:41-6

[8]

Lee C,Kim G.Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy.Adv Mater2020;32:e2004029

[9]

Lee C,Gao MC.Lattice distortion in a strong and ductile refractory high-entropy alloy.Acta Materialia2018;160:158-72

[10]

Tsai K,Yeh J.Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys.Acta Materialia2013;61:4887-97

[11]

Sohn SS,Ikeda Y.Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion.Adv Mater2019;31:e1807142

[12]

Rollett A,Rohrer GS. Recrystallization and related annealing phenomena: second edition, recrystallization and related annealing phenomena, 2nd edition, 2004; pp. 1-628. Available from: https://www.elsevier.com/books/recrystallization-and-related-annealing-phenomena/rollett/978-0-08-044164-1 [Last accessed on 19 July 2022].

[13]

Lee CP.Boundary negotiating artifacts: unbinding the routine of boundary objects and embracing chaos in collaborative work.Comput Supported Coop Work2007;16:307-39

[14]

Shi Y,Liaw P.Corrosion-resistant high-entropy alloys: a review.Metals2017;7:43

[15]

Shi Y,Xie X,Dahmen KA.Corrosion of Al CoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior.Corros Sci2017;119:33-45

[16]

Laplanche G,Reinhart C,Fox F.Phase stability and kinetics of σ-phase precipitation in CrMnFeCoNi high-entropy alloys.Acta Materialia2018;161:338-51

[17]

Schuh B,Volker B.Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation.Acta Mater2015;96:258-268

[18]

Li S,Wang X.Effects of Ni content on the microstructures, mechanical properties and thermal aging embrittlement behaviors of Fe-20Cr-xNi alloys.Mater Sci Eng A2015;639:640-6

[19]

Oh K,Eom K.A study on the localized corrosion and repassivation kinetics of Fe-20Cr- x Ni ( x = 0-20 wt%) stainless steels via electrochemical analysis.Corros Sci2015;100:158-68

[20]

Misra R,Venkatasurya P,Karjalainen L.Martensite shear phase reversion-induced nanograined/ultrafine-grained Fe-16Cr-10Ni alloy: the effect of interstitial alloying elements and degree of austenite stability on phase reversion.Mater Sci Eng A2010;527:7779-92

[21]

Gu J.Annealing-induced abnormal hardening in a cold rolled CrMnFeCoNi high entropy alloy.Scripta Materialia2019;162:345-9

[22]

Moon J,Shumilin S.Deformation behavior of a Co-Cr-Fe-Ni-Mo medium-entropy alloy at extremely low temperatures.Mater Today2021;50:55-68

[23]

Bian B,Yang H.A novel cobalt-free FeMnCrNi medium-entropy alloy with exceptional yield strength and ductility at cryogenic temperature.J Alloys Comp2020;827:153981

[24]

Li D,Feng T.High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures.Acta Materialia2017;123:285-94

[25]

Tasan CC,Pradeep KG,Springer H.Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System.JOM2014;66:1993-2001

[26]

Yang J,Ma S,Zhao D.Revealing the hall-petch relationship of Al0.1CoCrFeNi high-entropy alloy and its deformation mechanisms.J Alloys Comp2019;795:269-74

[27]

Edalati K,Alhamidi A,Horita Z.Influence of severe plastic deformation at cryogenic temperature on grain refinement and softening of pure metals: Investigation using high-pressure torsion.Mater Sci Eng A2014;613:103-10

[28]

Jo Y,Kim D.Utilization of brittle σ phase for strengthening and strain hardening in ductile VCrFeNi high-entropy alloy.Mater Sci Eng A2019;743:665-74

[29]

Pickering E,Stone H.Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi.Scripta Materialia2016;113:106-9

[30]

Nayan N,Jha AK.Mechanical properties of aluminium-copper-lithium alloy AA2195 at cryogenic temperatures.Mater Des2014;58:445-50

[31]

Sohn SS,Lee J.Effects of Mn and Al contents on cryogenic-temperature tensile and Charpy impact properties in four austenitic high-Mn steels.Acta Materialia2015;100:39-52

[32]

Cao H,Zhan G.Effect of intercritical quenching on the microstructure and cryogenic mechanical properties of a 7 Pct Ni steel.Metall Mat Trans A2017;48:4403-10

[33]

Grill D,Sommitsch C.Microstructure modeling of the dynamic recrystallization kinetics during turbine disc forging of the nickel based superalloy allvac 718 plus. 2008.

[34]

Zhang T,Wang C.Effects of deep cryogenic treatment on the microstructure and mechanical properties of an ultrahigh-strength TRIP-aided bainitic steel.Mater Charact2021;178:111247

[35]

Dieringa H.Influence of cryogenic temperatures on the microstructure and mechanical properties of magnesium alloys: a review.Metals2017;7:38

[36]

Jo YH,Sohn SS,Lee B.Role of brittle sigma phase in cryogenic-temperature-strength improvement of non-equi-atomic Fe-rich VCrMnFeCoNi high entropy alloys.Mater Sci Eng A2018;724:403-10

[37]

Jo Y,Jo M.Effects of deformation-induced BCC martensitic transformation and twinning on impact toughness and dynamic tensile response in metastable VCrFeCoNi high-entropy alloy.J Alloys Comp2019;785:1056-67

[38]

Wu S,Wang Q.Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure.Acta Materialia2019;165:444-58

[39]

Yao M,Tasan C.A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility.Scripta Materialia2014;72-73:5-8

[40]

Gludovatz B,Thurston KV.Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures.Nat Commun2016;7:10602 PMCID:PMC4740901

[41]

Qiao JW,Huang E,Liaw P.Microstructural characteristics and mechanical behaviors of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperatures.MSF2011;688:419-25

[42]

Wei R,Chen L.Novel Co-free high performance TRIP and TWIP medium-entropy alloys at cryogenic temperatures.J Mater Sci Technol2020;57:153-8

[43]

Zherebtsov S,Ivanisenko Y.Evolution of microstructure and mechanical properties of a CoCrFeMnNi high-entropy alloy during high-pressure torsion at room and cryogenic temperatures.Metals2018;8:123

[44]

Geng R,Zhao Q,Jiang Q.Superior Cryogenic tensile strength and ductility of in situ Al-Cu matrix composite reinforced with 0.3 wt% Nano-Sized TiCp.Adv Eng Mater2018;20:1701137

[45]

Zhang X,Liu W.Low temperature mechanical properties of as-extruded Mg-10Gd-3Y-0.5Zr magnesium alloy.Transact Nonferr Metals Soc China2012;22:2883-90

[46]

Cao H,Zhan G.Effect of Mn content on microstructure and cryogenic mechanical properties of a 7% Ni steel.Acta Metall Sin (Engl Lett )2018;31:699-705

[47]

Jeong D,Park T,Kim S.Fatigue crack propagation behavior of Fe25Mn and Fe16Mn2Al steels at room and cryogenic temperatures.Met Mater Int2016;22:601-8

[48]

Kwon K,Ha Y.Origin of intergranular fracture in martensitic 8Mn steel at cryogenic temperatures.Scripta Materialia2013;69:420-3

[49]

Chen J,Liu Z.Interpretation of significant decrease in cryogenic-temperature Charpy impact toughness in a high manganese steel.Mater Sci Eng A2018;737:158-65

[50]

Park J,Sung H,Kim SK.J-integral fracture toughness of high-Mn steels at room and cryogenic temperatures.Metall and Mat Trans A2019;50:2678-89

[51]

Astafurova EG,Maier GG.Low-temperature tensile ductility by V-alloying of high-nitrogen CrMn and CrNiMn steels: characterization of deformation microstructure and fracture micromechanisms.Mater Sci Eng A2019;745:265-78

[52]

Idrissi H,Schryvers D.On the relationship between the twin internal structure and the work-hardening rate of TWIP steels.Scripta Materialia2010;63:961-4

[53]

Komarasamy M,Tang Z,Liaw P.Effect of microstructure on the deformation mechanism of friction stir-processed Al0.1 CoCrFeNi high entropy alloy.Mater Res Lett2015;3:30-4

[54]

Ghoncheh M,Wu N,Phillion A.On the hot embrittlement of continuously-cast and transfer-bar structures in DP600 advanced high-strength steel.J Mater Proc Technol2021;289:116936

[55]

Liu X,Wang W.Back-stress-induced strengthening and strain hardening in dual-phase steel.Materialia2019;7:100376

[56]

Liang YJ,Wen Y.High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys.Nat Commun2018;9:4063 PMCID:PMC6170471

[57]

Tao K,Li H,Jin J.Transformation-induced plasticity in an ultrafine-grained steel: an in situ neutron diffraction study.Appl Phys Lett2007;90:101911

[58]

Lu W,Yan F.Interfacial nanophases stabilize nanotwins in high-entropy alloys.Acta Materialia2020;185:218-32

[59]

Guo N,Long S.Microstructure and mechanical properties of (CrCoNi)97Al1.5Ti1.5 medium entropy alloy twisted by free-end-torsion at room and cryogenic temperatures.Mater Sci Eng A2020;797:140101 PMCID:PMC7522488

[60]

Yang Z,Wu Q.Distinct recrystallization kinetics in Ni-Co-Cr-Fe-based single-phase high-entropy alloys.Metall Mater Trans A2021;52:3799-810

[61]

Gladman T.Precipitation hardening in metals.Mater Sci Technol1999;15:30-6

[62]

Y,Gottstein G.Recrystallization kinetics and microstructure evolution during annealing of a cold-rolled Fe-Mn-C alloy.Acta Materialia2011;59:3229-43

[63]

Y,Molodov DA.Effect of deformation and annealing on the formation and reversion of ε-martensite in an Fe-Mn-C alloy.Acta Materialia2010;58:3079-90

[64]

Cho S.Static recrystallization kinetics of 304 stainless steels.J Mater Sci2001;36:4273-8

[65]

Ma B,Jia B.Static recrystallization kinetics model after hot deformation of low-alloy steel Q345B.J Iron Steel Res Int2010;17:61-6

[66]

Lin Y,Zhang J.Modeling of flow stress of 42CrMo steel under hot compression.Mater Sci Eng A2009;499:88-92

[67]

Quan G,Zou Z,Liang J.Description of grain refinement by dynamic recrystallization under hot compressions for as-extruded 3Cr20Ni10W2 heat-resistant alloy.High Temp Mater Proc2015;34:697-713

[68]

Curtze S.Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate.Acta Materialia2010;58:5129-41

[69]

Miyajima Y,Hata S,Tsuji N.Quantification of internal dislocation density using scanning transmission electron microscopy in ultrafine grained pure aluminium fabricated by severe plastic deformation.Mater Sci Eng A2010;528:776-9

[70]

Won JW,Hong S,Lee JH.Role of deformation twins in static recrystallization kinetics of high-purity alpha titanium.Met Mater Int2016;22:1041-8

AI Summary AI Mindmap
PDF

74

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/