Ultrasonication-assisted fabrication of porous ZnO@C nanoplates for lithium-ion batteries

Xueting Wang , Yunchuang Wang , Meichao Wu , Ruopian Fang , Xi Yang , Da-Wei Wang

Microstructures ›› 2022, Vol. 2 ›› Issue (3) : 2022016

PDF
Microstructures ›› 2022, Vol. 2 ›› Issue (3) :2022016 DOI: 10.20517/microstructures.2022.11
Research Article

Ultrasonication-assisted fabrication of porous ZnO@C nanoplates for lithium-ion batteries

Author information +
History +
PDF

Abstract

Lithium-ion batteries have made significant commercial and academic progress in recent decades. Zinc oxide (ZnO) has been widely studied as a lithium-ion battery anode due to its high theoretical capacity of 987 mAh g-1, natural abundance, low cost, and environmental friendliness. However, ZnO suffers from poor electronic conductivity and large volume variation during the battery discharge/charge process, leading to capacity deterioration during long-term cycling. Herein, porous ZnO@C nanoplates are developed to offer short ion diffusion pathways and good conduction networks for both Li ions and electrons. The porous nanoplates provide abundant active sites for electrochemical reactions with minimized charge transfer impedance. As a result, the porous ZnO@C nanoplates deliver higher performance for lithium-ion storage compared with a bare ZnO anode. Furthermore, with the introduction of reduced graphene oxide (rGO), the ZnO@C@rGO composite anode achieves a capacity of 229.3 mAh g-1 at a high current density of 2 A g-1.

Keywords

Zinc oxide / porous materials / lithium-ion batteries / anodes

Cite this article

Download citation ▾
Xueting Wang, Yunchuang Wang, Meichao Wu, Ruopian Fang, Xi Yang, Da-Wei Wang. Ultrasonication-assisted fabrication of porous ZnO@C nanoplates for lithium-ion batteries. Microstructures, 2022, 2(3): 2022016 DOI:10.20517/microstructures.2022.11

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hayner CM,Kung HH.Materials for rechargeable lithium-ion batteries.Annu Rev Chem Biomol Eng2012;3:445-71

[2]

Wu F,Yu Y.Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries.Chem Soc Rev2020;49:1569-614

[3]

Qian S,Zheng M.CuCl2-modified lithium metal anode via dynamic protection mechanisms for dendrite-free long-life charging/discharge processes.Adv Energy Mater2022;12:2103480

[4]

Zhang J,Zhao Y.Preparation of ZnO nanorods/graphene composite anodes for high-performance lithium-ion batteries.Nanomaterials2018;8:966 PMCID:PMC6316529

[5]

Kreissl JJA,Oppermann R.Electrochemical lithiation/delithiation of Zno in 3D-structured electrodes: elucidating the mechanism and the solid electrolyte interphase formation.ACS Appl Mater Interfaces2021;13:35625-38

[6]

Lai W,Li B.MOF-derived ZnO/ZnFe2O4@RGO nanocomposites with high lithium storage performance.J Solid State Electrochem2021;25:1175-81

[7]

Thauer E,Andreikov EI.Novel synthesis and electrochemical investigations of ZnO/C composites for lithium-ion batteries.J Mater Sci2021;56:13227-42

[8]

Bui VKH,Hur J.Review of ZnO binary and ternary composite anodes for lithium-ion batteries.Nanomaterials (Basel)2021;11:2001 PMCID:PMC8399641

[9]

Köse H,Aydın AO.Graphene-based architectures of tin and zinc oxide nanocomposites for free-standing binder-free Li-ion anodes.Int J Energy Res2018;42:4710-8

[10]

Wang L,Liu Q.Recent progress in Zn-based anodes for advanced lithium ion batteries.Mater Chem Front2018;2:1414-35

[11]

Wang K,Yin W,Rui Y.Several carbon-coated Ga2O3 anodes: efficient coating of reduced graphene oxide enhanced the electrochemical performance of lithium ion batteries.Dalton Trans2021;50:3660-70

[12]

Zou Y,Ye L.Co/La-Doped NiO hollow nanocubes wrapped with reduced graphene oxide for lithium storage.ACS Appl Nano Mater2021;4:2910-20

[13]

Kim C,Kim H.Graphene oxide assisted synthesis of self-assembled zinc oxide for lithium-ion battery anode.Chem Mater2016;28:8498-503

[14]

Noman MT,Amor N.Thermophysiological comfort of zinc oxide nanoparticles coated woven fabrics.Sci Rep2020;10:21080 PMCID:PMC7713305

[15]

Vaitsis C,Argirusis C.Metal organic frameworks (MOFs) and ultrasound: a review.Ultrason Sonochem2019;52:106-19

[16]

Zhao J,Jin M,Chen S.ZnO/TiO2/C nanofibers by electrospinning for high-performance lithium storage.J Mater Sci2021;56:2497-505

[17]

Yan X,Wang Q.Activated carbon fibers “thickly overgrown” by ag nanohair through self-assembly and rapid thermal annealing.Nanoscale Res Lett2017;12:590 PMCID:PMC5680390

[18]

Guo C,He J.Rational design of unique ZnO/ZnS@N-C heterostructures for high-performance lithium-ion batteries.J Phys Chem Lett2020;11:905-12

[19]

Fu H,Chen L.Designed formation of NiCo2O4 with different morphologies self-assembled from nanoparticles for asymmetric supercapacitors and electrocatalysts for oxygen evolution reaction.Electrochimica Acta2019;296:719-29

[20]

Han Y,Li S.A novel anode material derived from organic-coated ZIF-8 nanocomposites with high performance in lithium ion batteries.Chem Commun (Camb)2014;50:8057-60

[21]

Song Y,Wu J.Hollow metal organic frameworks-derived porous ZnO/C nanocages as anode materials for lithium-ion batteries.J Alloys Comp2017;694:1246-53

[22]

Mueller F,Kaiser U,Bresser D.Elucidating the impact of cobalt doping on the lithium storage mechanism in conversion/alloying-type zinc oxide anodes.ChemElectroChem2016;3:1311-9

[23]

Xiao L,Cao M,Deng B.Effects of structural patterns and degree of crystallinity on the performance of nanostructured ZnO as anode material for lithium-ion batteries.J Alloys Comp2015;627:455-62

[24]

Lu X,Jiang C.Synthesis of well-dispersed ZnO-Co-C composite hollow microspheres as advanced anode materials for lithium ion batteries.RSC Adv2017;7:4269-77

[25]

Yu M,Wang Y,Shi G.An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition.Nanoscale2014;6:11419-24

[26]

Zhou Z,Liu J,Li G.Comparison study of electrochemical properties of porous zinc oxide/N-doped carbon and pristine zinc oxide polyhedrons.J Power Sources2015;285:406-12

[27]

Guo R,Wu J,Lin Y.ZnO/C nanocomposite microspheres with capsule structure for anode materials of lithium ion batteries.Ceramics Int2020;46:19966-72

[28]

Ao L,Xu Y.A novel Sn particles coated composite of SnO/ZnO and N-doped carbon nanofibers as high-capacity and cycle-stable anode for lithium-ion batteries.J Alloys Comp2020;819:153036

[29]

Song H,Wang C.In situ subangstrom-thick organic engineering enables mono-scale, ultrasmall Zno nanocrystals for a high initial coulombic efficiency, fully reversible conversion, and cycle-stable li-ion storage.Adv Energy Mater2019;9:1900426

[30]

Ren P,Yang X.Nanostrucutured MnO2-TiN nanotube arrays for advanced supercapacitor electrode material.Sci Rep2022;12:2088 PMCID:PMC8826938

[31]

Theerthagiri J,Senthil RA.A review on ZnO nanostructured materials: energy, environmental and biological applications.Nanotechnology2019;30:392001

[32]

Tao H,Wang K,Jiang K.Glycol derived carbon-TiO2 as low cost and high performance anode material for sodium-ion batteries.Sci Rep2017;7:43895 PMCID:PMC5335553

[33]

Chen L,Wang N,Qian Y.Surface-amorphous and oxygen-deficient Li3VO4-.δ2:1500090 PMCID:PMC5033021

[34]

Song Y,Wang J.Bottom-up approach design, band structure, and lithium storage properties of atomically thin γ-FeOOH nanosheets.ACS Appl Mater Interfaces2016;8:21334-42

[35]

Shi Y,Hui K.Promoting the electrochemical properties of yolk-shell-structured CeO2 composites for lithium-ion batteries.Microstructures2021;1:2021005

[36]

Wu L,Zhao H.MOF-derived long spindle-like carbon-coated ternary transition-metal-oxide composite for lithium storage.ACS Omega2022;7:16837-46 PMCID:PMC9118374

[37]

Liu J,Xie Z.Conjugated copper-catecholate framework electrodes for efficient energy storage.Angew Chem Int Ed Engl2020;59:1081-6

[38]

Song Y,Li Y.Pseudocapacitance-tuned high-rate and long-term cyclability of NiCo 2 S 4 hexagonal nanosheets prepared by vapor transformation for lithium storage.J Mater Chem A2017;5:9022-31

[39]

Yuan D,Dou Y.Cation-vacancy induced Li+ intercalation pseudocapacitance at atomically thin heterointerface for high capacity and high power lithium-ion batteries.J Energy Chem2021;62:281-8

[40]

Li Y,Yang W,Xue H.MOF-Derived metal oxide composites for advanced electrochemical energy storage.Small2018;14:e1704435

[41]

Xu G,Dou H,Li L.Exploring metal organic frameworks for energy storage in batteries and supercapacitors.Mater Today2017;20:191-209

[42]

Muraliganth T,Manthiram A.Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries.Chem Commun (Camb)2009;7360-2

[43]

Yang C,An K.ZnO nanoparticles anchored on nitrogen and sulfur co-doped graphene sheets for lithium-ion batteries applications.Ionics2018;24:3781-91

[44]

Li D,Zhang Y.Facile synthesis of carbon nanosphere/NiCo2O4 core-shell sub-microspheres for high performance supercapacitor.Sci Rep2015;5:12903 PMCID:PMC4526859

[45]

Zhang Q,Han X.Graphene-Encapsulated nanosheet-assembled zinc-nickel-cobalt oxide microspheres for enhanced lithium storage.ChemSusChem2016;9:186-96

[46]

Zhang Q,Dong J.Facile general strategy toward hierarchical mesoporous transition metal oxides arrays on three-dimensional macroporous foam with superior lithium storage properties.Nano Energy2015;13:77-91

[47]

Li S,Zhang G.Fast charging anode materials for lithium-ion batteries: current status and perspectives.Adv Funct Materials2022;32:2200796

[48]

Joy R,Das A.Graphene: chemistry and applications for lithium-ion batteries.Electrochem2022;3:143-83

AI Summary AI Mindmap
PDF

34

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/