Design and manufacture of high-performance microbatteries: lithium and beyond

Feiyang Chen , Zheng-Long Xu

Microstructures ›› 2022, Vol. 2 ›› Issue (3) : 2022012

PDF
Microstructures ›› 2022, Vol. 2 ›› Issue (3) :2022012 DOI: 10.20517/microstructures.2022.10
Review

Design and manufacture of high-performance microbatteries: lithium and beyond

Author information +
History +
PDF

Abstract

The accelerated development of miniaturized and customized electronics has stimulated the demand for high-energy microbatteries (MBs) as on-chip power sources for autonomous state operations. However, commercial MBs with thin-film configurations exhibit insufficient energy and power density due to their limited active materials and sluggish ion diffusion kinetics. In order to simultaneously enhance electrochemical performance and maintain low-cost production, efforts have been devoted to constructing three-dimensional battery architectures. This review summarizes the state-of-the-art progress in designing and fabricating microelectrodes for microbattery assembly, including the top-down etching and bottom-up printing techniques, with a particular focus on elucidating the correlations between electrode structures, battery performance, and cost-effectiveness. More importantly, advancements in post-lithium batteries based on sodium, zinc and aluminum are also surveyed to offer alternative options with potentially higher energy densities and/or lower battery manufacturing costs. The applications of advanced MBs in on-chip microsystems and wearable electronics are also highlighted. Finally, conclusions and perspectives for the future development of MBs are proposed.

Keywords

Microbatteries / lithium-ion batteries / post-lithium batteries / etching and printing techniques / microelectronics

Cite this article

Download citation ▾
Feiyang Chen, Zheng-Long Xu. Design and manufacture of high-performance microbatteries: lithium and beyond. Microstructures, 2022, 2(3): 2022012 DOI:10.20517/microstructures.2022.10

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kittner N,Kammen DM.Energy storage deployment and innovation for the clean energy transition.Nat Energy2017;2:1-6

[2]

Oudenhoven JFM,Notten PHL.All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts.Adv Energy Mater2011;1:10-33

[3]

Kyeremateng NA,Pech D.Microsupercapacitors as miniaturized energy-storage components for on-chip electronics.Nat Nanotechnol2017;12:7-15

[4]

Hong X,He L.Regulating lattice-water-adsorbed ions to optimize intercalation potential in 3D prussian blue based multi-ion microbattery.Small2021;17:e2007791

[5]

Pan X,Xu L,Yan M.On-chip micro/nano devices for energy conversion and storage.Nano Today2019;28:100764

[6]

Mckelvey K,Esmeraldo Paiva A.Continuum simulations for microscale 3D batteries.Curr Opin Electrochem2020;21:76-83

[7]

Yue C,Lin L.Fabrication of Si-based three-dimensional microbatteries: a review.Front Mech Eng2017;12:459-76

[8]

Yang Y,Zhang X.Overview on the applications of three-dimensional printing for rechargeable lithium-ion batteries.Appl Energy2020;257:114002

[9]

Xu B,Wang Z.Recent progress in cathode materials research for advanced lithium ion batteries.Mater Sci Eng R Rep2012;73:51-65

[10]

Zhang X,Ma F.Regulating Li uniform deposition by lithiophilic interlayer as Li-ion redistributor for highly stable lithium metal batteries.Chem Eng J2022;436:134945

[11]

Zhang X,Srinivas K.Lithiophilic Mo3N2/MoN as multifunctional interlayer for dendrite-free and ultra-stable lithium metal batteries.J Colloid Interface Sci2022;612:332-41

[12]

Shi Y,Hui K.Promoting the electrochemical properties of yolk-shell-structured CeO2 composites for lithium-ion batteries.Microstructures2021;1:2021005

[13]

Park S,Yun YS.Advances in the design of 3D-structured electrode materials for lithium-metal anodes.Adv Mater2020;32:e2002193

[14]

Zhu Z,Hu S.Recent advances in high-performance microbatteries: construction, application, and perspective.Small2020;16:e2003251

[15]

Zoller F,Bein T.Tin oxide based nanomaterials and their application as anodes in lithium-ion batteries and beyond.ChemSusChem2019;12:4140-59 PMCID:PMC6790706

[16]

Fang X.A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries.Small2015;11:1488-511

[17]

Pei P,Ma Z.Technologies for extending zinc-air battery’s cyclelife: A review.Appl Energy2014;128:315-24

[18]

Yang H,Li J.The rechargeable aluminum battery: opportunities and challenges.Angew Chem Int Ed Engl2019;58:11978-96

[19]

Sharifi T,Gracia-espino E,Edström K.Hierarchical self-assembled structures based on nitrogen-doped carbon nanotubes as advanced negative electrodes for Li-ion batteries and 3D microbatteries.J Power Sources2015;279:581-92

[20]

Tang H,Neu V.Stress-actuated spiral microelectrode for high-performance lithium-ion microbatteries.Small2020;16:e2002410

[21]

Zhang M,Chang P.3D printing of structured electrodes for rechargeable batteries.J Mater Chem A2020;8:10670-94

[22]

Liu N.Recent progress in micro-supercapacitors with in-plane interdigital electrode architecture.Small2017;13:1701989

[23]

Duan Y,Sun K.Advances in wearable textile-based micro energy storage devices: structuring, application and perspective.Nanoscale Adv2021;3:6271-93

[24]

Wu Z,Feng X.Photolithographic fabrication of high-performance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers.J Mater Chem A2014;2:8288

[25]

Choi CS,Hur J,Wang C.Synthesis and properties of a photopatternable lithium-ion conducting solid electrolyte.Adv Mater2018;30:1703772

[26]

Hur JI,Dunn B.High areal energy density 3D lithium-ion microbatteries.Joule2018;2:1187-201

[27]

Mamidi S,Sharma CS.Fabrication of SU-8 derived three-dimensional carbon microelectrodes as high capacity anodes for lithium-ion batteries.ECS Trans2018;85:21-7

[28]

Lai W,Lei Z.High performance, environmentally benign and integratable Zn//MnO2 microbatteries.J Mater Chem A2018;6:3933-40

[29]

Wang Y,Guo Y.Wearable Textile-Based Co-Zn alkaline microbattery with high energy density and excellent reliability.Small2020;16:e2000293

[30]

Lobo DE,Easton CD.Miniaturized supercapacitors: focused ion beam reduced graphene oxide supercapacitors with enhanced performance metrics.Adv Energy Mater2015;5:1500665

[31]

Pikul JH,Cho J,King WP.High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes.Nat Commun2013;4:1732

[32]

Lee K,Kim J,Lee S.Printed built-in power sources.Matter2020;2:345-59

[33]

Costa C,Lanceros-méndez S.Recent advances and future challenges in printed batteries.Energy Storage Mater2020;28:216-34

[34]

Zhang Y,Zheng S.Ink formulation, scalable applications and challenging perspectives of screen printing for emerging printed microelectronics.J Energy Chem2021;63:498-513

[35]

Kumar R,Yin L,Meng YS.All-printed, stretchable Zn-Ag2O rechargeable battery via hyperelastic binder for self-powering wearable electronics.Adv Energy Mater2017;7:1602096

[36]

Hong SY,Ko Y.Intrinsically stretchable and printable lithium-ion battery for free-form configuration.ACS Nano2022;16:2271-81

[37]

Nayak L,Nayak SK.A review on inkjet printing of nanoparticle inks for flexible electronics.J Mater Chem C2019;7:8771-95

[38]

Choi K,Lee S.Current status and challenges in printed batteries: toward form factor-free, monolithic integrated power sources.ACS Energy Lett2018;3:220-36

[39]

Milroy CA,Fujimori T,Manthiram A.Inkjet-printed lithium-sulfur microcathodes for all-printed, integrated nanomanufacturing.Small2017;13:1603786

[40]

Lawes S,Lushington A,Liu Y.Inkjet-printed silicon as high performance anodes for Li-ion batteries.Nano Energy2017;36:313-21

[41]

Gu Y,Sohn H,Iqbal Z.Fabrication of rechargeable lithium ion batteries using water-based inkjet printed cathodes.J Manuf Process2015;20:198-205

[42]

Ejeian M.Adsorption-based atmospheric water harvesting.Joule2021;5:1678-703

[43]

Cohen E,Lifshits M.Novel rechargeable 3D-Microbatteries on 3D-printed-polymer substrates: Feasibility study.Electrochim Acta2018;265:690-701

[44]

Kim C,Wei TS.High-power aqueous zinc-ion batteries for customized electronic devices.ACS Nano2018;12:11838-46

[45]

Yu Y,Wang S.Laser sintering of printed anodes for al-air batteries.J Electrochem Soc2018;165:A584-92

[46]

Lacey SD,Li Y.Extrusion-based 3D printing of hierarchically porous advanced battery electrodes.Adv Mater2018;30:e1705651

[47]

Hu J,Cui S.3D-Printed cathodes of LiMn1-xFexPO4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithium-ion battery.Adv Energy Mater2016;6:1600856

[48]

Ding J,Du Z,Yang S.3D-Printed hierarchical porous frameworks for sodium storage.ACS Appl Mater Interfaces2017;9:41871-7

[49]

Cai J,Jin J.Expediting the electrochemical kinetics of 3D-printed sulfur cathodes for Li-S batteries with high rate capability and areal capacity.Nano Energy2020;75:104970

[50]

Park JU,Kang SJ.High-resolution electrohydrodynamic jet printing.Nat Mater2007;6:782-9

[51]

Ning H,Zhang R.Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries.Proc Natl Acad Sci USA2015;112:6573-8 PMCID:PMC4450389

[52]

Zhuang P,Li L.FIB-patterned nano-supercapacitors: minimized size with ultrahigh performances.Adv Mater2020;32:e1908072

[53]

Kanehori K,Miyauchi K.Thin film solid electrolyte and its application to secondary lithium cell.Solid State Ionics1983;9-10:1445-8

[54]

Nakano H,Sugaya J,Matsue T.All-solid-state micro lithium-ion batteries fabricated by using dry polymer electrolyte with micro-phase separation structure.Electrochem Commun2007;9:2013-7

[55]

Koo M,Lee SH.Bendable inorganic thin-film battery for fully flexible electronic systems.Nano Lett2012;12:4810-6

[56]

Oukassi S,Secouard C.Millimeter scale thin film batteries for integrated high energy density storage. In 2019 IEEE International Electron Devices Meeting (IEDM); 2019, p.26.1.1-26.1.4. (ISBN No. 2156-017X)

[57]

Sha M,Lei Y.Updated insights into 3D architecture electrodes for micropower sources.Adv Mater2021;33:e2103304

[58]

Wang J.Modeling-guided understanding microstructure effects in energy storage dielectrics.Microstructures2021;1:2021006

[59]

Baggetto L,Roozeboom F.High energy density all-solid-state batteries: a challenging concept towards 3D integration.Adv Funct Mater2008;18:1057-66

[60]

Lyu Z,Koh JJ.Design and manufacture of 3D-printed batteries.Joule2021;5:89-114

[61]

Sun K,Ahn BY,Dillon SJ.3D printing of interdigitated Li-ion microbattery architectures.Adv Mater2013;25:4539-43

[62]

Xu Z,Luo Y,Kim J.Nanosilicon anodes for high performance rechargeable batteries.Prog Mater Sci2017;90:1-44

[63]

Yue C,Yu Y.Laser-patterned Si/TiN/Ge anode for stable Si based Li-ion microbatteries.J Power Sources2021;493:229697

[64]

Zhao X,Lehto V.Self-standing mesoporous Si films as anodes for lithium-ion microbatteries.J Power Sources2022;529:231269

[65]

Yue C,Cheng B.Fabrication of multilayer Si/TiN/Sb NR arrays as anode for 3D Si-based lithium/sodium ion microbatteries.Adv Mater Interfaces2020;7:2001043

[66]

Sternad M,Sorger M.A Lithium-silicon microbattery with anode and housing directly made from semiconductor grade monocrystalline Si.Adv Mater Technol2022;7:2100405

[67]

Lyu Z,Guo R.3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability.Energy Storage Mater2020;24:336-42

[68]

Cao D,Tantratian K.3D Printed High-performance lithium metal microbatteries enabled by nanocellulose.Adv Mater2019;31:e1807313

[69]

Shen K,Yang S.3D printing dendrite-free lithium anodes based on the nucleated MXene arrays.Energy Storage Mater2020;24:670-5

[70]

Sun P,Shao J.High-performance packaged 3D lithium-ion microbatteries fabricated using imprint lithography.Adv Mater2021;33:e2006229

[71]

Dudney N.Solid-state thin-film rechargeable batteries.Mater Sci Eng B2005;116:245-9

[72]

Cao T,Zou J.Advances in conducting polymer-based thermoelectric materials and devices.Microstructures2021;1:2021007

[73]

Werner JG,Abruña HD.Block copolymer derived 3-D interpenetrating multifunctional gyroidal nanohybrids for electrical energy storage.Energy Environ Sci2018;11:1261-70

[74]

Ergang NS,Wang Z,Stein A.Fabrication of a fully infiltrated three-dimensional solid-state interpenetrating electrochemical cell.J Electrochem Soc2007;154:A1135

[75]

Li Y,Bandari VK.On-Chip batteries for dust-sized computers.Adv Energy Mater2022;12:2270051

[76]

Cha H,Kim J,Cho J.Flexible 3D interlocking lithium-ion batteries.Adv Energy Mater2018;8:1801917

[77]

Liu W,Zhou G.3D porous sponge-inspired electrode for stretchable lithium-ion batteries.Adv Mater2016;28:3578-83

[78]

Li H,Ha H.An all-stretchable-component sodium-ion full battery.Adv Mater2017;29:1700898

[79]

Kang S,Kim N.Stretchable lithium-ion battery based on re-entrant micro-honeycomb electrodes and cross-linked gel electrolyte.ACS Nano2020;14:3660-8

[80]

Liu W,Chen Z.Stretchable lithium-ion batteries enabled by device-scaled wavy structure and elastic-sticky separator.Adv Energy Mater2017;7:1701076

[81]

Song Z,Lv C.Kirigami-based stretchable lithium-ion batteries.Sci Rep2015;5:10988 PMCID:PMC4463940

[82]

Xu S,Cho J.Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems.Nat Commun2013;4:1543

[83]

Nasreldin M,Calmes C.High performance stretchable Li-ion microbattery.Energy Storage Mater2020;33:108-15

[84]

Kubota K,Hosaka T,Komaba S.Towards K-Ion and Na-Ion batteries as “Beyond Li-Ion”.Chem Rec2018;18:459-79

[85]

Ni J,Yuan Y,Lu J.Three-Dimensional microbatteries beyond lithium ion.Matter2020;2:1366-76

[86]

Shi F,Xu Z.Recent advances on electrospun nanofiber materials for post-lithium ion batteries.Adv Fiber Mater2021;3:275-301

[87]

Yabuuchi N,Dahbi M.Research development on sodium-ion batteries.Chem Rev2014;114:11636-82

[88]

Park J,Kang K.Solvated ion intercalation in graphite: sodium and beyond.Front Chem2020;8:432 PMCID:PMC7253666

[89]

Xu Z,Yoon G,Kang K.Graphitic carbon materials for advanced sodium-ion batteries.Small Methods2019;3:1800227

[90]

Kuratani K,Senoh H,Kiyobayashi T.Conductivity, viscosity and density of MClO4 (M = Li and Na) dissolved in propylene carbonate and γ-butyrolactone at high concentrations.J Power Sources2013;223:175-82

[91]

Zheng S,Dong Y.Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability.Energy Environ Sci2020;13:821-9

[92]

Muldoon J,Gregory T.Quest for nonaqueous multivalent secondary batteries: magnesium and beyond.Chem Rev2014;114:11683-720

[93]

Chen C,Zhang S,Xu ZL.Ultrastable and high energy calcium rechargeable batteries enabled by calcium intercalation in a NASICON cathode.Small2022;18:e2107853

[94]

Chen C,Xu Z.Advanced electrode materials for nonaqueous calcium rechargeable batteries.J Mater Chem A2021;9:11908-30

[95]

Hao Z,Liu Q.On-Chip Ni-Zn microbattery based on hierarchical ordered porous Ni@Ni(OH)2 Microelectrode with ultrafast ion and electron transport kinetics.Adv Funct Mater2019;29:1808470

[96]

Bi S,Wang S,Tian J.Flexible and tailorable quasi-solid-state rechargeable Ag/Zn microbatteries with high performance.Carbon Energy2021;3:167-75

[97]

Zhao J,Li J.A Smart flexible zinc battery with cooling recovery ability.Angew Chem Int Ed Engl2017;56:7871-5

[98]

Jin X,Dai C.A flexible aqueous zinc-iodine microbattery with unprecedented energy density.Adv Mater2022;34:e2109450

[99]

Wang S,Song W.A novel dual-graphite aluminum-ion battery.Energy Storage Mater2018;12:119-27

[100]

Komaba S,Ishikawa T.Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-Ion batteries.Adv Funct Mater2011;21:3859-67

[101]

Parker JF,Pala IR.Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion.Science2017;356:415-8

[102]

Yirka B. Phinergy demonstrates aluminum-air battery capable of fueling an electric vehicle for 1000 miles. Available from: https://phys.org/news/2013-03-phinergy-aluminum-air-battery-capable-fueling.html [Last accessed on 30 May 2022]

[103]

Cheong WH,Kim S.Platform for wireless pressure sensing with built-in battery and instant visualization.Nano Energy2019;62:230-8

[104]

Park J,Kim J.Printing of wirelessly rechargeable solid-state supercapacitors for soft, smart contact lenses with continuous operations.Sci Adv2019;5:eaay0764 PMCID:PMC6957331

[105]

An HS,Kim K,Song MH.High-resolution 3D printing of freeform, transparent displays in ambient air.Adv Sci (Weinh)2019;6:1901603 PMCID:PMC6891910

[106]

Zhu M.Tiny robots and sensors need tiny batteries - here’s how to do it.Nature2021;589:195-7

[107]

Um H,Hwang I,Seo K.Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries.Energy Environ Sci2017;10:931-40

[108]

Hu B.Advances in micro lithium-ion batteries for on-chip and wearable applications.J Micromech Microeng2021;31:114002

[109]

Ren J,Chen C.Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery.Adv Mater2013;25:1155-9, 1224

[110]

Wang Y,Xie H.3D-Printed All-Fiber Li-Ion Battery toward Wearable Energy Storage.Adv Funct Mater2017;27:1703140

[111]

Hu L,La Mantia F,Cui Y.Thin, flexible secondary Li-ion paper batteries.ACS Nano2010;4:5843-8

[112]

Zheng S,Zhou F.All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance.Nano Energy2018;51:613-20

[113]

Nasreldin M,Delattre R,Djenizian T.Flexible and stretchable microbatteries for wearable technologies.Adv Mater Technol2020;5:2000412

[114]

Wang Z,Ma L.Highly Compressible cross-linked polyacrylamide hydrogel-enabled compressible Zn-MnO2 battery and a flexible battery-sensor system.ACS Appl Mater Interfaces2018;10:44527-34

[115]

Liu N,Yang A.Direct electrochemical generation of supercooled sulfur microdroplets well below their melting temperature.Proc Natl Acad Sci USA2019;116:765-70 PMCID:PMC6338843

[116]

Zhou B,Hu J.A flexible, self-healing and highly stretchable polymer electrolyte via quadruple hydrogen bonding for lithium-ion batteries.J Mater Chem A2018;6:11725-33

[117]

Yang Y,Zhang Y.Pyroelectric nanogenerators for driving wireless sensors.Nano Lett2012;12:6408-13

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/