Metal-organic framework-tailored perovskite solar cells

Peng Chen , Jingwei Hou , Lianzhou Wang

Microstructures ›› 2022, Vol. 2 ›› Issue (3) : 2022014

PDF
Microstructures ›› 2022, Vol. 2 ›› Issue (3) :2022014 DOI: 10.20517/microstructures.2022.05
Perspective

Metal-organic framework-tailored perovskite solar cells

Author information +
History +
PDF

Abstract

Metal-organic frameworks (MOFs) with tailorable structures and building blocks have demonstrated their advantages in improving the long-term stability of perovskite solar cells (PSCs). However, the inferior conductivity of MOFs and their lack of strong chemical interaction with perovskites cause undesirable interfacial charge carrier recombination and then deteriorate the photovoltaic (PV) performance of PSCs. This perspective offers an insightful overview of the versatile functionalities and key merits of MOFs for stabilizing PSCs under various external stimuli in terms of MOF interlayers and MOF-perovskite heterostructures. To tackle the charge transport problem of MOFs, promising strategies are outlined to improve the intrinsic conductivity and chemical coordination of MOFs, with the aim of achieving long-term stable PSCs without compromising their PV performance. The current challenging issues and potential solutions are also discussed to provide a roadmap for MOF-tailored PSCs towards practical applications.

Keywords

Perovskite solar cells / metal-organic frameworks / charge carrier mobility / interfacial bonds / intrinsic conductivity

Cite this article

Download citation ▾
Peng Chen, Jingwei Hou, Lianzhou Wang. Metal-organic framework-tailored perovskite solar cells. Microstructures, 2022, 2(3): 2022014 DOI:10.20517/microstructures.2022.05

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Correa-Baena JP,Buonassisi T.Promises and challenges of perovskite solar cells.Science2017;358:739-44

[2]

Kojima A,Shirai Y.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.J Am Chem Soc2009;131:6050-1

[3]

Green MA,Hohl-ebinger J,Kopidakis N.Solar cell efficiency tables (version 59).Prog Photovolt Res Appl2022;30:3-12

[4]

NREL best research efficiency cell chart. Available from: https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220126.pdf. [Last accessed on 6 Jun 2022]

[5]

Azmi R,Seitkhan A.Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions.Science2022;376:73-7

[6]

Dou J,Wang H.Synergistic effects of Eu-MOF on perovskite solar cells with improved stability.Adv Mater2021;33:e2102947

[7]

Wu S,Li MQ.2D metal-organic framework for stable perovskite solar cells with minimized lead leakage.Nat Nanotechnol2020;15:934-40

[8]

Hou J,Shukla A.Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses.Science2021;374:621-5

[9]

Yadav SK,Dubal DP.Metal halide perovskite@metal-organic framework hybrids: synthesis, design, properties, and applications.Small2020;16:e2004891

[10]

Boström HLB.Hybrid perovskites, metal-organic frameworks, and beyond: unconventional degrees of freedom in molecular frameworks.Acc Chem Res2021;54:1288-97 PMCID:PMC7931445

[11]

Zhang C,Li L.Metal halide perovskite nanocrystals in metal-organic framework host: not merely enhanced stability.Angew Chem Int Ed Engl2021;60:7488-501

[12]

Pourshaban E,Metal-organic framework-based nanomaterials for energy conversion and storage,Nguyen T.Chapter 23-recent development in MOFs for perovskite-based solar cells. Elsevier; 2022. pp. 507-34.

[13]

Liang X,Ge C.Advance and prospect of metal-organic frameworks for perovskite photovoltaic devices.Org Electron2022;106:106546

[14]

Shen M,Xu H.MOFs based on the application and challenges of perovskite solar cells.iScience2021;24:103069 PMCID:PMC8449091

[15]

Chueh C,Su Y.Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives.J Mater Chem A2019;7:17079-95

[16]

Hou J,Chen P,Cheetham AK.Intermarriage of halide perovskites and metal-organic framework crystals.Angew Chem Int Ed Engl2020;59:19434-49

[17]

Hoskins BF.Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4',4'',4'''-tetracyanotetraphenylmethane]BF4.xC6H5NO2.J Am Chem Soc1990;112:1546-54

[18]

Hoskins BF.Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments.J Am Chem Soc1989;111:5962-5964

[19]

Stock N.Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites.Chem Rev2012;112:933-69

[20]

Yaghi OM.Hydrothermal synthesis of a metal-organic framework containing large rectangular channels.J Am Chem Soc1995;117:10401-10402

[21]

Hendon CH,Korzyński MD.Grand Challenges and Future Opportunities for Metal-Organic Frameworks.ACS Cent Sci2017;3:554-63 PMCID:PMC5492414

[22]

Li H,O’keeffe M.Design and synthesis of an exceptionally stable and highly porous metal-organic framework.Nature1999;402:276-9

[23]

Chui SS,Charmant JP,Williams ID.A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n.Science1999;283:1148-50

[24]

Banerjee R,Wang B.High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture.Science2008;319:939-43

[25]

Park KS,Côté AP.Exceptional chemical and thermal stability of zeolitic imidazolate frameworks.Proc Natl Acad Sci USA2006;103:10186-91 PMCID:PMC1502432

[26]

Dybtsev DN,Kim K.Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior.Angew Chem Int Ed Engl2004;43:5033-6

[27]

Zhou C,Krajnc A.Metal-organic framework glasses with permanent accessible porosity.Nat Commun2018;9:5042 PMCID:PMC6262007

[28]

Longley L,Limbach R.Metal-organic framework and inorganic glass composites.Nat Commun2020;11:5800 PMCID:PMC7669864

[29]

Gaillac R,Beyer KA.Liquid metal-organic frameworks.Nat Mater2017;16:1149-54

[30]

Hou J,Collins SM,Zhou C.Metal-organic framework crystal-glass composites.Nat Commun2019;10:2580 PMCID:PMC6561910

[31]

Hou J,Krajnc A.Halogenated metal-organic framework glasses and liquids.J Am Chem Soc2020;142:3880-90

[32]

Deng H,Furukawa H.Multiple functional groups of varying ratios in metal-organic frameworks.Science2010;327:846-50

[33]

Chen P,Lyu M,Hao M.Progress and perspective in low-dimensional metal halide perovskites for optoelectronic applications.Sol RRL2018;2:1700186

[34]

Jena AK,Miyasaka T.Halide perovskite photovoltaics: background, status, and future prospects.Chem Rev2019;119:3036-103

[35]

Chen P,Wang L.Minimizing voltage losses in perovskite solar cells.Small Struct2021;2:2000050

[36]

Shen D,Li Y,Wei M.Metal-organic frameworks at interfaces of hybrid perovskite solar cells for enhanced photovoltaic properties.Chem Commun (Camb)2018;54:1253-6

[37]

Ahmadian-yazdi M,Eslamian M.Interface engineering by employing zeolitic imidazolate framework-8 (ZIF-8) as the only scaffold in the architecture of perovskite solar cells.ACS Appl Energy Mater2020;3:3134-43

[38]

Zhang Y,Fu L,Yin L.MOF-derived ZnO as electron transport layer for improving light harvesting and electron extraction efficiency in perovskite solar cells.Electrochim Acta2020;330:135280

[39]

Ryu U,Park JS.Nanocrystalline titanium metal-organic frameworks for highly efficient and flexible perovskite solar cells.ACS Nano2018;12:4968-75

[40]

Huang L,Wu R.Oriented haloing metal-organic framework providing high efficiency and high moisture-resistance for perovskite solar cells.J Power Sources2019;433:226699

[41]

Li M,Yang Y.Doping of [In2(phen)3Cl6]•CH3CN2H2O Indium-based metal-organic framework into hole transport layer for enhancing perovskite solar cell efficiencies.Adv Energy Mater2018;8:1702052

[42]

Zhang J,Zhu M.Simultaneous defect passivation and hole mobility enhancement of perovskite solar cells by incorporating anionic metal-organic framework into hole transport materials.Chem Eng J2021;408:127328

[43]

Dong Y,Yang Y.Self-assembly of hybrid oxidant POM@Cu-BTC for enhanced efficiency and long-term stability of perovskite solar cells.Angew Chem Int Ed Engl2019;58:17610-5

[44]

Chang TH,Chen HW.Planar heterojunction perovskite solar cells incorporating metal-organic framework nanocrystals.Adv Mater2015;27:7229-35

[45]

Lee CC,Liao YT,Chueh CC.Enhancing efficiency and stability of photovoltaic cells by using perovskite/zr-mof heterojunction including bilayer and hybrid structures.Adv Sci (Weinh)2019;6:1801715 PMCID:PMC6402453

[46]

Zhou X,Fan R,Hao S.Heterojunction incorporating perovskite and microporous metal-organic framework nanocrystals for efficient and stable solar cells.Nanomicro Lett2020;12:80 PMCID:PMC7770709

[47]

Li M,Jiang A.Enhanced crystallization and optimized morphology of perovskites through doping an indium-based metal-organic assembly: achieving significant solar cell efficiency enhancements.Energy Technol2019;7:1900027

[48]

Lee MM,Miyasaka T,Snaith HJ.Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites.Science2012;338:643-7

[49]

Crossland EJ,Sivaram V,Alexander-Webber JA.Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance.Nature2013;495:215-9

[50]

Leijtens T,Pathak S,Lee MM.Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells.Nat Commun2013;4:2885

[51]

Chen P,Wang S.Luminescent europium-doped titania for efficiency and UV-stability enhancement of planar perovskite solar cells.Nano Energy2020;69:104392

[52]

Xie LS,Dincă M.Electrically conductive metal-organic frameworks.Chem Rev2020;120:8536-80 PMCID:PMC7453401

[53]

Yang WS,Jeon NJ.SOLAR CELLS. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange.Science2015;348:1234-7

[54]

Ahn N,Jang IH,Choi M.Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide.J Am Chem Soc2015;137:8696-9

[55]

Zhao J,Wei H.Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells.Sci Adv2017;3:eaao5616 PMCID:PMC5694650

[56]

Steele JA,Dovgaliuk I.Thermal unequilibrium of strained black CsPbI3 thin films.Science2019;365:679-84

[57]

Kim G,Lee KS,Yoon SM.Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells.Science2020;370:108-12

[58]

Yuan Y.Ion Migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability.Acc Chem Res2016;49:286-93

[59]

Yun JS,Kim J.Critical role of grain boundaries for ion migration in formamidinium and methylammonium lead halide perovskite solar cells.Adv Energy Mater2016;6:1600330

[60]

Zhang C,Li W.Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption.Nat Commun2017;8:1138 PMCID:PMC5663915

[61]

Sun L,Minier MA,Dincă M.Million-fold electrical conductivity enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O).J Am Chem Soc2015;137:6164-7 PMCID:PMC4442594

[62]

Xie LS,Wan R.Tunable mixed-valence doping toward record electrical conductivity in a three-dimensional metal-organic framework.J Am Chem Soc2018;140:7411-4

[63]

Dong R,Arora H.High-mobility band-like charge transport in a semiconducting two-dimensional metal-organic framework.Nat Mater2018;17:1027-32

[64]

Huang X,Tu Z.A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour.Nat Commun2015;6:7408 PMCID:PMC4490364

[65]

Nguyen Tle A,Devic T.3-D coordination polymers based on the tetrathiafulvalenetetracarboxylate (TTF-TC) derivative: synthesis, characterization, and oxidation issues.Inorg Chem2010;49:7135-43

[66]

Park SS,Sun L.Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks.J Am Chem Soc2015;137:1774-7

[67]

Bi C,Rogach AL.Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol.Adv Funct Mater2019;29:1902446

[68]

Shi J,Jin Y.In Situ ligand bonding management of CsPbI3 perovskite quantum dots enables high-performance photovoltaics and red light-emitting diodes.Angew Chem Int Ed Engl2020;59:22230-7

[69]

Bai Y,Ding S,Wang L.Surface chemistry engineering of perovskite quantum dots: strategies, applications, and perspectives.Adv Mater2022;34:e2105958

[70]

Mancuso JL,Le KN.Electronic structure modeling of metal-organic frameworks.Chem Rev2020;120:8641-715

AI Summary AI Mindmap
PDF

34

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/