An intriguing canting dipole configuration and its evolution under an electric field in La-doped Pb(Zr,Sn,Ti)O3 perovskites

Botao Gao , Hui Liu , Zhengyang Zhou , Ke Xu , He Qi , Shiqing Deng , Yang Ren , Junliang Sun , Houbing Huang , Jun Chen

Microstructures ›› 2022, Vol. 2 ›› Issue (2) : 2022010

PDF
Microstructures ›› 2022, Vol. 2 ›› Issue (2) :2022010 DOI: 10.20517/microstructures.2022.03
Research Article

An intriguing canting dipole configuration and its evolution under an electric field in La-doped Pb(Zr,Sn,Ti)O3 perovskites

Author information +
History +
PDF

Abstract

Despite the fact that electric dipole ordering plays a key role in the unique physical properties of dielectric materials, electric dipole configurations mostly appear simply as either parallel or antiparallel. Here, we report a canting electric dipole configuration in La-doped Pb(Zr,Sn,Ti)O3 perovskites based on advanced neutron, synchrotron X-ray and three-dimensional electron diffraction techniques. It is revealed that, arising from the coupling between the atomic displacement and oxygen octahedral tilting, this unique electric dipole configuration displays a canting arrangement aligned in the (110)p plane that possesses an antiparallel component along the [110]P direction and a parallel component along the [001]P direction. Remarkably, under an in-situ electric field, the electric dipoles continuously rotate with a gradually reduced canting angle, as confirmed by phase-field simulations, and ultimately evolve into a ferroelectric ordering. Such an evolution gives rises to a small hysteresis and an equivalent lattice strain to the macroscopic strain. These findings enrich the current understanding of the types of electric dipole configurations in dielectric materials and are expected to aid the design of new dielectric materials with emergent properties.

Keywords

Antiferroelectric / electric dipole configurations / canting / perovskite

Cite this article

Download citation ▾
Botao Gao, Hui Liu, Zhengyang Zhou, Ke Xu, He Qi, Shiqing Deng, Yang Ren, Junliang Sun, Houbing Huang, Jun Chen. An intriguing canting dipole configuration and its evolution under an electric field in La-doped Pb(Zr,Sn,Ti)O3 perovskites. Microstructures, 2022, 2(2): 2022010 DOI:10.20517/microstructures.2022.03

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lawes G,Kimura T.Magnetically driven ferroelectric order in Ni3V2O8.Phys Rev Lett2005;95:087205

[2]

Gareeva Z,Pyatakov A.Novel type of spin cycloid in epitaxial bismuth ferrite films.Journal of Magnetism and Magnetic Materials2019;469:593-7

[3]

Nanda KK,Sinn E.Helical antiferromagnetic copper(II) chains with a collagen structural motif.Inorg Chem1996;35:7462

[4]

Cohen RJ.Canted ground states and the paramagnetic-antiferromagnetic transition in semiconductor zinc-blende antiferromagnets.Phys Rev B Condens Matter1993;48:12813-6

[5]

Semitelou J.The conical magnetic structure of Dy5Si3.Journal of Magnetism and Magnetic Materials2003;265:152-5

[6]

Tokura Y.Multiferroics with spiral spin orders.Adv Mater2010;22:1554-65

[7]

Chung O,Kim DL.Two rapid oscillations in the magnetoresistance in the field-induced spin-density-wave state of (TMTSF)2ClO4.Phys Rev B2000;61:11649-55

[8]

Barker J.Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature.Phys Rev Lett2016;116:147203

[9]

Legrand W,Ajejas F.Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets.Nat Mater2020;19:34-42

[10]

Tegus O,Buschow KH.Transition-metal-based magnetic refrigerants for room-temperature applications.Nature2002;415:150-2

[11]

Chang CZ,Feng X.Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator.Science2013;340:167-70

[12]

Kainuma R,Ito W.Magnetic-field-induced shape recovery by reverse phase transformation.Nature2006;439:957-60

[13]

Song Y,Liu Y.Magnetic-field-induced strong negative thermal expansion in La(Fe,Al)13.Chem Mater2020;32:7535-41

[14]

Song Y,Xu M.Negative thermal expansion in (Sc,Ti)Fe2 induced by an unconventional magnetovolume effect.Mater Horiz2020;7:275-81

[15]

Liu H,Qiu Y.An intriguing intermediate state as a bridge between antiferroelectric and ferroelectric perovskites.Mater Horiz2020;7:1912-8

[16]

Ma T,Xu B.Uncompensated polarization in incommensurate modulations of perovskite antiferroelectrics.Phys Rev Lett2019;123:217602

[17]

Wei XK,Kvasov A,Jia CL.Ferroelectric translational antiphase boundaries in nonpolar materials.Nat Commun2014;5:3031 PMCID:PMC3941019

[18]

Fu Z,Li Z.Unveiling the ferrielectric nature of PbZrO3-based antiferroelectric materials.Nat Commun2020;11:3809 PMCID:PMC7392892

[19]

Chaboussant G,Lévy LP,Madouri A.Experimental phase diagram of Cu2(C5H12N2)2Cl4: a quasi-one-dimensional antiferromagnetic spin- Heisenberg ladder.Phys Rev B1997;55:3046-9

[20]

Khalyavin DD,Orlandi F,Manuel P.Emergent helical texture of electric dipoles.Science2020;369:680-4

[21]

Wei XK,Du HC,Mayer J.An unconventional transient phase with cycloidal order of polarization in energy-storage antiferroelectric PbZrO3.Adv Mater2020;32:e1907208

[22]

Viehland D,Li J.Compositional heterogeneity and the origins of the multicell cubic state in Sn-doped lead zirconate titanate ceramics.Journal of Applied Physics1994;75:4137-43

[23]

Cai Y,Zimmermann A,Aldinger F.TEM study of superstructure in a perovskite lead lanthanum zirconate stannate titanate ceramic.Acta Materialia2003;51:6429-36

[24]

Knudsen J,Reaney IM.Domain variance and superstructure across the antiferroelectric/ferroelectric phase boundary in Pb1-1.5xLax(Zr0.9TiM0.1)O3..J Mater Res18:262-71

[25]

He H.Electric-field-induced transformation of incommensurate modulations in antiferroelectric Pb0.99Nb0.02[(Zr1-xSnx)1-yTiy]0.98O3 .Phys Rev B2005;

[26]

Maclaren I,Peláiz-barranco A.Domain structures and nanostructures in incommensurate antiferroelectric PbxLa1-x(Zr0.9Ti0.1)O3 .Journal of Applied Physics108:034109

[27]

Hu T,Chen X.Hierarchical domain structures in (Pb,La)(Zr, Sn, Ti)O3 antiferroelectric ceramics.Ceramics International2020;46:22575-80

[28]

Bikyashev EA,Tostunov MI.La3+ effect on dipole ordering in Pb1-xLax[Zr0.7Sn0.2Ti0.1][1-x/4]O3 (0 < x ≤ 0.03) solid solutions .Inorg Mater2009;45:919-24

[29]

Xu Z,Zheng S,Wang F.Phase transition and dielectric properties of La-doped Pb(Zr,Sn,Ti)O3 antiferroelectric ceramics under hydrostatic pressure.Materials Science and Engineering: B2003;99:441-4

[30]

Chen X,Wang G,Hu F.Dielectric and ferroelectric properties of lanthanum-modified lead zirconate stannate titanate (42/40/18) ceramics.J Am Ceram Soc2018;101:3979-88

[31]

Corker DL,Dec J,Whatmore RW.A re-investigation of the crystal structure of the perovskite PbZrO3 by X-ray and neutron diffraction.Acta Crystallogr B Struct Sci1997;53:135-42

[32]

Yashima M,Sano R,Tsuda K.Structure of ferroelectric silver niobate AgNbO3.Chem Mater2011;23:1643-5

[33]

Darlington CNW.An X-ray diffraction study of AgNbO3 and comparison with NaNbO3.Powder Diffr1999;14:253-7

[34]

Mohapatra P,Cui J.Relaxor antiferroelectric ceramics with ultrahigh efficiency for energy storage applications.Journal of the European Ceramic Society2019;39:4735-42

[35]

Qi H,Xie A.Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains.Adv Funct Mater2019;29:1903877

[36]

Liu H,Fan L.Critical role of monoclinic polarization rotation in high-performance perovskite piezoelectric materials.Phys Rev Lett2017;119:017601

[37]

Song Y,Zhang J.The critical role of spin rotation in the giant magnetostriction of La(Fe,Al)13.Sci China Mater2021;64:1238-45

[38]

Vousden P.The structure of ferroelectric sodium niobate at room temperature.Acta Cryst1951;4:545-51

[39]

Shannon RD.Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides.Phys Rev B2006;73

AI Summary AI Mindmap
PDF

32

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/