Polarization boosted catalysis: progress and outlook

Lin Ju , Xiao Tang , Liangzhi Kou

Microstructures ›› 2022, Vol. 2 ›› Issue (2) : 2022008

PDF
Microstructures ›› 2022, Vol. 2 ›› Issue (2) :2022008 DOI: 10.20517/microstructures.2021.14
Review

Polarization boosted catalysis: progress and outlook

Author information +
History +
PDF

Abstract

Polarization has a significant impact on chemical reactions, as demonstrated by recent research of photo-/electrocatalytic water splitting, electrocatalytic CO2 reduction, water treatment, dye degradation and so on. This review summarizes the fundamental influence of polarization on the physical/chemical properties of catalysts and discusses polarization-dependent catalytic processes. Based on the research progress of polarization-modulated chemical reactions, we draw the conclusion that the control of polarization can be used to adjust the reactivity and selectivity of various catalytic reactions by tuning the miscellaneous fundamental properties of polarized catalysts. At the end of the review, the future research challenges are also discussed, including the ultrafast reversal of polarization, the magnetic-field control of chemical reactions through the magnetoelectric effect and in-plane polarization.

Keywords

Polarization reversal / electrocatalysis / water splitting / photocatalysis

Cite this article

Download citation ▾
Lin Ju, Xiao Tang, Liangzhi Kou. Polarization boosted catalysis: progress and outlook. Microstructures, 2022, 2(2): 2022008 DOI:10.20517/microstructures.2021.14

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang Y,Xiong X,Dong M.Scanning probe microscopy for electrocatalysis.Matter2021;4:3483-514

[2]

Yue Q,Chang S.Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field.Nanoscale Res Lett2013;8:425 PMCID:PMC4015638

[3]

Tang S.Adsorption of nitrogen oxides on graphene and graphene oxides: insights from density functional calculations.J Chem Phys2011;134:044710

[4]

Ao Z,Jiang Q.Correlation of the applied electrical field and CO adsorption/desorption behavior on Al-doped graphene.Solid State Commun2010;150:680-3

[5]

Park S,Kang MG.A ferroelectric photocatalyst for enhancing hydrogen evolution: polarized particulate suspension.Phys Chem Chem Phys2014;16:10408-13

[6]

Garra J,Bonnell D.The effect of ferroelectric polarization on the interaction of water and methanol with the surface of LiNbO3(0001).Surf Sci2009;603:1106-14

[7]

Kakekhani A,Altman EI.Ferroelectrics: a pathway to switchable surface chemistry and catalysis.Surf Sci2016;650:302-16

[8]

Watanabe Y,Masuda A.Surface conduction on insulating BaTiO3 crystal suggesting an intrinsic surface electron layer.Phys Rev Lett2001;86:332-5

[9]

Yang W,Gruverman A.Polarization-dependent electron affinity of LiNbO3 surfaces.Appl Phys Lett2004;85:2316-8

[10]

Sones CL,Brocklesby WS,Owen JR.Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations.J Mater Chem2002;12:295-8

[11]

Kakekhani A.Polarization-driven catalysis via ferroelectric oxide surfaces.Phys Chem Chem Phys2016;18:19676-95

[12]

Cui Y,Dunn S.Effect of Ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3 - influence on the carrier separation and stern layer formation.Chem Mater2013;25:4215-23

[13]

Li S,Ji N.Ferroelectric polarization and thin-layered structure synergistically promoting CO2 photoreduction of Bi2MoO6.J Mater Chem A2020;8:9268-77

[14]

Ju L,Li J,Yuan D.Breaking the out-of-plane symmetry of Janus WSSe bilayer with chalcogen substitution for enhanced photocatalytic overall water-splitting.Appl Surf Sci2022;574:151692

[15]

Yuan Y,Sharma P.Efficiency enhancement in organic solar cells with ferroelectric polymers.Nat Mater2011;10:296-302

[16]

Garcia V,Bocher L.Ferroelectric control of spin polarization.Science2010;327:1106-10

[17]

Morris MR,Hong J,Durrant JR.Effect of internal electric fields on charge carrier dynamics in a ferroelectric material for solar energy conversion.Adv Mater2016;28:7123-8

[18]

Wu Q,Wang H,Huang B.Trifunctional electrocatalysts with high efficiency for the oxygen reduction reaction, oxygen evolution reaction, and Na-O2 battery in heteroatom-doped Janus monolayer MoSSe.ACS Appl Mater Interfaces2020;12:24066-73

[19]

Kushwaha HS,Vaish R.Ferroelectric electrocatalysts: a new class of materials for oxygen evolution reaction with synergistic effect of ferroelectric polarization.J Mater Sci2018;53:1414-23

[20]

Ju L,Tang X,Kou L.Janus WSSe monolayer: an excellent photocatalyst for overall water splitting.ACS Appl Mater Interfaces2020;12:29335-43

[21]

Shang J,Kou L.Two dimensional ferroelectrics: candidate for controllable physical and chemical applications.WIREs Comput Mol Sci2021;11

[22]

Wan TL,Pan Y.Catalysis based on ferroelectrics: controllable chemical reaction with boosted efficiency.Nanoscale2021;13:7096-107

[23]

Abrahams SC.Ferroelectric materials. Concise encyclopedia of advanced ceramic materials. Elsevier; 1991. p. 152-5.

[24]

Su Y,Amagat J.3D spring-based piezoelectric energy generator.Nano Energy2021;90:106578

[25]

Joshi JC.Pyroelectric materials, their properties and applications.phys stat sol (a)1982;70:353-69

[26]

Xiao J,Wang Y.Intrinsic two-dimensional ferroelectricity with dipole locking.Phys Rev Lett2018;120:227601

[27]

Cao Y,Huijben M,Kalinin SV.Electronic switching by metastable polarization states in BiFeO3 thin films.Phys Rev Materials2018;2:094401

[28]

Yang X,Shen M.Enhancement of photocurrent in ferroelectric films via the incorporation of narrow bandgap nanoparticles.Adv Mater2012;24:1202-8

[29]

Zubko P,Scott JF.Electrical characterization of PbZr0.4Ti0.6O3 capacitors.J Appl Phys2006;100:114113

[30]

Xue F,Gu Y,Kalinin SV.Composition- and pressure-induced ferroelectric to antiferroelectric phase transitions in Sm-doped BiFeO3 system.Appl Phys Lett2015;106:012903

[31]

Park SM,Das S.Selective control of multiple ferroelectric switching pathways using a trailing flexoelectric field.Nat Nanotechnol2018;13:366-70

[32]

Zhang JX,Chen LQ.Tuning the remanent polarization of epitaxial ferroelectric thin films with strain.Appl Phys Lett2009;95:122904

[33]

Li H,Chang S.Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect.Nano Lett2015;15:2372-9

[34]

Akamatsu H,Stoica VA.Light-activated gigahertz ferroelectric domain dynamics.Phys Rev Lett2018;120:096101

[35]

Li T,Lu H.Optical control of polarization in ferroelectric heterostructures.Nat Commun2018;9:3344 PMCID:PMC6104049

[36]

Sezen H.XPS for chemical- and charge-sensitive analyses.Thin Solid Films2013;534:1-11

[37]

Tănase LC,Abramiuc LE.Ferroelectric triggering of carbon monoxide adsorption on lead zirco-titanate (001) surfaces.Sci Rep2016;6:35301 PMCID:PMC5064406

[38]

Pintilie L,Teodorescu CM.Polarization induced self-doping in epitaxial Pb(Zr0.20Ti0.80)O3 thin films.Sci Rep2015;5:14974 PMCID:PMC4597211

[39]

Apostol NG,Lungu GA.Band bending at free Pb(Zr,Ti)O3 surfaces analyzed by X-ray photoelectron spectroscopy.Mater Sci Eng B2013;178:1317-22

[40]

Popescu DG,Trupina Combining Caron L.Spectro-microscopic photoemission evidence of charge uncompensated areas in Pb(Zr,Ti)O3(001) layers.Phys Chem Chem Phys2015;17:509-20

[41]

Abramiuc LE,Barinov A.Polarization landscape effects in soft X-ray-induced surface chemical decomposition of lead zirco-titanate, evidenced by photoelectron spectromicroscopy.Nanoscale2017;9:11055-67

[42]

Huşanu MA,Tache CA.Photoelectron spectroscopy and spectro-microscopy of Pb(Zr,Ti)O3 (111) thin layers: Imaging ferroelectric domains with binding energy contrast.Appl Surf Sci2015;352:73-81

[43]

Tian Y,Zhang Q.Water printing of ferroelectric polarization.Nat Commun2018;9:3809 PMCID:PMC6143547

[44]

Wang RV,Jiang F.Reversible chemical switching of a ferroelectric film.Phys Rev Lett2009;102:047601

[45]

Highland MJ,Fong DD.Equilibrium polarization of ultrathin PbTiO3 with surface compensation controlled by oxygen partial pressure.Phys Rev Lett2011;107:187602

[46]

Highland MJ,Richard MI.Polarization switching without domain formation at the intrinsic coercive field in ultrathin ferroelectric PbTiO3.Phys Rev Lett2010;105:167601

[47]

Liu D,Jafri HM,Huang H.Phase-field simulations of surface charge-induced polarization switching.Appl Phys Lett2019;114:112903

[48]

Deleuze P,Dupont C.Ferroelectric polarization switching induced from water adsorption in BaTiO3 ultrathin films.Phys Rev B2020;101:075410

[49]

Deleuze PM,Domenichini B.Theoretical investigation of the platinum substrate influence on BaTiO3 thin film polarisation.Phys Chem Chem Phys2019;21:4367-74

[50]

Rodriguez BJ,Baddorf AP,Kalinin SV.Controlling polarization dynamics in a liquid environment: from localized to macroscopic switching in ferroelectrics.Phys Rev Lett2007;98:247603

[51]

Sobhan M,Yang Q,Wu P.Tunable atomic termination in nano-necklace BiFeO3.Appl Phys Lett2014;104:051606

[52]

Tănase LC,Popescu DG.Polarization orientation in lead zirconate titanate (001) thin films driven by the interface with the substrate.Phys Rev Applied2018;10:034020

[53]

Pintilie I,Trupina L,Pintilie L.Relation between domain structure and pyroelectric response in as-grown epitaxial Pb(Zr0.2Ti0.8)O3 thin films on substrates with different resistivity.Mater Res Bull2017;93:201-7

[54]

Ju L,Shang J,Kou L.Janus transition metal dichalcogenides: a superior platform for photocatalytic water splitting.J Phys Mater2020;3:022004

[55]

Ju L,Yang Y,Yang G.Tuning the photocatalytic water-splitting performance with the adjustment of diameter in an armchair WSSe nanotube.J Energ Chem2021;61:228-35

[56]

Kakekhani A.Ferroelectric-based catalysis: switchable surface chemistry.ACS Catal2015;5:4537-45

[57]

Kakekhani A.Ferroelectric oxide surface chemistry: water splitting via pyroelectricity.J Mater Chem A2016;4:5235-46

[58]

Zhang Y,Marken F.Pyro-electrolytic water splitting for hydrogen generation.Nano Energy2019;58:183-91

[59]

Xie M,Boulbar EL.Pyroelectric energy harvesting for water splitting.Int J Hydrogen Energy2017;42:23437-45

[60]

You H,Wu Z,Huang H.Room-temperature pyro-catalytic hydrogen generation of 2D few-layer black phosphorene under cold-hot alternation.Nat Commun2018;9:2889 PMCID:PMC6056473

[61]

Xu X,Jia Y.Pyro-catalytic hydrogen evolution by Ba0.7Sr0.3TiO3 nanoparticles: harvesting cold-hot alternation energy near room-temperature.Energy Environ Sci2018;11:2198-207

[62]

Thuy Phuong PT,Gathercole N.Demonstration of enhanced piezo-catalysis for hydrogen generation and water treatment at the ferroelectric curie temperature.iScience2020;23:101095 PMCID:PMC7215196

[63]

Kim HS.Computational design of a switchable heterostructure electrocatalyst based on a two-dimensional ferroelectric In2Se3 material for the hydrogen evolution reaction.J Mater Chem A2021;9:11553-62

[64]

Zhang L,Gong T.Recent advances in emerging Janus two-dimensional materials: from fundamental physics to device applications.J Mater Chem A2020;8:8813-30

[65]

Sante D, Stroppa A, Jain P, Picozzi S. Tuning the ferroelectric polarization in a multiferroic metal-organic framework.J Am Chem Soc2013;135:18126-30

[66]

Rinaldi C,Asa M.Ferroelectric control of the spin texture in GeTe.Nano Lett2018;18:2751-8 PMCID:PMC6994063

[67]

Stroppa A,Barone P.Tunable ferroelectric polarization and its interplay with spin-orbit coupling in tin iodide perovskites.Nat Commun2014;5:5900

[68]

Jain P,Nabok D.Switchable electric polarization and ferroelectric domains in a metal-organic-framework.npj Quant Mater2016;1:16012

[69]

Zhao P,Lv X,Huang B.Two-dimensional III2-VI3 materials: promising photocatalysts for overall water splitting under infrared light spectrum.Nano Energy2018;51:533-8

[70]

Li X,Yang J.Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light.Phys Rev Lett2014;112:018301

[71]

Ju L,Tang X.Tunable photocatalytic water splitting by the ferroelectric switch in a 2D AgBiP2Se6 monolayer.J Am Chem Soc2020;142:1492-500

[72]

Ortiz N,Kumar V.Composite ferroelectric and plasmonic particles for hot charge separation and photocatalytic hydrogen gas production.ACS Appl Energy Mater2018;1:4606-16

[73]

Gao Y,Mariñas BJ.Nanofiltration membranes with modified active layer using aromatic polyamide dendrimers.Adv Funct Mater2013;23:598-607

[74]

Wu C,Yang D.Preparation, characterization and application of a novel thermal stable composite nanofiltration membrane.J Membrane Sci2009;326:429-34

[75]

Pu L,Xia Q.Ferroelectric membrane for water purification with arsenic as model pollutant.Chem Eng J2021;403:126426

[76]

Pan M,Chew JW.Unlocking the high redox activity of MoS2 on dual-doped graphene as a superior piezocatalyst.Nano Energy2020;68:104366

[77]

Chang J.Exploitation of piezoelectricity for enhancing photocatalytic activity of ZnO nanowires.Mater Lett2014;132:134-7

[78]

Feng Y,Wang Y.Engineering spherical lead zirconate titanate to explore the essence of piezo-catalysis.Nano Energy2017;40:481-6

[79]

Lin J,Wu M,Lin Z.Single- and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor.Nano Energy2017;31:575-81

[80]

Wu J,Bao D.Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration.Nano Energy2018;45:44-51

[81]

Singh S.Coupling of piezoelectric, semiconducting and photoexcitation properties in NaNbO3 nanostructures for controlling electrical transport: realizing an efficient piezo-photoanode and piezo-photocatalyst.Nano Energy2017;38:335-41

[82]

Liu X,Zhang Y.Significantly enhanced piezo-photocatalytic capability in BaTiO3 nanowires for degrading organic dye.J Materiomics2020;6:256-62

[83]

Zhang Z,Yang S,Yang Y.Ferroelectric polarization effect promoting the bulk charge separation for enhance the efficiency of photocatalytic degradation.Chem Eng J2021;410:128430

[84]

Fu Q,Li C.Enhanced photocatalytic activity on polarized ferroelectric KNbO3.RSC Adv2016;6:108883-7

[85]

Chen Y,Kanan MW.Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles.J Am Chem Soc2012;134:19969-72

[86]

Kuhl KP,Cave ER,Kibsgaard J.Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces.J Am Chem Soc2014;136:14107-13

[87]

Savéant JM.Molecular catalysis of electrochemical reactions. Mechanistic aspects.Chem Rev2008;108:2348-78

[88]

Kondratenko EV,Baltrusaitis J,Pérez-ramírez J.Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes.Energy Environ Sci2013;6:3112

[89]

Qiao J,Hong F.A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels.Chem Soc Rev2014;43:631-75

[90]

Olah GA,Goeppert A.Anthropogenic chemical carbon cycle for a sustainable future.J Am Chem Soc2011;133:12881-98

[91]

Han N,Yang H.Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate.Nat Commun2018;9:1320 PMCID:PMC5882965

[92]

Zhang Y,Ling Y,Bond AM.Controllable synthesis of few-layer bismuth subcarbonate by electrochemical exfoliation for enhanced CO2 reduction performance.Angew Chem Int Ed Engl2018;57:13283-7

[93]

Li F,Knowles GP,Zhang J.Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity.Angew Chem Int Ed Engl2017;56:505-9

[94]

Guo SX,Chen L,Zhang J.Polyoxometalate-promoted electrocatalytic CO2 reduction at nanostructured silver in dimethylformamide.ACS Appl Mater Interfaces2018;10:12690-7

[95]

Wang H,Song P.Efficient electrocatalytic reduction of CO2 by nitrogen-doped nanoporous carbon/carbon nanotube membranes: a step towards the electrochemical CO2 refinery.Angew Chem Int Ed Engl2017;56:7847-52

[96]

Lin S,Zhang YB.Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water.Science2015;349:1208-13

[97]

Zhang X,Guo S,Zhang J.Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential.Energy Environ Sci2019;12:1334-40

[98]

Lee SY,Kim NK,Min BK.Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction.J Am Chem Soc2018;140:8681-9

[99]

Ju L,Mao X.Controllable CO2 electrocatalytic reduction via ferroelectric switching on single atom anchored In2Se3 monolayer.Nat Commun2021;12:5128 PMCID:PMC8390745

[100]

Song W,Rohrer GS.Influence of the magnitude of ferroelectric domain polarization on the photochemical reactivity of BaTiO3.ACS Appl Mater Interfaces2018;10:41450-7

[101]

Beheshtian J,Noei M.Sensing behavior of Al and Si doped BC3 graphenes to formaldehyde.Sensor Actuat B-Chem2013;181:829-34

[102]

Zhang YH,Zhou KG.Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study.Nanotechnology2009;20:185504

[103]

Ma D,Li T.Formaldehyde molecule adsorption on the doped monolayer MoS2: a first-principles study.Appl Surf Sci2016;371:180-8

[104]

Weigelt S,Bombis C.Covalent interlinking of an aldehyde and an amine on a Au(111) surface in ultrahigh vacuum.Angew Chem2007;119:9387-90

[105]

Kokalj A.Formation and structure of inhibitive molecular film of imidazole on iron surface.Corros Sci2013;68:195-203

[106]

Li J,Liang H,Lee CH.Ultrafast polarization switching in thin-film ferroelectrics.Appl Phys Lett2004;84:1174-6

[107]

Fahy S.Reversal of ferroelectric domains by ultrashort optical pulses.Phys Rev Lett1994;73:1122-5

[108]

Herchig R,Mani BK.An unusual route to polarization reversal in ferroelectric ultrathin nanowires.Appl Phys Lett2014;105:012907

[109]

Qi T,Yeh KL,Rappe AM.Collective coherent control: synchronization of polarization in ferroelectric PbTiO3 by shaped THz fields.Phys Rev Lett2009;102:247603

[110]

Lian C,Kwon H.Indirect but efficient: laser-excited electrons can drive ultrafast polarization switching in ferroelectric materials.J Phys Chem Lett2019;10:3402-7

[111]

Abalmasov VA.Ultrafast reversal of the ferroelectric polarization by a midinfrared pulse.Phys Rev B2020;101:014102

[112]

Ren X,Sun Y.Spin-polarized oxygen evolution reaction under magnetic field.Nat Commun2021;12:2608 PMCID:PMC8110536

[113]

Yan J,Zhang Y,Yu J.Direct magnetic reinforcement of electrocatalytic ORR/OER with electromagnetic induction of magnetic catalysts.Adv Mater2021;33:e2007525

[114]

Hu JM,Nan CW.Multiferroic heterostructures integrating ferroelectric and magnetic materials.Adv Mater2016;28:15-39

[115]

Hu J.Magnetic-field control of ionic bonds on ferroelectric surfaces.Appl Phys Lett2019;114:091601

[116]

Wang ZW.Intrinsic interaction between in-plane ferroelectric polarization and surface adsorption.Phys Chem Chem Phys2019;21:18680-5

[117]

Nong HN,Bergmann A.Key role of chemistry versus bias in electrocatalytic oxygen evolution.Nature2020;587:408-13

[118]

Bian F,Li S.Role of transport polarization in electrocatalysis: a case study of the Ni-cluster/Graphene interface.J Mater Sci Technol2021;92:120-8

AI Summary AI Mindmap
PDF

73

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/