Topochemical synthesis and structural characteristics of orientation-controlled (Bi0.5Na0.5)0.94Ba0.06TiO3 perovskite microplatelets

Yaqing Ma , Hang Xie , Yuan Sun , Qiangwei Kou , Linjing Liu , Bin Yang , Wenwu Cao , Yunfei Chang , Fei Li

Microstructures ›› 2022, Vol. 2 ›› Issue (2) : 2022006

PDF
Microstructures ›› 2022, Vol. 2 ›› Issue (2) :2022006 DOI: 10.20517/microstructures.2021.13
Research Article

Topochemical synthesis and structural characteristics of orientation-controlled (Bi0.5Na0.5)0.94Ba0.06TiO3 perovskite microplatelets

Author information +
History +
PDF

Abstract

Two-dimensional perovskite microcrystals have important applications in various electronic and energy devices. In this work, 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 (0.94BNT-0.06BT) microplatelets with a pure perovskite structure, (h00) orientation, good crystallinity and remarkable electromechanical strain are fabricated through topochemical microcrystal conversion from Aurivillius-structured Bi4.5Na0.5Ti4O15 precursors. The formation process of the Bi4.5Na0.5Ti4O15 precursors and the topochemical conversion mechanism of the 0.94BNT-0.06BT target are systematically studied. Intermediate phases, such as Bi4Ti3O12 and Bi8.5Na0.5Ti7O27, appear before the formation of pure Bi4.5Na0.5Ti4O15 at 950 °C in a NaCl molten salt. For the topochemical microcrystal conversion process, although the Aurivillius to perovskite structural transformation is completed at 900 °C, the original single-crystal precursor platelets are replaced by polycrystalline aggregates because of extensive exfoliation and disintegration events. Such microstructural damage is healed by recrystallization via Ostwald ripening through further heating to produce single-crystal 0.94BNT-0.06BT microplatelets with flat surfaces, regular shapes and homogenous distributions of Bi, Na, Ba, Ti and O at 1150 °C. Both labyrinth and stripe-like domains can be detected from these microplatelets, suggesting the coexistence of both rhombohedral and tetragonal phases, in agreement with the X-ray diffraction analysis. Furthermore, local electromechanical strain with an amplitude of ~600 pm (at 10 V) is observed from the platelets along the <001>c direction.

Keywords

Topochemical conversion / (Bi0.5Na0.5)TiO3-BaTiO3 / microstructure / piezoelectricity

Cite this article

Download citation ▾
Yaqing Ma, Hang Xie, Yuan Sun, Qiangwei Kou, Linjing Liu, Bin Yang, Wenwu Cao, Yunfei Chang, Fei Li. Topochemical synthesis and structural characteristics of orientation-controlled (Bi0.5Na0.5)0.94Ba0.06TiO3 perovskite microplatelets. Microstructures, 2022, 2(2): 2022006 DOI:10.20517/microstructures.2021.13

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Messing GL,Sabolsky EM.Templated grain growth of textured piezoelectric ceramics.Critical Reviews in Solid State and Materials Sciences2004;29:45-96

[2]

Li J,Chen X.Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications.Nat Mater2020;19:999-1005

[3]

Chang Y,Liu Z.Grain-oriented ferroelectric ceramics with single-crystal-like piezoelectric properties and low texture temperature.ACS Appl Mater Interfaces2020;12:38415-24

[4]

Rehrig PW,Trolier-mckinstry S.Templated grain growth of barium titanate single crystals.J Am Ceram Soc2000;83:2654-60

[5]

Chai G,Xia Z.PbI 2 platelets for inverted planar organolead Halide Perovskite solar cells via ultrasonic spray deposition.Semicond Sci Technol2017;32:074003

[6]

Pan ZB,Zhai JW.NaNbO3 two-dimensional platelets induced highly energy strorage density in trilayered architecture composites.Nano Energy2017;40:587-95

[7]

Wang L,Xu J.Enhanced dielectric tunability and energy storage properties of plate-like Ba0.6Sr0.4TiO3/poly(vinylidene fluoride) composites through texture arrangement.Compos Sci Technol2018;158:112-20

[8]

Koka A,Tang H.Controlled synthesis of ultra-long vertically aligned BaTiO3 nanowire arrays for sensing and energy harvesting applications.Nanotechnology2014;25:375603

[9]

Zhou J,Song XF.High-performance vertical field-effect transistors based on all-inorganic perovskite microplatelets.J Mater Chem C2020;8:12632-7

[10]

Kržmanc MM,Uršič H,Suvorov D.Tailoring the shape, size, crystal structure, and preferential growth orientation of BaTiO3 plates synthesized through a topochemical conversion process.2017;17:3210-20

[11]

Ranmohotti KG,Choi J,Wiley JB.Topochemical manipulation of perovskites: low-temperature reaction strategies for directing structure and properties.Adv Mater2011;23:442-60

[12]

Li L,Chen J.Topochemical molten salt synthesis for functional perovskite compounds.Chem Sci2016;7:855-65 PMCID:PMC5953007

[13]

Poterala SF,Clark T,Messing GL.Mechanistic interpretation of the Aurivillius to perovskite topochemical microcrystal conversion process.Chem Mater2010;22:2061-8

[14]

Fu J,Zheng M.Topochemical conversion of (111) BaTiO3 piezoelectric microplatelets using Ba6Ti17O40 as the precursor.2019;19:1198-205

[15]

Zheng T,Xiao D.Recent development in lead-free perovskite piezoelectric bulk materials.Prog Mater Sci2018;98:552-624

[16]

Zhang S,Li J.Lead-free ferroelectric materials: prospective applications.J Mater Res2021;36:985-95

[17]

Kang W.(1-x)Bi0.5Na0.5TiO3-xBaTiO3 lead-free piezoelectric ceramics for energy-harvesting applications.J Eur Ceram Soc2015;35:2057-64

[18]

Zhao J,Ren W.Polar domain structural evolution under electric field and temperature in the (Bi0.5Na0.5)TiO3-0.06BaTiO3 piezoceramics.J Am Ceram Soc2019;102:437-47

[19]

Das Adhikary G,Senyshyn A.Random lattice strain and its relaxation towards the morphotropic phase boundary of Na0.5Bi0.5TiO3-based piezoelectrics: impact on the structural and ferroelectric properties.Phys Rev B2019;99:174112

[20]

Kimura T,Tani T.Crystallographic texture development in bismuth sodium titanate prepared by reactive-templated grain growth method.J Am Ceram Soc2004;87:1424-9

[21]

Lee D,Park E.Characteristic of grain oriented (Bi0.5Na0.5)TiO3-BaTiO3 ceramics.J Electroceram2006;17:505-8

[22]

Su S.Fabrication and electrical properties of 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 textured ceramics by RTGG method using micrometer sized BaTiO3 plate-like templates.J Alloys Compd2012;525:133-6

[23]

Maurya D,Yan Y.Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3-BaTiO3 ceramics with giant piezoelectric response.J Mater Chem C2013;1:2102

[24]

Ma S,Liu Z.Preparation and enhanced electric-field-induced strain of textured 91BNT-6BT-3KNN lead-free piezoceramics by TGG method.J Mater Sci: Mater Electron2016;27:3076-81

[25]

Bai W,Zheng P,Zhai J.Pairing high piezoelectric properties and enhanced thermal stability in grain-oriented BNT-based lead-free piezoceramics.Ceramics International2018;44:11402-9

[26]

Zhao W,Yan Y.Topochemical synthesis of plate-like Na0.5Bi0.5TiO3 from Aurivillius precursor.J American Ceramic Society2008;91:1322-5

[27]

Yokoi A.Ferroelectric properties of mixed bismuth layer-structured Na0.5Bi8.5Ti7O27 ceramic and SrxNa0.5-x/2Bi8.5-x/2Ti7O27 solid solutions.J Alloys Compd2008;452:467-72

[28]

Chen M,Kim BH.Structure and electrical properties of (Na0.5Bi0.5)1-xBaxTiO3 piezoelectric ceramics.J Eur Ceram Soc2008;28:843-9

[29]

Prado-espinosa A,del Campo A,Castro M.Exploring new methodologies for the identification of the morphotropic phase boundary region in the (BiNa)TiO3-BaTiO3 lead free piezoceramics: Confocal Raman Microscopy.J Alloys Compd2018;739:799-805

[30]

Rahaman MN. Ceramic processing and sintering. 2nd ed. New York: CRC Press; 2003. p. 546-53.

[31]

Jiang X,Chen C.Photoluminescence, structural, and electrical properties of erbium-doped Na0.5Bi4.5Ti4O15 ferroelectric ceramics.J Am Ceram Soc2016;99:1332-9

[32]

Zhao J,Quan Y.Evolution of mesoscopic domain structure and macroscopic properties in lead-free Bi0.5Na0.5TiO3-BaTiO3 ferroelectric ceramics.J Appl Phys2021;129:084103

[33]

Badapanda T,Nayak P.Dielectric, ferroelectric and piezoelectric study of BNT-BT solid solutions around the MPB region.IOP Conf Ser:Mater Sci Eng2017;178:012032

[34]

Parija B,Panigrahi S.Ferroelectric and piezoelectric properties of (1-x) (Bi0.5Na0.5)TiO3-xBaTiO3 ceramics.J Mater Sci:Mater Electron2013;24:402-10

[35]

Flores-ruiz F,Murillo-Bracamontes E,Yáñez-Limón J.An alternative scheme to measure single-point hysteresis loops using piezoresponse force microscopy.Measurement2017;108:143-51

[36]

Balke N,Li Q.Current and surface charge modified hysteresis loops in ferroelectric thin films.J Appl Phys2015;118:072013

[37]

Miller A,Long R.La Crosse viral infection in hospitalized pediatric patients in Western North Carolina.Hosp Pediatr2012;2:235-42

[38]

Hong S,Shin H.Principle of ferroelectric domain imaging using atomic force microscope.J Appl Phys2001;89:1377-86

AI Summary AI Mindmap
PDF

23

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/