Applications of in situ electron microscopy in oxygen electrocatalysis

Zhi-Peng Wu , Hui Zhang , Cailing Chen , Guanxing Li , Yu Han

Microstructures ›› 2022, Vol. 2 ›› Issue (1) : 2022002

PDF
Microstructures ›› 2022, Vol. 2 ›› Issue (1) :2022002 DOI: 10.20517/microstructures.2021.12
Review

Applications of in situ electron microscopy in oxygen electrocatalysis

Author information +
History +
PDF

Abstract

Oxygen electrocatalysis involving the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) plays a vital role in cutting-edge energy conversion and storage technologies. In situ studies of the evolution of catalysts during oxygen electrocatalysis can provide important insights into their structure - activity relationships and stabilities under working conditions. Among the various in situ characterization tools available, in situ electron microscopy has the unique ability to perform structural and compositional analyzes with high spatial resolution. In this review, we present the latest developments in in situ and quasi-in situ electron microscopic techniques, including identical location electron microscopy, in situ liquid cell (scanning) transmission electron microscopy and in situ environmental transmission electron microscopy, and elaborate their applications in the ORR and OER. Our discussion centers on the degradation mechanism, structural evolution and structure - performance correlations of electrocatalysts. Finally, we summarize the earlier discussions and share our perspectives on the current challenges and future research directions of using in situ electron microscopy to explore oxygen electrocatalysis and related processes.

Keywords

In situ electron microscopy / oxygen electrocatalysis / OER / ORR / liquid cell (scanning) transmission electron microscopy / identical location electron microscopy

Cite this article

Download citation ▾
Zhi-Peng Wu, Hui Zhang, Cailing Chen, Guanxing Li, Yu Han. Applications of in situ electron microscopy in oxygen electrocatalysis. Microstructures, 2022, 2(1): 2022002 DOI:10.20517/microstructures.2021.12

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Armstrong RC,de Jong KP.The frontiers of energy.Nat Energy2016;1:15020

[2]

Kibsgaard J.Considerations for the scaling-up of water splitting catalysts.Nat Energy2019;4:430-3

[3]

Shao M,Dodelet JP.Recent advances in electrocatalysts for oxygen reduction reaction.Chem Rev2016;116:3594-657

[4]

Xiao F,Wu ZP.Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells.Adv Mater2021;33:e2006292

[5]

Wu ZP,Zang S.Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction.Adv Funct Mater2020;30:1910274

[6]

Tian X,Su YQ.Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells.Science2019;366:850-6

[7]

Lei Q,Song K.Investigating the origin of enhanced C2+ selectivity in oxide-/hydroxide-derived copper electrodes during CO2 electroreduction.J Am Chem Soc2020;142:4213-22

[8]

Wu ZP,Zuo S.Manipulating the local coordination and electronic structures for efficient electrocatalytic oxygen evolution.Adv Mater2021;33:e2103004

[9]

Wu ZP,Maswadeh Y.Alloying-realloying enabled high durability for Pt-Pd-3d-transition metal nanoparticle fuel cell catalysts.Nat Commun2021;12:859 PMCID:PMC7870895

[10]

Chong L,Kubal J.Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks.Science2018;362:1276-81

[11]

Kong Z,Vargas JA.Origin of high activity and durability of twisty nanowire alloy catalysts under oxygen reduction and fuel cell operating conditions.J Am Chem Soc2020;142:1287-99

[12]

Wu ZP,Xie Z.Revealing the role of phase structures of bimetallic nanocatalysts in the oxygen reduction reaction.ACS Catal2018;8:11302-13

[13]

Huang J,Zhao K,Huang Q.Copper-comprising nanocrystals as well-defined electrocatalysts to advance electrochemical CO2 reduction.J Energy Chem2021;62:71-102

[14]

Shan J,Chen S.Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation.J Am Chem Soc2021;143:5201-11

[15]

Wu ZP.Pd-based electrocatalysts for oxygen reduction and ethanol oxidation reactions: some recent insights into structures and mechanisms.J Electrochem2021;27:144-56

[16]

Zheng X,De Luna P.Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption.Nat Chem2018;10:149-54

[17]

Wu T,Song J.Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation.Nat Catal2019;2:763-72

[18]

Rao RR,Giordano L.Operando identification of site-dependent water oxidation activity on ruthenium dioxide single-crystal surfaces.Nat Catal2020;3:516-25

[19]

Wu Z,Jiang H,Chen Y.Competitive C-C and C-H bond scission in the ethanol oxidation reaction on Cu(100) and the effect of an alkaline environment.Phys Chem Chem Phys2017;19:15444-53

[20]

Wu ZP,Hopkins E.Poisonous species in complete ethanol oxidation reaction on palladium catalysts.J Phys Chem C2019;123:20853-68

[21]

Chen C,Huo Z.Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces.Science2014;343:1339-43

[22]

Wan G,Kloppenburg J.Amorphization mechanism of SrIrO3 electrocatalyst: how oxygen redox initiates ionic diffusion and structural reorganization.Sci Adv2021;7:eabc7323 PMCID:PMC7793586

[23]

Liu Z,Peng B,Huang Y.Beyond extended surfaces: understanding the oxygen reduction reaction on nanocatalysts.J Am Chem Soc2020;142:17812-27

[24]

Zhu Y,Hsu C.Operando unraveling of the structural and chemical stability of P-substituted CoSe2 electrocatalysts toward hydrogen and oxygen evolution reactions in alkaline electrolyte.ACS Energy Lett2019;4:987-94

[25]

Zhu Y,Chu H,Chen HM.In situ/operando studies for designing next-generation electrocatalysts.ACS Energy Lett2020;5:1281-91

[26]

Li J.Operando characterization techniques for electrocatalysis.Energy Environ Sci2020;13:3748-79

[27]

Yang Y,Zeng R.Operando methods in electrocatalysis.ACS Catal2021;11:1136-78

[28]

Dong J,Briega-martos V.In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces.Nat Energy2019;4:60-7

[29]

Cheng W,Su H.Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis.Nat Energy2019;4:115-22

[30]

Zhao S,He C.Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction.Nat Energy2020;5:881-90

[31]

Fan Z,Baumann D.In situ transmission electron microscopy for energy materials and devices.Adv Mater2019;31:e1900608

[32]

Hwang S,Zhou G.In situ transmission electron microscopy on energy-related catalysis.Adv Energy Mater2020;10:1902105

[33]

Li J,Zhang S.In situ transmission electron microscopy for energy applications.Joule2019;3:4-8

[34]

Zhang C,Fernando JFS,von Treifeldt JE.Recent progress of in situ transmission electron microscopy for energy materials.Adv Mater2020;32:e1904094

[35]

Pu S,Robertson AW.Liquid cell transmission electron microscopy and its applications.R Soc Open Sci2020;7:191204 PMCID:PMC7029903

[36]

Ross FM.Opportunities and challenges in liquid cell electron microscopy.Science2015;350:aaa9886

[37]

Mayrhofer KJ,Ashton SJ.Fuel cell catalyst degradation on the nanoscale.Electrochem Commun2008;10:1144-7

[38]

Arenz M.Fuel cell catalyst degradation: identical location electron microscopy and related methods.Nano Energy2016;29:299-313

[39]

Hodnik N,Mayrhofer KJ.Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research.Acc Chem Res2016;49:2015-22

[40]

Kelly DJ,Clark N.Nanometer resolution elemental mapping in graphene-based TEM liquid cells.Nano Lett2018;18:1168-74 PMCID:PMC5821409

[41]

Park J,Noh N.Graphene liquid cell electron microscopy: progress, applications, and perspectives.ACS Nano2021;15:288-308

[42]

Hauwiller MR,Jones MR.Tracking the effects of ligands on oxidative etching of gold nanorods in graphene liquid cell electron microscopy.ACS Nano2020;14:10239-50

[43]

Wang Q,Ma Z.Supported ionic liquid phase-boosted highly active and durable electrocatalysts towards hydrogen evolution reaction in acidic electrolyte.J Energy Chem2021;54:342-51

[44]

Velasco-Velez JJ,Sandoval-Diaz LE.Revealing the active phase of copper during the electroreduction of CO2 in aqueous electrolyte by correlating in situ X-ray spectroscopy and in situ electron microscopy.ACS Energy Lett2020;5:2106-11 PMCID:PMC7296532

[45]

Han B,Tileli V,Stach EA.Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution.Nat Mater2017;16:121-6

[46]

Hodnik N.Spot the difference at the nanoscale: identical location electron microscopy in electrocatalysis.Curr Opin Electrochem2019;15:73-82

[47]

Perez-alonso FJ,Shim SS,Stephens IE.Identical locations transmission electron microscopy study of Pt/C electrocatalyst degradation during oxygen reduction reaction.J Power Sources2011;196:6085-91

[48]

Mayrhofer KJ,Meier JC,Hanzlik M.Non-destructive transmission electron microscopy study of catalyst degradation under electrochemical treatment.J Power Sources2008;185:734-9

[49]

Arán-Ais RM,Hovden R.Identical location transmission electron microscopy imaging of site-selective Pt nanocatalysts: electrochemical activation and surface disordering.J Am Chem Soc2015;137:14992-8

[50]

da Silva GC, Fernandes MR, Ticianelli EA. Activity and stability of Pt/IrO2 bifunctional materials as catalysts for the oxygen evolution/reduction reactions.ACS Catal2018;8:2081-92

[51]

Souza NE,Rocha TA.Support modification in Pt/C electrocatalysts for durability increase: a degradation study assisted by identical location transmission electron microscopy.Electrochimica Acta2018;265:523-31

[52]

Sakthivel M.An extensive study about influence of the carbon support morphology on Pt activity and stability for oxygen reduction reaction.Appl Catal B: Environ2018;231:62-72

[53]

Schonvogel D,Wagner P.Stability of Pt nanoparticles on alternative carbon supports for oxygen reduction reaction.J Electrochem Soc2017;164:F995-F1004

[54]

Wu ZP,Zang SQ.Dynamic core-shell and alloy structures of multimetallic nanomaterials and their catalytic synergies.Acc Chem Res2020;53:2913-24

[55]

Yoshida T.Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society.Interface magazine2015;24:45-9

[56]

Hrnjic A,Pavlišič A.Observing, tracking and analysing electrochemically induced atomic-scale structural changes of an individual Pt-Co nanoparticle as a fuel cell electrocatalyst by combining modified floating electrode and identical location electron microscopy.Electrochimica Acta2021;388:138513

[57]

Hrnjić A,Gaberšček M.Modified floating electrode apparatus for advanced characterization of oxygen reduction reaction electrocatalysts.J Electrochem Soc2020;167:166501

[58]

Zorko M,Bele M,Gaberšček M.SEM method for direct visual tracking of nanoscale morphological changes of platinum based electrocatalysts on fixed locations upon electrochemical or thermal treatments.Ultramicroscopy2014;140:44-50

[59]

Cai B,Sasaki K.Core-shell structuring of pure metallic aerogels towards highly efficient platinum utilization for the oxygen reduction reaction.Angew Chem Int Ed Engl2018;57:2963-6

[60]

Strasser P,Anniyev T.Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts.Nat Chem2010;2:454-60

[61]

Kang Y,Chi M.Multimetallic core/interlayer/shell nanostructures as advanced electrocatalysts.Nano Lett2014;14:6361-7

[62]

Wu ZP,Wang S.Multimetallic catalysts and electrocatalysts: dynamic core-shell nanostructures. In: Yamashita H, Li H, editors. Core-shell and yolk-shell nanocatalysts. Singapore: Springer; 2021. p. 61-82.

[63]

Göhl D,Paciok P.Engineering stable electrocatalysts by synergistic stabilization between carbide cores and Pt shells.Nat Mater2020;19:287-91

[64]

Lyu X,Mao X.Gradient-concentration design of stable core-shell nanostructure for acidic oxygen reduction electrocatalysis.Adv Mater2020;32:e2003493

[65]

Lončar A,Ruiz-Zepeda F.Sacrificial Cu layer mediated the formation of an active and stable supported iridium oxygen evolution reaction electrocatalyst.ACS Catal2021;11:12510-9 PMCID:PMC8524421

[66]

Claudel F,Berthomé G.Degradation mechanisms of oxygen evolution reaction electrocatalysts: a combined identical-location transmission electron microscopy and X-ray photoelectron spectroscopy study.ACS Catal2019;9:4688-98

[67]

Yang H,Wang H.Preparation of nickel-iron hydroxides by microorganism corrosion for efficient oxygen evolution.Nat Commun2020;11:5075 PMCID:PMC7545195

[68]

Roy C,Scott SB.Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy.Nat Catal2018;1:820-9

[69]

Shen TH,Vavra J.Oxygen evolution reaction in Ba0.5Sr0.5Co0.8Fe0.2O3-δ aided by intrinsic Co/Fe spinel-like surface.J Am Chem Soc2020;142:15876-83

[70]

Quast T,Saddeler S.Single particle nanoelectrochemistry reveals the catalytic oxygen evolution reaction activity of Co3O4 nanocubes.Angew Chem Int Ed Engl2021;60:23444-50 PMCID:PMC8596605

[71]

Mehdi BL,Nasybulin E.Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM.Nano Lett2015;15:2168-73

[72]

Nagashima S,Sasaki Y.Atomic-level observation of electrochemical platinum dissolution and redeposition.Nano Lett2019;19:7000-5

[73]

Beermann V,Padgett E,Muller DA.Real-time imaging of activation and degradation of carbon supported octahedral Pt–Ni alloy fuel cell catalysts at the nanoscale using in situ electrochemical liquid cell STEM.Energy Environ Sci2019;12:2476-85

[74]

Holby EF,Shao-horn Y.Pt nanoparticle stability in PEM fuel cells: influence of particle size distribution and crossover hydrogen.Energy Environ Sci2009;2:865

[75]

Zhu G,Yang J,Botton GA.In situ liquid cell TEM study of morphological evolution and degradation of Pt–Fe nanocatalysts during potential cycling.J Phys Chem C2014;118:22111-9

[76]

Ortiz Peña N,Han M.Morphological and structural evolution of Co3O4 nanoparticles revealed by in situ electrochemical transmission electron microscopy during electrocatalytic water oxidation.ACS Nano2019;13:11372-81

[77]

Zhao G,Lu W.Direct observation of oxygen evolution and surface restructuring on Mn2O3 nanocatalysts using in situ and ex situ transmission electron microscopy.Nano Lett2021;21:7012-20

[78]

Mierwaldt D,Risch M.Environmental TEM investigation of electrochemical stability of perovskite and ruddlesden-popper type manganite oxygen evolution catalysts.Adv Sustainable Syst2017;1:1700109

[79]

Ronge E,Ross U.Atom surface dynamics of manganese oxide under oxygen evolution reaction-like conditions studied by in situ environmental transmission electron microscopy.J Phys Chem C2021;125:5037-47

[80]

Zhu Y,Zheng B.Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy.Nat Mater2017;16:532-6

[81]

Zhang D,Liu L.Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials.Science2018;359:675-9

[82]

Liu L,Wang J.Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution.Nat Chem2019;11:622-8

[83]

Verch A,de Jonge N.Exceptionally slow movement of gold nanoparticles at a solid/liquid interface investigated by scanning transmission electron microscopy.Langmuir2015;31:6956-64

[84]

Chee SW,Loh ND,Mirsaidov U.Desorption-mediated motion of nanoparticles at the liquid–solid interface.J Phys Chem C2016;120:20462-70

[85]

Yuk JM,Ercius P.High-resolution EM of colloidal nanocrystal growth using graphene liquid cells.Science2012;336:61-4

[86]

Maigné A.Low-dose electron energy-loss spectroscopy using electron counting direct detectors.Microscopy (Oxf)2018;67:i86-97

[87]

Zaluzec NJ,Haigh SJ.X-ray energy-dispersive spectrometry during in situ liquid cell studies using an analytical electron microscope.Microsc Microanal2014;20:323-9

[88]

Ercius P,Klie RF.Chemical and bonding analysis of liquids using liquid cell electron microscopy.MRS Bull2020;45:761-8

[89]

MacArthur KE,Haigh SJ,Nellist PD.Quantitative energy-dispersive X-Ray analysis of catalyst nanoparticles using a partial cross section approach.Microsc Microanal2016;22:71-81

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/