Advances in conducting polymer-based thermoelectric materials and devices

Tianyi Cao , Xiao-Lei Shi , Jin Zou , Zhi-Gang Chen

Microstructures ›› 2021, Vol. 1 ›› Issue (1) : 2021007

PDF
Microstructures ›› 2021, Vol. 1 ›› Issue (1) :2021007 DOI: 10.20517/microstructures.2021.06
Review

Advances in conducting polymer-based thermoelectric materials and devices

Author information +
History +
PDF

Abstract

Conducting polymer-based thermoelectric materials are considered the most promising candidates for applying to wearable thermoelectric devices because of their high electrical conductivities, flexibility, stability, and low-toxicity features. Therefore, a timely review is needed to comprehensively overview their most recent progress in the last few years, considering the rapid development of thermoelectric conducting polymers. In this work, we carefully summarize recent advances in thermoelectric conducting polymers from aspects of their mechanisms, synthesis, micro/nanostructures, mechanical/thermoelectric properties, and related functional devices. A few state-of-the-art thermoelectric conducting polymers, including poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate), poly(3-hexylthiophene), polyaniline, and polypyrrole, are highlighted in detail. In the end, we point out the challenges, controversies, and outlooks of conducting polymers for future thermoelectric applications.

Keywords

Thermoelectric / conducting polymer / synthesis / performance / device

Cite this article

Download citation ▾
Tianyi Cao, Xiao-Lei Shi, Jin Zou, Zhi-Gang Chen. Advances in conducting polymer-based thermoelectric materials and devices. Microstructures, 2021, 1(1): 2021007 DOI:10.20517/microstructures.2021.06

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shi XL,Chen ZG.Advanced thermoelectric design: from materials and structures to devices.Chem Rev2020;120:7399-515

[2]

Roychowdhury S,Arora R,Xie L.Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2.Science2021;371:722-7

[3]

Zheng Y,Hu L.Defect engineering in thermoelectric materials: what have we learned?.Chem Soc Rev2021;50:9022-54

[4]

Jiang B,Cui J.High-entropy-stabilized chalcogenides with high thermoelectric performance.Science2021;371:830-4

[5]

Tan G,Kanatzidis MG.Rationally designing high-performance bulk thermoelectric materials.Chem Rev2016;116:12123-49

[6]

Xu S,Dargusch M,Zou J.Conducting polymer-based flexible thermoelectric materials and devices: from mechanisms to applications.Prog Mater Sci2021;121:100840

[7]

Xiao Y.Seeking new, highly effective thermoelectrics.Science2020;367:1196-7

[8]

Shi X.Thermoelectric materials step up.Nat Mater2016;15:691-2

[9]

Snyder GJ,Crane D.Distributed and localized cooling with thermoelectrics.Joule2021;5:748-51

[10]

Wang Y,Shi X.Flexible thermoelectric materials and generators: challenges and innovations.Adv Mater2019;31:1807916

[11]

Venkatasubramanian R,Colpitts T.Thin-film thermoelectric devices with high room-temperature figures of merit.Nature2001;413:597-602

[12]

Bi Y,Shi XL.Full-spectrum responsive photocatalytic activity via non-noble metal Bi decorated mulberry-like BiVO4.J Mater Sci Technol2021;83:102-12

[13]

Du Y,Paul B.Flexible thermoelectric materials and devices.Appl Mater Today2018;12:366-88

[14]

Hong M,Pei Y,Zou J.Limit of ZT enhancement in rocksalt structured chalcogenides by band convergence.Phys Rev B2016;94:161201

[15]

Wu H,Liu WD.Double perovskite Pr2CoFeO6 thermoelectric oxide: roles of Sr-doping and Micro/nanostructuring.Chem Eng J2021;425:130668

[16]

Shi XL,Liu Q.SrTiO3-based thermoelectrics: progress and challenges.Nano Energy2020;78:105195

[17]

Moshwan R,Zou J.Eco-friendly SnTe thermoelectric materials: progress and future challenges.Adv Funct Mater2017;27:1703278

[18]

Tian BZ,Chen J.Low lattice thermal conductivity and enhanced thermoelectric performance of SnTe via chemical electroless plating of Ag.Rare Metals2021;41:86-95

[19]

Liu W,Hong M.Ag doping induced abnormal lattice thermal conductivity in Cu2Se.J Mater Chem C2018;6:13225-31

[20]

Shi XL,Zou J.High-performance thermoelectric SnSe: aqueous synthesis, innovations, and challenges.Adv Sci2020;7:1902923 PMCID:PMC7141048

[21]

Shi XL,Wu AY.Optimization of sodium hydroxide for securing high thermoelectric performance in polycrystalline Sn1-xSe via anisotropy and vacancy synergy.InfoMat2020;2:1201-15

[22]

Shi XL,Liu WD.Realizing high thermoelectric performance in n-type highly distorted Sb-doped SnSe microplates via tuning high electron concentration and inducing intensive crystal defects.Adv Energy Mater2018;8:1800775

[23]

Sun Y,Shi XL.Self-standing film assembled using SnS-Sn/multiwalled carbon nanotubes encapsulated carbon fibers: a potential large-scale production material for ultra-stable Sodium-Ion battery anodes.ACS Appl Mater Interfaces2021;13:28359-68

[24]

Zheng Y,Yuan H.A synergy of strain loading and laser radiation in determining the high-performing electrical transports in the single Cu-doped SnSe microbelt.Mater Today Phys2020;13:100198

[25]

Liu WD,Liu Q,Shao Z.High-performance GeTe-based thermoelectrics: from materials to devices.Adv Energy Mater2020;10:2000367

[26]

Hong M,Li M.Rashba effect maximizes thermoelectric performance of GeTe derivatives.Joule2020;4:2030-43

[27]

Hong M,Lyv W.Computer-aided design of high-efficiency GeTe-based thermoelectric devices.Energy Environ Sci2020;13:1856-64

[28]

Hong M,Yang L.Realizing zT of 2.3 in Ge1-x-ySbxInyTe via reducing the phase-transition temperature and introducing resonant energy doping.Adv Mater2018;30:1705942

[29]

Tan P,Fan Y.Self-powered wearable electronics.Wearable Technologies2020;1:e5

[30]

Dargusch M,Chen ZG.Thermoelectric generators: alternative power supply for wearable electrocardiographic systems.Adv Sci (Weinh)2020;7:2001362 PMCID:PMC7509711

[31]

Huang L,Xu Z.Fiber-based energy conversion devices for human-body energy harvesting.Adv Mater2020;32:1902034

[32]

Pulidindi K. Conductive polymers market size, share and industry analysis report by conduction mechanism. Available from: https://www.gminsights.com/industry-analysis/conductive-polymers-market. [Last accessed on 28 Sep 2021]

[33]

Shi XL,Zhang T,Chen ZG.Fiber-based thermoelectrics for solid, portable, and wearable electronics.Energy Environ Sci2021;14:729-64

[34]

Chen WY,Zou J.Wearable fiber-based thermoelectrics from materials to applications.Nano Energy2020;81:105684

[35]

Meng W,Song H.Advances and challenges in 2D MXenes: from structures to energy storage and conversions.Nano Today2021;40:101273

[36]

Siouane S,Poure P.Equivalent electrical circuits of thermoelectric generators under different operating conditions.Energies2017;10:386

[37]

Ji W,Liu WD.Boosting the thermoelectric performance of n-type Bi2S3 by hierarchical structure manipulation and carrier density optimization.Nano Energy2021;87:106171

[38]

Deng Y,Shi XL.Graphene oxide and adiponectin-functionalized sulfonated poly(etheretherketone) with effective osteogenicity and remotely repeatable photodisinfection.Chem Mater2020;32:2180-93

[39]

Debnath A,Sarkar K.Low interfacial energy barrier and improved thermoelectric performance in Te-incorporated polypyrrole.J Phys Chem C2021;125:168-77

[40]

Fan W,Guo CY.Toward high thermoelectric performance for polypyrrole composites by dynamic 3-phase interfacial electropolymerization and chemical doping of carbon nanotubes.Compos Sci Technol2019;183:107794

[41]

Li C,Tian Z.Thermoelectric properties of crystalline and amorphous polypyrrole: a computational study.Appl Therm Eng2017;111:1441-7

[42]

Liang L,Guo CY.Enhanced thermoelectric performance by self-assembled layered morphology of polypyrrole nanowire/single-walled carbon nanotube composites.Compos Sci Technol2016;129:130-6

[43]

Xin S,Gao F,Li L.Free-standing and flexible polypyrrole nanotube/reduced graphene oxide hybrid film with promising thermoelectric performance.Mater Chem Phys2018;212:440-5

[44]

Li H,Liu S,Li P.Modulating carrier transport for the enhanced thermoelectric performance of carbon nanotubes/polyaniline composites.Org Electron2019;69:62-8

[45]

Li H,Li P.Interfacial control and carrier tuning of carbon nanotube/polyaniline composites for high thermoelectric performance.Carbon2018;136:292-8

[46]

Li H,Li P,Du F.Enhanced thermoelectric performance of carbon nanotubes/polyaniline composites by multiple interface engineering.ACS Appl Mater Interfaces2021;13:6650-8

[47]

Li P,Li H.Facile green strategy for improving thermoelectric performance of carbon nanotube/polyaniline composites by ethanol treatment.Compos Sci Technol2020;189:108023

[48]

Wang L,Xiao J.Engineered molecular chain ordering in single-walled carbon nanotubes/polyaniline composite films for high-performance organic thermoelectric materials.Chem Asian J2016;11:1804-10

[49]

Hong CT,Kang YH.Effective doping by spin-coating and enhanced thermoelectric power factors in SWCNT/P3HT hybrid films.J Mater Chem A2015;3:12314-9

[50]

Li X,Wang T.Improved thermoelectric performance of P3HT/SWCNTs composite films by HClO4 post-treatment.Compos Commun2019;12:128-32

[51]

Myint MTZ,Inoue H,Kyaw AKK.Improved room-temperature thermoelectric characteristics in F4TCNQ-doped CNT yarn/P3HT composite by controlled doping.Org Electron2021;90:106056

[52]

Qu S,Shi W,Chen L.The influence of molecular configuration on the thermoelectrical properties of poly(3-hexylthiophene).J Electron Mater2016;45:1389-96

[53]

Qu S,Yu B.Optimizing the thermoelectric performance of poly(3-hexylthiophene) through molecular-weight engineering.Chem Asian J2018;13:3246-53

[54]

Untilova V,Hofmann AI.High thermoelectric power factor of poly(3-hexylthiophene) through in-plane alignment and doping with a molybdenum dithiolene complex.Macromolecules2020;53:6314-21 PMCID:PMC7472519

[55]

Lee W,Lee JY,Cho SY.Improving the thermoelectric power factor of CNT/PEDOT:PSS nanocomposite films by ethylene glycol treatment.RSC Adv2016;6:53339-44

[56]

Liu S,He C.Simultaneous enhancement of electrical conductivity and seebeck coefficient in organic thermoelectric SWNT/PEDOT:PSS nanocomposites.Carbon2019;149:25-32

[57]

Stevens D,Ren Z.Salt doping to improve thermoelectric power factor of organic nanocomposite thin films.RSC Adv2020;10:11800-7

[58]

Wang YY,Shen S.In-situ fabrication and enhanced thermoelectric properties of carbon nanotubes filled poly(3,4-ethylenedioxythiophene) composites.Synthetic Met2015;209:480-3

[59]

Zhang L,Imae I.Highly improved thermoelectric performances of PEDOT:PSS/SWCNT composites by solvent treatment.Org Electron2017;51:304-7

[60]

Xu S,Shi XL.Computation-guided design of high-performance flexible thermoelectric modules for sunlight-to-electricity conversion.Energy Environ Sci2020;13:3480-8

[61]

Liu T,Li M.Achieving enhanced thermoelectric performance of Ca1-x-yLaxSryMnO3 via synergistic carrier concentration optimization and chemical bond engineering.Chem Eng J2020.127364

[62]

He W,Zhang X,Li G.Recent development and application of thermoelectric generator and cooler.Appl Energ2015;143:1-25

[63]

Riffat SB.Thermoelectrics: a review of present and potential applications.Appl Therm Eng2003;23:913-35

[64]

Dai D,Liu J.Liquid metal based thermoelectric generation system for waste heat recovery.Renew Energ2011;36:3530-6

[65]

Tie SF.A review of energy sources and energy management system in electric vehicles.Renew Sust Energ Rev2013;20:82-102

[66]

Ullah KR,Ping HW,Shuvo NH.A review of solar thermal refrigeration and cooling methods.Renew Sust Energ Rev2013;24:499-513

[67]

Siddique ARM,Heyst BV.A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges.Renew Sust Energ Rev2017;73:730-44

[68]

Bubnova O.Towards polymer-based organic thermoelectric generators.Energy Environ Sci2012;5:9345-62

[69]

Mayer JM.Simple Marcus-theory-type model for hydrogen-atom transfer/proton-coupled electron transfer.J Phys Chem Lett2011;2:1481-9 PMCID:PMC3115700

[70]

Bao Z.Organic field-effect transistors. 1st ed. Boca Raton: CRC Press; 2007.

[71]

Dimitrijev S. Principles of semiconductor devices. New York: Oxford University Press; 2006.

[72]

Nardes AM,Janssen RAJ.Anisotropic hopping conduction in spin-coated PEDOT:PSS thin films.Phys Rev B2007;76:085208

[73]

Glaudell AM,Patel SN.Impact of the doping method on conductivity and thermopower in semiconducting polythiophenes.Adv Energy Mater2015;5:1401072

[74]

Zhang Q,Qin Y,Zhu D.Two soluble polymers with lower ionization potentials: doping and thermoelectric properties.J Mater Chem A2016;4:1432-9

[75]

Mateeva N,Schlenoff J.Correlation of seebeck coefficient and electric conductivity in polyaniline and polypyrrole.J Appl Phys1998;83:3111-7

[76]

Stevens MP. Polymer chemistry. New York: Oxford University Press; 1990.

[77]

Zhang Y,Park SJ.Interlayer polymerization in amine-terminated macromolecular chain-grafted expanded graphite for fabricating highly thermal conductive and physically strong thermoset composites for thermal management applications.Compos Part A-appl S2018;109:498-506

[78]

Zhang Y,Son YR.Recent advanced thermal interfacial materials: a review of conducting mechanisms and parameters of carbon materials.Carbon2019;142:445-60

[79]

Li JF,Zhao LD.High-performance nanostructured thermoelectric materials.NPG Asia Mater2010;2:152-8

[80]

Neamen DA. Semiconductor physics and devices: basic principles. Boston: Mass:McGraw-Hill; 2003.

[81]

Chen G,Lee H.Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium.Phys Rev Lett2009;102:196803

[82]

Xu X,Chen J.Thermal transport in conductive polymer-based materials.Adv Funct Mater2020;30:1904704

[83]

Dong L,Chen D.Dimensional crossover of heat conduction in amorphous polyimide nanofibers.Natl Sci Rev2018;5:500-6

[84]

Zhang T.Role of chain morphology and stiffness in thermal conductivity of amorphous polymers.J Phys Chem B2016;120:803-12

[85]

Krach A.Influence of void shape, void volume and matrix anisotropy on effective thermal conductivity of a three-phase composite.J Compos Mater1996;30:933-46

[86]

He L.Improve thermal conductivity of polymer composites via conductive network.2021;13:1-2

[87]

Hone J,Piskoti C.Thermal conductivity of single-walled carbon nanotubes.Phys Rev B1999;59:R2514-R6

[88]

Park T,Kim B,Kim E.Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips.Energy Environ Sci2013;6:788-92

[89]

Peierls RE.The momentum of light in a refracting medium.Proceedings of the Royal Society of London A Mathematical and Physical Sciences1976;347:475-91

[90]

Huxtable ST. Heat transport in superlattices and nanowire arrays. Ann Arbor: ProQuest Dissertations Publishing; 2002.

[91]

Zhang L,Deng H,Fu Q.Enhanced thermal conductivity and electrical insulation properties of polymer composites via constructing Pglass/CNTs confined hybrid fillers.Compos Part A-appl S2018;115:1-7

[92]

Oh H,Ryu S.Enhancement of thermal conductivity of polymethyl methacrylate-coated graphene/epoxy composites using admicellar polymerization with different ionic surfactants.Compos Part A-appl S2019;116:206-15

[93]

Zhang Y,Park M.Recent advances in organic thermoelectric materials: principle mechanisms and emerging carbon-based green energy materials.Polymers2019;11:167 PMCID:PMC6401848

[94]

Chen YX,Zheng ZH.Two-dimensional WSe2/SnSe p-n junctions secure ultrahigh thermoelectric performance in n-type Pb/I co-doped polycrystalline SnSe.Mater Today Phys2021;16:100306

[95]

Saha B,Comparan J.Cross-plane thermal conductivity of (Ti,W)N/(Al,Sc)N metal/semiconductor superlattices.Phys Rev B2016;93:045311

[96]

Zhao W,Zou Y,Zhu D.Chemical doping of organic semiconductors for thermoelectric applications.Chem Soc Rev2020;49:7210-28

[97]

Liang Z,Souri M.Influence of dopant size and electron affinity on the electrical conductivity and thermoelectric properties of a series of conjugated polymers.J Mater Chem A2018;6:16495-505

[98]

Gao J,Li Y,Moulé AJ.The effect of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane charge transfer dopants on the conformation and aggregation of poly(3-hexylthiophene).J Mater Chem C2013;1:5638-46

[99]

Kleemann H,Zakhidov AA,Lüssem B.Structural phase transition in pentacene caused by molecular doping and its effect on charge carrier mobility.Org Electron2012;13:58-65

[100]

Scholes DT,Lindemuth JR.The effects of crystallinity on charge transport and the structure of sequentially processed F4TCNQ-doped conjugated polymer films.Adv Funct Mater2017;27:1702654

[101]

Yao H,Cheng H.Recent development of thermoelectric polymers and composites.Macromol Rapid Comm2018;39:1700727

[102]

Fan Z,Du D.Significantly enhanced thermoelectric properties of PEDOT:PSS films through sequential post-treatments with common acids and bases.Adv Energy Mater2017;7:1602116

[103]

Kim JY,Lee DE.Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)poly(4-styrenesulfonate) by a change of solvents.Synthetic Met2002;126:311-6

[104]

Luo J,Waechtler T.Enhancement of the thermoelectric properties of PEDOT:PSS thin films by post-treatment.J Mater Chem A2013;1:7576-83

[105]

Mengistie DA,Boopathi KM,Li LJ.Enhanced thermoelectric performance of PEDOT:PSS flexible bulky papers by treatment with secondary dopants.ACS Appl Mater Interfaces2015;7:94-100

[106]

Fan Z,Yu Z,Xia Y.Significant enhancement in the thermoelectric properties of PEDOT:PSS films through a treatment with organic solutions of inorganic salts.ACS Appl Mater Interfaces2016;8:23204-11

[107]

Kim N,Lee SH.Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization.Adv Mater2014;26:2268-72

[108]

Xia Y,Ouyang J.Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices.Adv Mater2012;24:2436-40

[109]

Rajasekaran P.Effect of plasma pre-treatment on the conductivity of polypyrrole-coated cotton fabric.Fibers and Polymers2019;20:2114-9

[110]

Bashir T,Cho SW,Skrifvars M.OCVD polymerization of PEDOT: effect of pre-treatment steps on PEDOT-coated conductive fibers and a morphological study of PEDOT distribution on textile yarns.Polym Advan Technol2013;24:210-9

[111]

Liu M.Enhanced thermoelectric performance through energy-filtering effects in nanocomposites dispersed with metallic particles.Appl Phys Lett2012;101:132103

[112]

Ko DK,Murray CB.Enhanced thermopower via carrier energy filtering in solution-processable Pt-Sb2Te3 nanocomposites.Nano Lett2011;11:2841-4

[113]

Coates NE,McCulloch B.Effect of interfacial properties on polymer-nanocrystal thermoelectric transport.Adv Mater2013;25:1629-33

[114]

Marrocchi A,Facchetti A.Poly(3-hexylthiophene): synthetic methodologies and properties in bulk heterojunction solar cells.Energy Environ Sci2012;5:8457-74

[115]

Zhang L,Yang YL.Flexible thermoelectric materials and devices: from materials to applications.Mater Today2021;46:62-108

[116]

Sun Y,Shi XL,Lu S.Self-standing and high-performance B4C/Sn/acetylene black@reduced graphene oxide films as sodium-ion half/full battery anodes.Appl Mater Today2021;24:101137

[117]

Park J,Yim Y.Electrical and thermal properties of PEDOT:PSS films doped with carbon nanotubes.Synthetic Met2011;161:523-7

[118]

Zelikman E,Siegmann A,Kenny JM.Polyaniline/multiwalled carbon nanotube systems: dispersion of CNT and CNT/PANI interaction.2008;48:1872-7

[119]

Wang J,Shen S.Preparation and thermoelectric properties of multi-walled carbon nanotubes/polypyrrole composites.Synthetic Met2014;195:132-6

[120]

Nandihalli N,Mori T.Polymer based thermoelectric nanocomposite materials and devices: fabrication and characteristics.Nano Energy2020;78:105186

[121]

Lee W,Kwon OH.Enhanced thermoelectric performance of bar-coated SWCNT/P3HT thin films.ACS Appl Mater Interfaces2015;7:6550-6

[122]

Hong CT,Ryu J,Jang KS.Spray-printed CNT/P3HT organic thermoelectric films and power generators.J Mater Chem A2015;3:21428-33

[123]

Qu S,Wang L.Highly anisotropic P3HT films with enhanced thermoelectric performance via organic small molecule epitaxy.NPG Asia Mater2016;8:e292

[124]

Hynynen J,Müller C.Influence of crystallinity on the thermoelectric power factor of P3HT vapour-doped with F4TCNQ.RSC Adv2018;8:1593-9

[125]

Jang E,Madan D.Enhanced thermoelectric properties of F4TCNQ doped P3HT and its use as a binder for Sb2Te3 based printed thermoelectric films.ACS Appl Energy Mater2018;1:1455-62

[126]

Untilova V,Biniek L,Brinkmann M.Control of chain alignment and crystallization helps enhance charge conductivities and thermoelectric power factors in sequentially doped P3HT:F4TCNQ films.Macromolecules2020;53:2441-53

[127]

Kang YH,Lee MH,Kim BJ.Highly efficient and air stable thermoelectric devices of poly(3-hexylthiophene) by dual doping of Au metal precursors.Nano Energy2021;82:105681

[128]

Tonga M.A rational ternary design of P3HT/insulating polymers-CNTs/P3HT for the enhanced thermoelectric performances.Compos Interface2021;

[129]

Wu L,Chai H,Chen Y.Anion-dependent molecular doping and charge transport in ferric salt-doped P3HT for thermoelectric application.ACS Appl Electron Mater2021;3:1252-9

[130]

Untilova V,Durand P,Leclerc N.Intercalation and ordering of F6TCNNQ and F4TCNQ dopants in regioregular poly(3-hexylthiophene) crystals: impact on anisotropic thermoelectric properties of oriented thin films.Macromolecules2021;54:6073-84

[131]

Xiong J,Shi H.Liquid exfoliated graphene as dopant for improving the thermoelectric power factor of conductive PEDOT:PSS nanofilm with hydrazine treatment.ACS Appl Mater Interfaces2015;7:14917-25

[132]

Bae EJ,Jang KS.Enhancement of thermoelectric properties of PEDOT:PSS and tellurium-PEDOT:PSS hybrid composites by simple chemical treatment.Sci Rep2016;6:18805 PMCID:PMC4700464

[133]

Lee HM,Lee HJ,Jo JY.Key parameters for enhancing the thermoelectric power factor of PEDOT:PSS/PANI-CSA multilayer thin films.RSC Adv2019;9:11595-601

[134]

Jeong MH,Kang SB,Oh IS.Increasing the thermoelectric power factor of solvent-treated PEDOT:PSS thin films on PDMS by stretching.J Mater Chem A2018;6:15621-9

[135]

Kim JY,Kang YH,Jang KS.Wet-spinning and post-treatment of CNT/PEDOT:PSS composites for use in organic fiber-based thermoelectric generators.Carbon2018;133:293-9

[136]

Meng Q,Cai K.Preparation and thermoelectric properties of PEDOT:PSS coated Te nanorod/PEDOT:PSS composite films.Org Electron2019;64:79-85

[137]

Kim Y,Noh H.Robust PEDOT:PSS wet-spun fibers for thermoelectric textiles.Macromol Mater Eng2020;305:1900749

[138]

Yemata TA,Kyaw AKK.Modulation of the doping level of PEDOT:PSS film by treatment with hydrazine to improve the Seebeck coefficient.RSC Adv2020;10:1786-92

[139]

El-Shamy AG.Acido-treatment of PEDOT:PSS/Carbon Dots (CDots) nano-composite films for high thermoelectric power factor performance and generator.Mater Chem Phys2021;257:123762

[140]

Lu Y,Cai K.Enhanced-performance PEDOT:PSS/Cu2Se-based composite films for wearable thermoelectric power generators.ACS Appl Mater Interfaces2021;13:631-8

[141]

Yang J,Liu Y.PEDOT:PSS/PVA/Te ternary composite fibers toward flexible thermoelectric generator.Compos Commun2021;27:100855

[142]

Deng W,Li Z,Chen G.Synergistically boosting thermoelectric performance of PEDOT:PSS/SWCNT composites via the ion-exchange effect and promoting SWCNT dispersion by the ionic liquid.ACS Appl Mater Interfaces2021;13:12131-40

[143]

El-Shamy A. The role of nitrogen-carbon dots (NC) nano-particles in enhancing thermoelectric power functions of PEDOT:PSS/Te nano-composite films.Chem Eng J2021;417:129212

[144]

Tu S,Lena Oechsle A.Improvement of the thermoelectric properties of PEDOT:PSS films via DMSO addition and DMSO/salt post-treatment resolved from a fundamental view.Chem Eng J2022;429:132295

[145]

Wang L,Bi H.PANI/graphene nanocomposite films with high thermoelectric properties by enhanced molecular ordering.J Mater Chem A2015;3:7086-92

[146]

Wang L,Qu S,Chen L.Influence of electronic type of SWNTs on the thermoelectric properties of SWNTs/PANI composite films.Org Electron2016;39:146-52

[147]

Erden F,Wang X,He C.High-performance thermoelectric materials based on ternary TiO2/CNT/PANI composites.Phys Chem Chem Phys2018;20:9411-8

[148]

Wang Y,Liu G,Deng Y.An effective thermal treatment strategy for thermoelectric performance enhancement in PANI/Te nanorod hybrid film.Mater Lett2018;229:293-6

[149]

Shalini V,Harish S.Design and fabrication of PANI/GO nanocomposite for enhanced room-temperature thermoelectric application.Appl Surf Sci2019;493:1350-60

[150]

Park D,Kim J.High-performance PANI-coated Ag2Se nanowire and PVDF thermoelectric composite film for flexible energy harvesting.J Alloys Compd2021;884:161098

[151]

Xu W,Wang H.Postsynthetic-modified PANI/MOF composites with tunable thermoelectric and photoelectric properties.Chemistry2021;27:5011-8

[152]

Sharma S,Kumar S.PANI coupled hierarchical Bi2S3 nanoflowers based hybrid nanocomposite for enhanced thermoelectric performance.Nanotechnology2021;32:335705

[153]

Li H,Liu Y.Engineering doping level for enhanced thermoelectric performance of carbon nanotubes/polyaniline composites.Compos Sci Technol2021;210:108797

[154]

Kim SJ,Cho BJ.A wearable thermoelectric generator fabricated on a glass fabric.Energy Environ Sci2014;7:1959-65

[155]

We JH,Cho BJ.Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator.Energy2014;73:506-12

[156]

Hewitt CA,Barbalace RL,Carroll DL.Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites.J Appl Phys2014;115:184502

[157]

Dun C,Huang H.Flexible n-type thermoelectric films based on Cu-doped Bi2Se3 nanoplate and Polyvinylidene Fluoride composite with decoupled Seebeck coefficient and electrical conductivity.Nano Energy2015;18:306-14

[158]

Zhu W,Gao M.Hierarchical Bi-Te based flexible thin-film solar thermoelectric generator with light sensing feature.Energ Convers Manage2015;106:1192-200

[159]

Lu Z,Mao C.Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body.Appl Energ2016;164:57-63

[160]

Siddique ARM,Mahmud S.Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique.Energy2016;115:1081-91

[161]

Jung KK,Choi CJ,Ko JS.Flexible thermoelectric generator with polydimethyl siloxane in thermoelectric material and substrate.Curr Appl Phys2016;16:1442-8

[162]

Oh JY,Han SW.Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators.Energy Environ Sci2016;9:1696-705

[163]

Liu H,Mei D,Chen Z.Design of a wearable thermoelectric generator for harvesting human body energy. In: Yang C, Virk G, Yang H. (eds) Wearable sensors and robots. Lecture Notes in Electrical Engineering. Singapore: Springer; 2017. p. 55-66.

[164]

Wu Q.A novel design for a wearable thermoelectric generator based on 3D fabric structure.Smart Mater Struct2017;26:045037

[165]

Shi Y,Mei D,Chen Z.Design and fabrication of wearable thermoelectric generator device for heat harvesting.IEEE Robotics and Automation Letters2018;3:373-8

[166]

Francioso L,Sglavo V,Masieri M.Modelling, fabrication and experimental testing of an heat sink free wearable thermoelectric generator.Energ Convers Manage2017;145:204-13

[167]

Wang Y,Mei D.Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer.Appl Energ2018;215:690-8

[168]

Shi Y,Mei D.Wearable thermoelectric generator with copper foam as the heat sink for body heat harvesting.IEEE Access2018;6:43602-11

[169]

Allison LK.A wearable all-fabric thermoelectric generator.Adv Mater Technol2019;4:1800615

[170]

Choi J,Dun C.High-performance, wearable thermoelectric generator based on a highly aligned carbon nanotube sheet.ACS Appl Energy Mater2020;3:1199-206

[171]

Wen DL,Liu X,Zhang XR.Wearable multi-sensing double-chain thermoelectric generator.Microsyst Nanoeng2020;6:68 PMCID:PMC8433441

[172]

Yuan J.A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator.Appl Energ2020;271:115250

[173]

Wang Y,Deng Y,Zhu P.Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator.Nano Energy2020;73:104773

[174]

Liu D,Yan Z.Screen-printed flexible thermoelectric device based on hybrid silver selenide/PVP composite films.Nanomaterials (Basel)2021;11:20242 PMCID:PMC8401139

[175]

Padmanabhan Ramesh V,Neumann T.Flexible thermoelectric generator with liquid metal interconnects and low thermal conductivity silicone filler.npj Flexible Electronics2021;5:5

[176]

Müller D,Recouvreux DOS,Barra GMO.Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers.Synthetic Met2011;161:106-11

[177]

TyV, Efimov ON. Polypyrrole: a conducting polymer; its synthesis, properties and applications.Russian Chemical Reviews1997;66:443-57

[178]

Cooper W.Notes: synthesis 2-trifluoroacetylpyrole.J Org Chem1958;23:1382

[179]

Rapi S,Gardini GP.Conducting polypyrrole by chemical synthesis in water.Synthetic Met1988;24:217-21

[180]

Sabouraud G,Brodie N.The mechanisms of pyrrole electropolymerization.Chem Soc Rev2000;29:283-93

[181]

Paul S,Ekhe J.Experimental design of high yield polypyrrole by Taguchi method.Int J Eng Res Appl2013;3:89-95

[182]

Liang L,Guo CY.Polypyrrole nanostructures and their thermoelectric performance.Mater Chem Front2017;1:380-6

[183]

Du Y,Li J.Morphologies Tuning of polypyrrole and thermoelectric properties of polypyrrole nanowire/graphene composites.Polymers (Basel)2018;10:1143 PMCID:PMC6404025

[184]

Wu F,Sun M,Wang M.Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption.J Mater Chem A2015;3:14358-69

[185]

Chatterjee M, Mitra M, Banerjee D. Thermoelectric performance of polypyrrole and single walled carbon nanotube composite.Mater Today P2018;5:9743-8

[186]

Bharti M,Samanta S.Flexo-green polypyrrole - silver nanocomposite films for thermoelectric power generation.Energ Convers Manage2017;144:143-52

[187]

Bharti M,Singh A.Scalable free-standing polypyrrole films for wrist-band type flexible thermoelectric power generator.Energy2019;176:853-60

[188]

Heeger AJ.Nobel lecture: semiconducting and metallic polymers: the fourth generation of polymeric materials.Rev Mod Phys2001;73:681-700

[189]

Chiang JC.‘Polyaniline’: protonic acid doping of the emeraldine form to the metallic regime.Synthetic Met1986;13:193-205

[190]

Wu R,Liu C,Yang X.Flexible PANI/SWCNT thermoelectric films with ultrahigh electrical conductivity.RSC Adv2018;8:26011-9

[191]

Chatterjee MJ,Chatterjee K.Composite of single walled carbon nanotube and sulfosalicylic acid doped polyaniline: a thermoelectric material.Mater Res Express2016;3:085009

[192]

Hsieh YY,Zhang L.High thermoelectric power-factor composites based on flexible three-dimensional graphene and polyaniline.Nanoscale2019;11:6552-60

[193]

Jonas F,Schmidtberg W,Dietrich M. Polythiophenes, process for their preparation and their use. Available from: https://patents.google.com/patent/US4987042A/en. [Last accessed on 28 Sep 2021]

[194]

Groenendaal L,Aubert PH,Reynolds JR.Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives.Adv Mater2003;15:11

[195]

Heywang G.Poly(alkylenedioxythiophene)s-new, very stable conducting polymers.Adv Mater1992;4:116-8

[196]

Sun K,Li P.Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices.J Mater Sci Mater El2015;26:4438-62

[197]

Jia Y,Liu J.An efficient PEDOT-coated textile for wearable thermoelectric generators and strain sensors.J Mater Chem C2019;7:3496-502

[198]

Ni D,Chen Y.Free-standing highly conducting PEDOT films for flexible thermoelectric generator.Energy (Oxford)2019;170:53-61

[199]

Khoso NA,Deb H.Controlled template-free in-situ polymerization of PEDOT for enhanced thermoelectric performance on textile substrate.Org Electron2019;75:105368

[200]

Kim B,Han M,Kim E.Giant photo-magneto-thermoelectric effect of end-on oriented PEDOT grown from self-assembled 3D tectons.Adv Funct Mater2021;

[201]

Geoghegan M. Polymer electronics. Oxford: Oxford University Press; 2013.

[202]

Yoo D,Kim JH.Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems.Nano Res2014;7:717-30

[203]

Xu S,Shi XL.High-performance PEDOT:PSS flexible thermoelectric materials and their devices by triple post-treatments.Chem Mater2019;31:5238-44

[204]

Wang Y,Liu WD.Bi0.5Sb1.5Te3/PEDOT:PSS-based flexible thermoelectric film and device.Chem Eng J2020;397:125360

[205]

Wen N,Yang S.Highly conductive, ultra-flexible and continuously processable PEDOT:PSS fibers with high thermoelectric properties for wearable energy harvesting.Nano Energy2020;78:105361

[206]

Kim CS,Choi H.Structural design of a flexible thermoelectric power generator for wearable applications.Applied Energy2018;214:131-8

[207]

Lan X,Liu C.A high performance all-organic thermoelectric fiber generator towards promising wearable electron.Compos Sci Technol2019;182:107767

[208]

Mccullough RD.The chemistry of conducting polythiophenes.Adv Mater1998;10:93-116

[209]

Quagliotto P.Advances in synthetic methods for the preparation of poly(3- hexylthiophene) (P3HT).LOC2018;15:991-1006

[210]

Lim E,Su GM.Thermoelectric properties of poly(3-hexylthiophene) (P3HT) doped with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) by vapor-phase infiltration.Chem Mater2018;30:998-1010

[211]

Qu S,Chen Y,Chen L.Enhanced thermoelectric performance of CNT/P3HT composites with low CNT content.RSC Adv2018;8:33855-63

[212]

Zhou H,Sun C,Fu Q.Biomimetic approach to facilitate the high filler content in free-standing and flexible thermoelectric polymer composite films based on PVDF and Ag2Se nanowires.ACS Appl Mater Interfaces2020;12:51506-16

[213]

Kumar A,Satapathy DK.Bi2Se3-PVDF composite: a flexible thermoelectric system.Physica B: Condensed Matter2020;593:412275

[214]

Suemori K.High thermoelectric performance of post mechanical treated carbon nanotube films with polystyrene binder.Appl Phys Lett2020;116:081902

[215]

Suemori K,Kamata T.Flexible and lightweight thermoelectric generators composed of carbon nanotube-polystyrene composites printed on film substrate.Appl Phys Lett2013;103:153902

[216]

Wan K,Liu Z.Flexible and stretchable self-powered multi-sensors based on the N-type thermoelectric response of polyurethane/Nax(Ni-ett)n composites.Adv Electron Mater2019;5:1900582

[217]

Liu L,Li W.Flexible unipolar thermoelectric devices based on patterned poly[Kx(Ni-ethylenetetrathiolate)] thin films.Mater Chem Front2017;1:2111-6

[218]

Wang L,Liu Y.Exceptional thermoelectric properties of flexible organic-inorganic hybrids with monodispersed and periodic nanophase.Nat Commun2018;9:3817 PMCID:PMC6145921

[219]

Na Z,Liu X,Sun X.O/N/S trifunctional doping on graphite felts: A novel strategy toward performance boosting of cerium-based redox flow batteries.Carbon Energy2021;

[220]

Luo D,Yu W.A novel optimization method for thermoelectric module used in waste heat recovery.Energy Convers Manag2020;209:112645

[221]

Zhou N,Nasser R.Thermoelectric properties of PbSe nanocomposites from solution-processed building blocks.ACS Appl Energy Mater2021;4:2014-9

[222]

Finn PA,Wan K,Fenwick O.Thermoelectric materials: current status and future challenges.Front Electron Mater2021;1:677845

[223]

Jin W,Yang T.Exploring Peltier effect in organic thermoelectric films.Nat Commun2018;9:3586 PMCID:PMC6123419

[224]

Wang S,Ail U.Thermoelectric properties of solution-processed n-doped ladder-type conducting polymers.Adv Mater2016;28:10764-71

[225]

Lu Y,Zhang RZ.Rigid coplanar polymers for stable n-type polymer thermoelectrics.Angew Chem Int Ed Engl2019;58:11390-4

[226]

Naab BD,Kurosawa T,Salleo A.Role of polymer structure on the conductivity of n-doped polymers.Adv Electron Mater2016;2:1600004

[227]

Schlitz RA,Glaudell AM.Solubility-limited extrinsic n-type doping of a high electron mobility polymer for thermoelectric applications.Adv Mater2014;26:2825-30

[228]

Zhao X,Cheng Y.High conductivity and electron-transfer validation in an n-type fluoride-anion-doped polymer for thermoelectrics in air.Adv Mater2017;29:1606928

[229]

Chen G,Zhu D.Recent advances in organic polymer thermoelectric composites.J Mater Chem C2017;5:4350-60

[230]

Peng S,Lu J.A review on organic polymer-based thermoelectric materials.J Polym Environ2017;25:1208-18

[231]

Li B,Yang F.Enhanced thermoelectric performance of a donor-acceptor-based two-dimensional conjugated polymer with high crystallinity.ACS Appl Energy Mater2021;4:4662-71

[232]

Xie DX,Xiao J,Pan CJ.Effect of side chain substituent volume on thermoelectric properties of IDT-based conjugated polymers.Molecules2021;26:963 PMCID:PMC7918053

[233]

Qu D,Wang H.Assembly strategy and performance evaluation of flexible thermoelectric devices.Adv Sci (Weinh)2019;6:1900584 PMCID:PMC6685505

[234]

Qu D,Li X,Chen G.Annular flexible thermoelectric devices with integrated-module architecture.npj Flex Electron2020;4:1

[235]

Nguyen Huu T,Takahito O.Flexible thermoelectric power generator with Y-type structure using electrochemical deposition process.Applied Energy2018;210:467-76

[236]

Trung NH,Ono T.Fabrication of π-type flexible thermoelectric generators using an electrochemical deposition method for thermal energy harvesting applications at room temperature.J Micromech Microeng2017;27:125006

[237]

Amagai Y,Okawa K,Kawae T.Precise measurement of absolute Seebeck coefficient from Thomson effect using ac-dc technique.AIP Advances2019;9:065312

[238]

Pope A,Tritt T.Description of removable sample mount apparatus for rapid thermal conductivity measurements.Cryogenics2001;41:725-31

[239]

Vandersande JW.Simple apparatus for the measurement of thermal diffusivity between 80-500 K using the modified Ångström method.Rev Sci Instrum1980;51:1694-9

[240]

Wei G,Zhang X,Du X.Thermal conductivities study on silica aerogel and its composite insulation materials.Int J Heat Mass Tran2011;54:2355-66

[241]

Stabler FR.Commercialization of thermoelectric technology.MRS Online Proceedings Library2005;886:104

[242]

Tkachov R,Grafe R.Polyethenetetrathiolate or polytetrathiooxalate? Improved synthesis, a comparative analysis of a prominent thermoelectric polymer and implications to the charge transport mechanism.Polym Chem2018;9:454355

[243]

Hou W,Zhao W.Fabrication and excellent performances of Bi0.5Sb1.5Te3/epoxy flexible thermoelectric cooling devices.Nano Energy2018;50:76676

AI Summary AI Mindmap
PDF

48

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/