PDF
Abstract
Addressing the relationships between microstructures and properties is critical to the design of novel dielectric capacitors, which further enables widespread promising applications in electronic and electrical systems. The present review focuses on the role of different theoretical modeling techniques in understanding microstructural effects in energy storage dielectrics. State-of-the-art developments in the computational modeling of inorganics, polymers and their composite dielectrics are summarized. Diverse microstructural effects, including domain configurations, crystallization behavior and composite structures, are discussed with regards to different models. Theoretical modeling is not only essential for gaining fundamental insights into the underlying mechanisms behind experimental phenomena but can also be used to inversely engineer the design of dielectrics by prediction or optimization. Finally, to further promote innovative developments in dielectric capacitors, some future perspectives are provided to stimulate the in-depth consideration of the research paradigm between modeling and experiment.
Keywords
Theoretical modeling
/
microstructural effects
/
energy storage
/
dielectric capacitors
Cite this article
Download citation ▾
Jian Wang, Zhong-Hui Shen.
Modeling-guided understanding microstructure effects in energy storage dielectrics.
Microstructures, 2021, 1(1): 2021006 DOI:10.20517/microstructures.2021.05
| [1] |
Yao Z,Hao H.Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances..Adv Mater2017;29:1601727
|
| [2] |
Luo H,Ellingford C.Interface design for high energy density polymer nanocomposites..Chem Soc Rev2019;48:4424-65
|
| [3] |
Prateek,Gupta RK.Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects..Chem Rev2016;116:4260-317
|
| [4] |
Yang L,Li F.Perovskite lead-free dielectrics for energy storage applications..Prog Mater Sci2019;102:72-108
|
| [5] |
Wang G,Li Y.Electroceramics for high-energy density capacitors: current status and future perspectives..Chem Rev2021;121:6124-72 PMCID:PMC8277101
|
| [6] |
Pan H,Lin YH,MacManus-Driscoll JL.Dielectric films for high performance capacitive energy storage: multiscale engineering..Nanoscale2020;12:19582-91
|
| [7] |
Wei J.Intrinsic polymer dielectrics for high energy density and low loss electric energy storage..Prog Polym Sci2020;106:101254
|
| [8] |
Tan DQ.Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors..Adv Funct Mater2020;30:1808567
|
| [9] |
Zhang G,Allahyarov E,Zhu L.Challenges and opportunities of polymer nanodielectrics for capacitive energy storage..ACS Appl Mater Interfaces2021;13:37939-60
|
| [10] |
Li Q,Gadinski MR.Flexible high-temperature dielectric materials from polymer nanocomposites..Nature2015;523:576-9
|
| [11] |
Zhang X,Dong L.Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces..Adv Mater Interfaces2018;5:1800096
|
| [12] |
Hu H,Luo S,Yue J.Recent advances in rational design of polymer nanocomposite dielectrics for energy storage..Nano Energy2020;74:104844
|
| [13] |
McPherson JW,Shanware A,Rodriguez J.Trends in the ultimate breakdown strength of high dielectric-constant materials..IEEE Trans Electron Devices2003;50:1771
|
| [14] |
Chen Q,Zhang S.Polymer-based dielectrics with high energy storage density..Annu Rev Mater Res2015;45:433-58
|
| [15] |
Palneedi H,Hwang GT,Ryu J.High-performance dielectric ceramic films for energy storage capacitors: progress and outlook..Adv Funct Mater2018;28:1803665
|
| [16] |
Veerapandiyan V,Gindel T.Strategies to improve the energy storage properties of perovskite lead-free relaxor ferroelectrics: a review..Materials (Basel)2020;13:E5742
|
| [17] |
Yang Z,Jin L.High-performance lead-free bulk ceramics for energy storage applications: design strategies and challenges..J Mater Chem A Mater2021;9:18026-85
|
| [18] |
Pramanick A.Perspective on emerging views on microscopic origin of relaxor behavior..J Mater Res2021;36:1015-36
|
| [19] |
Liu Z,Ye J.Antiferroelectrics for energy storage applications: a review..Adv Mater Technol2018;3:1800111
|
| [20] |
Li F,Damjanovic D,Shrout TR.Local structural heterogeneity and electromechanical responses of ferroelectrics: learning from relaxor ferroelectrics..Adv Funct Mater2018;28:1801504
|
| [21] |
Yao FZ,Wang Q.Multiscale structural engineering of dielectric ceramics for energy storage applications: from bulk to thin films..Nanoscale2020;12:17165-84
|
| [22] |
Pan H,Ma J.Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering..Nat Commun2018;9:1813
|
| [23] |
Li D,Li Z.Progress and perspectives in dielectric energy storage ceramics..J Adv Ceram2021;10:675-703
|
| [24] |
Zhang H,Zhang Q.A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors..J Mater Chem C Mater2020;8:16648-67
|
| [25] |
Huang X,Zhu Y,Jiang P.High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications..Prog Mater Sci2019;100:187-225
|
| [26] |
Huan TD,Teyssedre G.Advanced polymeric dielectrics for high energy density applications..Prog Mater Sci2016;83:236-69
|
| [27] |
Fan B,Zhang C,Bai J.Polymer-based materials for achieving high energy density film capacitors..Prog Polym Sci2019;97:101143
|
| [28] |
Jiang Y,Shen Z.Ferroelectric polymers and their nanocomposites for dielectric energy storage applications..APL Materials2021;9:020905
|
| [29] |
Sun Z,Tian Y.Progress, outlook, and challenges in lead-free energy-storage ferroelectrics..Adv Electron Mater2020;6:1900698
|
| [30] |
Dong R,Nardelli MB.Atomistic simulations of aromatic polyurea and polyamide for capacitive energy storage..Phys Rev B2015;92:024203
|
| [31] |
Zhang Q,Zhang B.High-temperature polymers with record-high breakdown strength enabled by rationally designed chain-packing behavior in blends..Matter2021;4:2448-59
|
| [32] |
Saiz F.The excess electron in polymer nanocomposites..Phys Chem Chem Phys2018;20:27528-38
|
| [33] |
Shi N.Local properties at interfaces in nanodielectrics: an ab initio computational study..IEEE Trans Dielectr Electr Insul2008;15:170
|
| [34] |
Shen ZH,Jiang JY.Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics..Nat Commun2019;10:1843
|
| [35] |
Cai Z,Wang X.Phase-field modeling of the coupled domain structure and dielectric breakdown evolution in a ferroelectric single crystal..Phys Chem Chem Phys2019;21:16207-12
|
| [36] |
Wang JJ,Chen LQ.Understanding, predicting, and designing ferroelectric domain structures and switching guided by the phase-field method..Annu Rev Mater Res2019;49:127-52
|
| [37] |
Kim J,Acharya M.Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films..Science2020;369:81-4
|
| [38] |
Zhao Y,Wang K.Achieving an ultra-high capacitive energy density in ferroelectric films consisting of superfine columnar nanograins.Energy Stor Mater2021;39:81-8
|
| [39] |
Xie J,Yao Z.Achieving ultrahigh energy storage performance in bismuth magnesium titanate film capacitors via amorphous-structure engineering..J Mater Chem C Mater2019;7:13632-9
|
| [40] |
Otoničar M,Fulanović L.Connecting the multiscale structure with macroscopic response of relaxor ferroelectrics..Adv Funct Mater2020;30:2006823
|
| [41] |
Yang Z,Du H.Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties..Nano Energy2019;58:768-77
|
| [42] |
Yuan Q,Yao FZ.Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics..Nano Energy2018;52:203-10
|
| [43] |
Wang G,Zhang X.Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity..Energy Environ Sci2019;12:582-8
|
| [44] |
Zhao P,Chen L.Ultra-high energy storage performance in lead-free multilayer ceramic capacitors via a multiscale optimization strategy..Energy Environ Sci2020;13:4882-90
|
| [45] |
Morozovska AN,Fomichov YM.Controlling the domain structure of ferroelectric nanoparticles using tunable shells..Acta Mater2020;183:36-50
|
| [46] |
Yan F,Shi Y.Sandwich structured lead-free ceramics based on Bi0.5Na0.5TiO3 for high energy storage..Chem Eng J2021;425:130669
|
| [47] |
Wu L,Zhu C,Li L.Significantly enhanced dielectric breakdown strength of ferroelectric energy-storage ceramics via grain size uniformity control: Phase-field simulation and experimental realization..Appl Phys Lett2020;117:212902
|
| [48] |
Zhu D,Wang R.Size, shape, and orientation dependence of the field-induced behavior in ferroelectric nanoparticles..J Appl Phys2019;125:134102
|
| [49] |
Wang K,Wuttig M.Superparaelectric (Ba0.95,Sr0.05)(Zr0.2,Ti0.8)O3 ultracapacitors..Adv Energy Mater2020;10:2001778
|
| [50] |
Kwon O,Lee D.Direct probing of polarization charge at nanoscale level..Adv Mater2018;30:1703675
|
| [51] |
Dittmer R,Rdel J,Balke N.Nanoscale insight into lead-free BNT-BT-xKNN..Adv Funct Mater2012;22:4208-15
|
| [52] |
Wei Y,Zhu J,Damjanovic D.Dielectric, ferroelectric, and piezoelectric properties of BiFeO3-BaTiO3 ceramics..J Am Ceram Soc2013;96:3163-8
|
| [53] |
Sharma S,Dwivedi RK.Electrical properties of (1-x) BFO-(x) PZT multiferroics synthesized by sol-gel method: transition from relaxor to non-relaxor..J Alloys Compd2016;682:723-9
|
| [54] |
Pan H,Shen Y.BiFeO3-SrTiO3 thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance..J Mater Chem A2017;5:5920-6
|
| [55] |
Zhou M,Zhou Z.Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability..J Mater Chem C2018;6:8528-37
|
| [56] |
Wang J,Chen LQ,Zhang TY.Phase-field simulations of ferroelectric/ferroelastic polarization switching..Acta Mater2004;52:749-64
|
| [57] |
Wang J,Li Q,Chen LQ.Phase transitions and domain structures of ferroelectric nanoparticles: phase field model incorporating strong elastic and dielectric inhomogeneity..Acta Mater2013;61:7591-603
|
| [58] |
Pan H,Liu Y.Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design..Science2019;365:578-82
|
| [59] |
Wang JJ,Wang B,Ren YH.Strain engineering of dischargeable energy density of ferroelectric thin-film capacitors..Nano Energy2020;72:104665
|
| [60] |
Tunkasiri T.Dielectric strength of fine grained barium titanate ceramics..J Mater Sci Lett1996;15:1767-9
|
| [61] |
Cai Z,Hong W,Zhao Q.Grain-size-dependent dielectric properties in nanograin ferroelectrics..J Am Ceram Soc2018;101:5487-96
|
| [62] |
O’Dwyer JJ.Theory of dielectric breakdown in solids..J Electrochem Soc1969;116:239
|
| [63] |
Chaitanya Pitike K.Phase-field model for dielectric breakdown in solids..J Appl Phys2014;115:044101
|
| [64] |
Niemeyer L,Wiesmann HJ.Fractal dimension of dielectric breakdown..Phys Rev Lett1984;52:1033
|
| [65] |
Sparks M,Warren R.Theory of electron-avalanche breakdown in solids..Phys Rev B1981;24:3519
|
| [66] |
Liu M,Zeng F.Fine-grained silica-coated barium strontium titanate ceramics with high energy storage..Ceram Int2018;44:20239-44
|
| [67] |
Li C,Gao W.High breakdown strength and energy density in antiferroelectric PLZST ceramics with Al2O3 buffer..Ceram Int2020;46:722-73
|
| [68] |
Wu L,Li L.Enhanced energy density in core-shell ferroelectric ceramics: modeling and practical conclusions..J Am Ceram Soc2016;99:930-7
|
| [69] |
Yuan Q,Cheng SD.Bioinspired hierarchically structured all-inorganic nanocomposites with significantly improved capacitive performance..Adv Funct Mater2020;30:2000191
|
| [70] |
Shindo Y,Narita F.Electroelastic field concentrations ahead of electrodes in multilayer piezoelectric actuators: experiment and finite element simulation..J Mech Phys Solids2004;52:1109-24
|
| [71] |
Li F,Xu Z.Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity..Appl Phys Rev2014;1:011103
|
| [72] |
Li J,Chen X.Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications..Nat Mater2020;19:999-1005
|
| [73] |
Lv P,Qian J.Flexible lead-free perovskite oxide multilayer film capacitor based on (Na0.8K0.2)0.5Bi0.5TiO3/Ba0.5Sr0.5(Ti0.97Mn0.03)O3 for high-performance dielectric energy storage..Adv Energy Mater2020;10:1904229
|
| [74] |
Sun Z,Liu M.Interface thickness optimization of lead-free oxide multilayer capacitors for high-performance energy storage..J Mater Chem A2018;6:1858-64
|
| [75] |
Wang Y,Li Y,Wang Q.Multilayered hierarchical polymer composites for high energydensity capacitors..J Mater Chem A2019;7:2965-80
|
| [76] |
Sun Z,Liu M.Ultrahigh energy storage performance of lead-free oxide multilayer film capacitors via interface engineering..Adv Mater2017;29:1604427
|
| [77] |
Fan Q,Ma C.Significantly enhanced energy storage density with superior thermal stability by optimizing Ba (Zr0.15Ti0.85)O3/Ba(Zr0.35Ti0.65)O3 multilayer structure..Nano Energy2018;51:539-45
|
| [78] |
Liu Y,Xu W.Chirality-induced relaxor properties in ferroelectric polymers..Nat Mater2020;19:1169-74
|
| [79] |
Cheng ZY,Bateman FB.Dielectric relaxation behavior and its relation to microstructure in relaxor ferroelectric polymers: high-energy electron irradiated poly (vinylidene fluoride-trifluoroethylene) copolymers..J Appl Phys2002;92:6749
|
| [80] |
Chen X,Treufeld I.Enhanced dielectric properties due to space charge-induced interfacial polarization in multilayer polymer films..J Mater Chem C2017;5:10417-26
|
| [81] |
Huang Y,Li Q.Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly (vinylidene fluoride) with pure β crystals..Nat Commun2021;12:675 PMCID:PMC7846586
|
| [82] |
Guo M,Han J.Toroidal polar topology in strained ferroelectric polymer..Science2021;371:1050-6
|
| [83] |
Meng N,Santagiuliana G.Ultrahigh β-phase content poly (vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors..Nat Commun2019;10:4535 PMCID:PMC6800420
|
| [84] |
Zhan C,Zhang Y.Computational insights into materials and interfaces for capacitive energy storage..Adv Sci2017;4:1700059 PMCID:PMC5515120
|
| [85] |
Schadler LS,Brinson LC.A perspective on the data-driven design of polymer nanodielectrics..J Phys D Appl Phys2020;53:333001
|
| [86] |
Sharma V,Lorenzini RG.Rational design of all organic polymer dielectrics..Nat Commun2014;5:4845
|
| [87] |
Ma R,Wang C.Rationally designed polyimides for high-energy density capacitor applications..ACS Appl Mater Interfaces2014;6:10445-51
|
| [88] |
Ma R,Baldwin AF.Rational design and synthesis of polythioureas as capacitor dielectrics..J Mater Chem A2015;3:14845-52
|
| [89] |
Sun Y,Ramprasad R.The intrinsic electrical breakdown strength of insulators from first principles..Appl Phys Lett2012;101:132906
|
| [90] |
Wang C,Boggs S,Breneman C.Computational strategies for polymer dielectrics design..Polymer2014;55:979-88
|
| [91] |
Thakur Y,Dong R.Generating high dielectric constant blends from lower dielectric constant dipolar polymers using nanostructure engineering..Nano Energy2017;32:73-9
|
| [92] |
Yuan C,Zhu Y.Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage..Nat Commun2020;11:3919
|
| [93] |
Luo B,Wang H,Li L.P(VDF-HFP)/PMMA flexible composite films with enhanced energy storage density and efficiency..Compos Sci Technol2017;151:94-103
|
| [94] |
Zhang X,Shen Z,Chen L.Achieving high energy density in PVDF-based polymer blends: suppression of early polarization saturation and enhancement of breakdown strength..ACS Appl Mater Interfaces2016;8:27236-42
|
| [95] |
Zhang X,Gao R.Tuning ferroelectricity of polymer blends for flexible electrical energy storage applications..Sci China Mater2021;64:1642-52
|
| [96] |
Qian X,Yang T.Internal biasing in relaxor ferroelectric polymer to enhance the electrocaloric effect..Adv Funct Mater2015;25:5134-9
|
| [97] |
Jiang J,Qian J.Ultrahigh discharge efficiency in multilayered polymer nanocomposites of high energy density..Energy Stor Mater2019;18:213-21
|
| [98] |
Zhang T,Shen Z.An alternating multilayer architecture boosts ultrahigh energy density and high discharge efficiency in polymer composites..RSC Adv2020;10:5886-93
|
| [99] |
Li Q.Polymer nanocomposites for high-energy-density capacitor dielectrics: Fundamentals and recent progress..IEEE Electr Insul Mag2020;36:7-28
|
| [100] |
Zhu L.Novel ferroelectric polymers for high energy density and low loss dielectrics..Macromolecules2012;45:2937-54
|
| [101] |
Claude J,Li K.Electrical storage in poly (vinylidene fluoride) based ferroelectric polymers: correlating polymer structure to electrical breakdown strength..Chem Mater2008;20:2078-80
|
| [102] |
Tan DQ.The search for enhanced dielectric strength of polymer-based dielectrics: a focused review on polymer nanocomposites..J Appl Polym Sci2020;137:49379
|
| [103] |
Kim P,Hotchkiss PJ.Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength..Adv Mater2007;19:1001-5
|
| [104] |
Xie B,Marwat MA,Zhang L.Tailoring the energy storage performance of polymer nanocomposites with aspect ratio optimized 1D nanofillers..J Mater Chem A2018;6:20356-64
|
| [105] |
Li J,Chu B,Zhang Q.Nanocomposites of ferroelectric polymers with TiO2 nanoparticles exhibiting significantly enhanced electrical energy density..Adv Mater2009;21:217-21
|
| [106] |
Zhang X,Wang J.Hierarchical interfaces induce high dielectric permittivity in nanocomposites containing TiO2@BaTiO3 nanofibers..Nanoscale2014;6:6701-9
|
| [107] |
Liu J,Xu W.Interface-strengthened polymer nanocomposites with reduced dielectric relaxation exhibit high energy density at elevated temperatures utilizing a facile dual crosslinked network..Small2020;16:2000714
|
| [108] |
Wang P,Wang W.Ultrahigh energy storage performance of a polymer-based nanocomposite via interface engineering..J Mater Chem A2021;9:3530-9
|
| [109] |
Zhang H,Xie B.Polymer matrix nanocomposites with 1D ceramic nanofillers for energy storage capacitor applications..ACS Appl Mater Interfaces2019;12:1-37
|
| [110] |
Zhang X,Shen Z.Polymer nanocomposites with ultrahigh energy density and high discharge efficiency by modulating their nanostructures in three dimensions..Adv Mater2018;30:1707269
|
| [111] |
Bao Z,Shen Z.Negatively charged nanosheets significantly enhance the energy-storage capability of polymer-based nanocomposites..Adv Mater2020;32:1907227
|
| [112] |
Li H,Ren L.Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers..Adv Mater2019;31:1900875
|
| [113] |
Guo R,Bowen CR.Significantly enhanced permittivity and energy density in dielectric composites with aligned BaTiO3 lamellar structures..J Mater Chem A2020;8:3135-44
|
| [114] |
Zhou Y,Dang B.A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures..Adv Mater2018;30:1805672
|
| [115] |
Zhu Y,Huang X.High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets..Adv Energy Mater2019;9:1901826
|
| [116] |
Shen ZH,Jiang JY.Phase-field model of electrothermal breakdown in flexible high-temperature nanocomposites under extreme conditions..Adv Energy Mater2018;8:1800509
|
| [117] |
Ma FD.Depolarization field effect on dielectric and piezoelectric properties of particulate ferroelectric ceramic-polymer composites..J Appl Phys2015;117:124101
|
| [118] |
Lewis TJ.Interfaces are the dominant feature of dielectrics at the nanometric level..IEEE Trans Dielectr Electr Insul2004;11:739-53
|
| [119] |
Roy M,MacCrone R,Reed C.Polymer nanocomposite dielectrics-the role of the interface..IEEE Trans Dielectr Electr Insul2005;12:629-43
|
| [120] |
Tanaka T,Fuse N.Proposal of a multi-core model for polymer nanocomposite dielectrics..IEEE Trans Dielectr Electr Insul2005;12:669-81
|
| [121] |
Shen ZH,Zhang X.Space charge effects on the dielectric response of polymer nanocomposites..Appl Phys Lett2017;111:092901
|
| [122] |
Pan Z,Shen B.Multilayer hierarchical interfaces with high energy density in polymer nanocomposites composed of BaTiO3@TiO2@Al2O3 nanofibers..J Mater Chem A2017;5:15217-26
|
| [123] |
Shen ZH,Cheng XX,Chen LQ.High-throughput data-driven interface design of high-energy-density polymer nanocomposites..J Materiomics2020;6:573-81
|
| [124] |
Shen ZH,Lin Y,Chen LQ.High-throughput phase-field design of high-energy-density polymer nanocomposites..Adv Mater2018;30:1704380
|
| [125] |
Shen ZH,Cheng XX.Designing polymer nanocomposites with high energy density using machine learning..NPJ Comput Mater2021;7:110
|
| [126] |
Tang H,Sodano HA.Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly..Adv Energy Mater2012;2:469-76
|
| [127] |
Luo S,Yu S.Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating-ferroelectric microhybrids as fillers..Adv Energy Mater2019;9:1803204
|
| [128] |
Fan L,Huang L,Lei C.Polymer nanocomposite with enhanced energy storage capacity by introducing hierarchically-designed 1-dimension hybrid nanofiller..Polymer2020;201:122608
|
| [129] |
Pan Z,Zhai JW,Shen B.High-energy-density polymer nanocomposites composed of newly structured one-dimensional BaTiO3@Al2O3 nanofibers..ACS Appl Mater Interfaces2017;9:4024-33
|
| [130] |
Luo B,Cai Z.Superhierarchical inorganic/organic nanocomposites exhibiting simultaneous ultrahigh dielectric energy density and high efficiency..Adv Funct Mater2021;31:2007994
|
| [131] |
Jiang J,Cai X.Polymer nanocomposites with interpenetrating gradient structure exhibiting ultrahigh discharge efficiency and energy density..Adv Energy Mater2019;9:1803411
|
| [132] |
Azizi A,Li Q.High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials..Adv Mater2017;29:1701864
|
| [133] |
Wang Y,Yuan Q,Bai Y.Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly (vinylidene fluoride) nanocomposites..Adv Mater2015;27:6658-63
|
| [134] |
Jiang J,Qian J.Synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage..Nano Energy2019;62:220-9
|