Promoting the electrochemical properties of yolk-shell-structured CeO2 composites for lithium-ion batteries

Yongchao Shi , Jipeng Fu , Kanglong Hui , Jie Liu , Cong Gao , Shuqin Chang , Yongjin Chen , Xiang Gao , Tian Gao , Ligang Xu , Qi Wei , Mingxue Tang

Microstructures ›› 2021, Vol. 1 ›› Issue (1) : 2021005

PDF
Microstructures ›› 2021, Vol. 1 ›› Issue (1) :2021005 DOI: 10.20517/microstructures.2021.04
Research Article

Promoting the electrochemical properties of yolk-shell-structured CeO2 composites for lithium-ion batteries

Author information +
History +
PDF

Abstract

Lithium-ion batteries offer significant convenience to modern portable technology and our daily lives due to their high energy density and cycling capabilities. Cerium oxides are attracting significant attention as Li-ion battery anode materials due to their nontoxicity and fast redox kinetics. However, these anodes face critical issues, such as poor electronic conductivity and serve volume expansion upon Li-ion intercalation. Herein, yolk-shell-structured CeO2 encapsulated in mesoporous carbon nanospheres (CeO2@void@C) is proposed with an adjustable void between the CeO2 core and the outer carbon layer. A significantly enhanced capacity and rate performance are obtained for the target CeO2@void@C when compared with the untreated CeO2 anode. The reversible capacity of CeO2@void@C is double that of the untreated CeO2 anode. Additionally, the yolk-shell-structured CeO2 shows a slow capacity decay and maintains a capacity of 210 mAh·g-1 at a current density of 1000 mA·g-1 with a ~100% Coulombic efficiency even after 1000 cycles. This improvement originates from the conductivity of the coating carbon layer and the void that constrains the volume change upon electrochemical lithiation/delithiation.

Keywords

Li-ion batteries / microstructures / volume constraints / yolk-shell structures / anode materials / CeO2 composites

Cite this article

Download citation ▾
Yongchao Shi, Jipeng Fu, Kanglong Hui, Jie Liu, Cong Gao, Shuqin Chang, Yongjin Chen, Xiang Gao, Tian Gao, Ligang Xu, Qi Wei, Mingxue Tang. Promoting the electrochemical properties of yolk-shell-structured CeO2 composites for lithium-ion batteries. Microstructures, 2021, 1(1): 2021005 DOI:10.20517/microstructures.2021.04

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tarascon J.Issues and challenges facing rechargeable lithium batteries. Materials for Sustainable Energy. Co-Published with Macmillan Publishers Ltd, UK; 2010. p. 171-9.

[2]

Kang K,Bréger J,Ceder G.Electrodes with high power and high capacity for rechargeable lithium batteries.Science2006;311:977-80

[3]

Xu K.Nonaqueous liquid electrolytes for lithium-based rechargeable batteries.Chem Rev2004;104:4303-417

[4]

Whittingham MS.Lithium batteries and cathode materials.Chem Rev2004;104:4271-301

[5]

Xia H,Guo Y,Xu Q.CoS2 nanodots trapped within graphitic structured N-doped carbon spheres with efficient performances for lithium storage.J Mater Chem A2018;6:7148-54

[6]

Wang S,Yu L.Rational design of three-layered TiO2 @Carbon@MoS2 hierarchical nanotubes for enhanced lithium storage.Adv Mater2017;29:1702724

[7]

Lee SM,Moon J.A cooperative biphasic MoOx-MoPx promoter enables a fast-charging lithium-ion battery.Nat Commun2021;12:39 PMCID:PMC7782533

[8]

Pei F,Zang J.From hollow carbon spheres to N-doped hollow porous carbon bowls: rational design of hollow carbon host for Li-S batteries.Adv Energy Mater2016;6:1502539

[9]

Wu J,Long G,Yan Q.Pushing up lithium storage through nanostructured polyazaacene analogues as anode.Angew Chem Int Ed Engl2015;54:7354-8

[10]

Zhu Y,Huang Q.V2O5 textile cathodes with high capacity and stability for flexible lithium-ion batteries.Adv Mater2020;32:e1906205

[11]

Wang J,Wang D.Hollow multishelled structures revive high energy density batteries.Nanoscale Horiz2020;5:1287-92

[12]

Xiao Q,Wang X,Zhang Q.A multilayer Si/CNT coaxial nanofiber LIB anode with a high areal capacity.Energy Environ Sci2014;7:655-61

[13]

Polat B, Levent Eryılmaz O, Keleş O. Si based anodes via magnetron sputtering for LIB.ECS Electrochemistry Letters2014;3:A45-9

[14]

Varghese B,Yanwu Z.Fabrication of NiO nanowall electrodes for high performance lithium ion battery.Chem Mater2008;20:3360-7

[15]

Yu M,Wang Y,Shi G.An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition.Nanoscale2014;6:11419-24

[16]

Wang J,Zhao H.A sandwich-type sulfur cathode based on multifunctional ceria hollow spheres for high-performance lithium-sulfur batteries.Mater Chem Front2019;3:1317-22

[17]

Zhao Y,Wang C.Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries.Nano Energy2019;56:426-33

[18]

Wang C,Hu W.Controllable synthesis of hollow multishell structured Co3O4 with improved rate performance and cyclic stability for supercapacitors.Chem Res Chin Univ2020;36:68-73

[19]

Yan Z,Guo J.Low-temperature synthesis of graphitic carbon-coated silicon anode materials.Carbon Energy2019;1:246-52

[20]

Zhang F,Yue D,Qu M.Enhanced anode performances of polyaniline-TiO2-reduced graphene oxide nanocomposites for lithium ion batteries.Inorg Chem2012;51:9544-51

[21]

Chen Z,Bu F,Shakir I.Double-holey-heterostructure frameworks enable fast, stable, and simultaneous ultrahigh gravimetric, areal, and volumetric lithium storage.ACS Nano2018;12:12879-87

[22]

Kim W,Jeun J,Hong S.Synthesis of SnO2 nano hollow spheres and their size effects in lithium ion battery anode application.J Power Sources2013;225:108-12

[23]

Xie Q,Guo H.Facile preparation of well-dispersed CeO2-ZnO composite hollow microspheres with enhanced catalytic activity for CO oxidation.ACS Appl Mater Interfaces2014;6:421-8

[24]

Zhao H,Jiang P,Zhang J.Highly dispersed CeO2 on TiO2 nanotube: a synergistic nanocomposite with superior peroxidase-like activity.ACS Appl Mater Interfaces2015;7:6451-61

[25]

Zeng M,Mao M,Ren L.Synergetic effect between photocatalysis on TiO2 and thermocatalysis on CeO2 for gas-phase oxidation of benzene on TiO2/CeO2 nanocomposites.ACS Catal2015;5:3278-86

[26]

Primo A,Corma A,García H.Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nanoparticulate CeO2 obtained by a biopolymer templating method.J Am Chem Soc2011;133:6930-3

[27]

Wu X,Fu S.Core-shell CeO2@C nanospheres as enhanced anode materials for lithium ion batteries.J Mater Chem A2014;2:6790

[28]

Wang X,Song S.Pt@CeO2 multicore@shell self-assembled nanospheres: clean synthesis, structure optimization, and catalytic applications.J Am Chem Soc2013;135:15864-72

[29]

Hua C,Yang Z,Wang Z.Lithium storage mechanism and catalytic behavior of CeO2.Electrochem commun2012;25:66-9

[30]

Sasidharan M,Yoshio M.CeO2 hollow nanospheres as anode material for lithium ion batteries.Chem Lett2012;41:386-8

[31]

Wang G,Wang Y,Bai J.Prepartion and electrochemical performance of a cerium oxide-graphene nanocomposite as the anode material of a lithium ion battery.Scripta Materialia2011;65:339-42

[32]

Bai H,Sun DD.A lithium-ion anode with micro-scale mixed hierarchical carbon coated single crystal TiO2 nanorod spheres and carbon spheres.J Mater Chem2012;22:24552

[33]

Zhao B,Su C.A 3D porous architecture composed of TiO2 nanotubes connected with a carbon nanofiber matrix for fast energy storage.J Mater Chem A2013;1:12310

[34]

Chen Y,Wang J,Xue JM.Synthesis of monodispersed SnO2@C composite hollow spheres for lithium ion battery anode applications.J Mater Chem2011;21:17448

[35]

Han F,Li M.Fabrication of superior-performance SnO2@C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume.J Mater Chem2012;22:9645

[36]

Liu B,Zhao X,Hu C.Facile synthesis of ultrafine carbon-coated SnO2 nanoparticles for high-performance reversible lithium storage.J Power Sources2013;243:54-9

[37]

Zhu T,Lou XWD.Glucose-assisted one-pot synthesis of FeOOH nanorods and their transformation to Fe3O4@carbon nanorods for application in lithium ion batteries.J Phys Chem C2011;115:9814-20

[38]

Ma Y,Ji G.Nitrogen-doped carbon-encapsulation of Fe3O4 for increased reversibility in Li+ storage by the conversion reaction.J Mater Chem2012;22:7845

[39]

Hui K,Liu J.Yolk-shell nanoarchitecture for stabilizing a Ce2S3 anode.Carbon Energy2021;

[40]

Massiot D,Capron M.Modelling one- and two-dimensional solid-state NMR spectra: modelling 1D and 2D solid-state NMR spectra.Magn Reson Chem2002;40:70-6

[41]

Oka R,Aoyama F,Masui T.Synthesis and characterisation of SrY2-xCexO4 as environmentally friendly reddish-brown pigments.RSC Adv2017;7:55081-7

[42]

Pang H.Facile synthesis of cerium oxide nanostructures for rechargeable lithium battery electrode materials.RSC Adv2014;4:14872-8

[43]

Song Y,Li Y.Pseudocapacitance-tuned high-rate and long-term cyclability of NiCo2S4 hexagonal nanosheets prepared by vapor transformation for lithium storage.J Mater Chem A2017;5:9022-31

[44]

Song Y,Wang J.Bottom-up approach design, band structure, and lithium storage properties of atomically thin γ-FeOOH nanosheets.ACS Appl Mater Interfaces2016;8:21334-42

[45]

Shi Y.NMR/EPR investigation of rechargeable batteries.Acta Phys-Chim Sin2020;36:1905004

[46]

Tang M,Melin P.Following lithiation fronts in paramagnetic electrodes with in situ magnetic resonance spectroscopic imaging.Nat Commun2016;7:13284 PMCID:PMC5097146

[47]

Meyer BM,Sakamoto S,Grey CP.High field multinuclear NMR investigation of the SEI layer in lithium rechargeable batteries.Electrochem Solid-State Lett2005;8:A145

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/