EXAFS spectroscopy: a powerful tool for the study of local vibrational dynamics

Andrea Sanson

Microstructures ›› 2021, Vol. 1 ›› Issue (1) : 2021004

PDF
Microstructures ›› 2021, Vol. 1 ›› Issue (1) :2021004 DOI: 10.20517/microstructures.2021.03
Review
Review

EXAFS spectroscopy: a powerful tool for the study of local vibrational dynamics

Author information +
History +
PDF

Abstract

Extended X-ray absorption fine structure (EXAFS) spectroscopy is an ideal technique for studying the local vibrational dynamics of materials due to its sensitivity to short-range order, correlation of atomic motion and anharmonicity. However, despite this, EXAFS is widely employed to investigate the local structure but its use in the study of local dynamics is far more limited. In this brief review, the potential of EXAFS as a vibrational probe is presented with the aim of promoting its application in the study of the local dynamics of solid-state materials.

Keywords

EXAFS / local dynamics / thermal disorder

Cite this article

Download citation ▾
Andrea Sanson. EXAFS spectroscopy: a powerful tool for the study of local vibrational dynamics. Microstructures, 2021, 1(1): 2021004 DOI:10.20517/microstructures.2021.03

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

O’connor DA.Thermal vibrations in crystallography..Phys Bull1975;26:498-9

[2]

Artioli G.Gramaccioli CM,Weiszburg T.Atomic displacement parameters from diffraction studies..Energy modelling in minerals.2002;budapestmineralogical society of Great Britain and Ireland389-405

[3]

Wood IG,Price GD.Thermal expansion and atomic displacement parameters of cubic KMgF3 perovskite determined by high-resolution neutron powder diffraction..J Appl Crystallogr2002;35:291-5

[4]

Denisov VN,Lipin AS,Orlov VG.Raman spectra and lattice dynamics of single-crystal..J Phys: Condens Matter1997;9:4967-78

[5]

Maczka M,Paraguassu W,Tarso Cavalcante Freire P.Phonons in ferroelectric Bi2WO6: Raman and infrared spectra and lattice dynamics..Appl Phys Lett2008;92:112911

[6]

Birman JL.Theory of crystal space groups and infra-red and raman lattice processes of insulating crystals. Theory of crystal space groups and lattice dynamics.1984;BerlinSpringer Berlin Heidelberg1-521

[7]

Strauch D,Mayer AP.Helbig R.Ab initio lattice dynamics: methods, results, and applications..Advances in solid state physics 37.1998;BerlinSpringer Berlin Heidelberg99-124

[8]

Gonze X,Caracas R.First-principle studies of the lattice dynamics of crystals, and related properties..Zeitschrift für Kristallographie - Crystalline Materials2005;220:458-72

[9]

Dove MT.Some fundamentals. Introduction to Lattice Dynamics.2010;Cambridge University Press1-17

[10]

Albertsson J,Kvick Å.Atomic displacement, anharmonic thermal vibration, expansivity and pyroelectric coefficient thermal dependences in ZnO..Acta Crystallogr B Struct Sci1989;45:34-40

[11]

Downs RT,Boisen MB.A study of the mean-square displacement amplitudes of Si, Al, and O atoms in framework structures; evidence for rigid bonds, order, twinning, and stacking faults..American Mineralogist1990;75:1253-67

[12]

Krisch M.Cardona M.Inelastic X-Ray Scattering from Phonons..Light scattering in solid IX.2006;BerlinSpringer Berlin Heidelberg317-70

[13]

Burkel E.Phonon spectroscopy by inelastic x-ray scattering..Rep Prog Phys2000;63:171-232

[14]

Dickens MH.Inelastic neutron scattering study of the phonon dispersion relation of PbF2 at 10K..J Phys C: Solid State Phys1978;11:461-8

[15]

Rüffer R.Nuclear inelastic scattering..Hyperfine Interactions2000;128:255-72

[16]

Giarola M,Monti F.Vibrational dynamics of anatase TiO2: Polarized Raman spectroscopy and ab initio calculations..Phys Rev B2010;81:

[17]

Iliev MN,Popov VN.Raman- and infrared-active phonons in hexagonal YMnO3: Experiment and lattice-dynamical calculations..Phys Rev B1997;56:2488-94

[18]

Stern EA,Lytle FW.Extended x-ray-absorption fine-structure technique. III. Determination of physical parameters..Phys Rev B1975;11:4836-46

[19]

Beni G.Temperature and polarization dependence of extended x-ray absorption fine-structure spectra..Phys Rev B1976;14:1514-8

[20]

Fornasini P.Study of lattice dynamics via extended x-ray absorption fine structure..J Phys: Condens Matter2001;13:7859-72

[21]

Schnohr CS,Araujo LL.Anisotropic vibrations in crystalline and amorphous InP..Phys Rev B2009;79:

[22]

Dalba G.EXAFS Debye-Waller factor and thermal vibrations of crystals..J Synchrotron Radiat1997;4:243-55

[23]

Teo B.Teo BK.Extended X-Ray Absorption Fine Structure (EXAFS) spectroscopy: techniques and applications..EXAFS spectroscopy.1981;BostonSpringer US13-58

[24]

Paufler PP.Introduction to XAFS. A practical guide to X-ray absorption fine structure spectroscopy. By Grant Bunker. p. viii + 260. Cambridge University Press, 2010..J Synchrotron Rad2011;18:818

[25]

Crozier RED,Ingalls R.X-ray absorption: principles, applications, techniques of exafs, sexafs, and xanes.1988;New YorkWiley

[26]

Hayes T.Extended x-ray absorption fine structure spectroscopy.1983;Elsevier173-351

[27]

Henderson GS,Moulton BJA.X-ray absorption near-edge structure (XANES) spectroscopy..Reviews in Mineralogy and Geochemistry2014;78:75-138

[28]

Newville M.Fundamentals of XAFS..Reviews in Mineralogy and Geochemistry2014;78:33-74

[29]

Bunker G.Application of the ratio method of EXAFS analysis to disordered systems..Nucl Instrum Methods Phys Res A1983;207:437-44

[30]

Fornasini P,Sanson A.On the cumulant analysis of EXAFS in crystalline solids..J Synchrotron Radiat2001;8:1214-20

[31]

Busing WR.The effect of thermal motion on the estimation of bond lengths from diffraction measurements..Acta Cryst1964;17:142-6

[32]

Vaccari M,Fornasini P,Sanson A.Negative thermal expansion in CuCl: an extended x-ray absorption fine structure study..Phys Rev B2007;75:

[33]

Ahmed SI,Novello N,Grisenti R.Local vibrational properties of GaAs studied by extended X-ray absorption fine structure..J Chem Phys2013;139:164512

[34]

Yoshiasa A,Maeda H.The mean-square relative displacement and displacement correlation functions in tetrahedrally and octahedrally coordinated A(N)B(8-N) crystals..Jpn J Appl Phys1997;36:781-4

[35]

Sanson A,Dalba G.Negative thermal expansion and local dynamics in Cu2O and Ag2O..Phys Rev B2006;73:

[36]

Fornasini P,Dalba G.Extended x-ray-absorption fine-structure measurements of copper: local dynamics, anharmonicity, and thermal expansion..Phys Rev B2004;70:

[37]

Dalba G,Grisenti R.Sensitivity of extended x-ray-absorption fine structure to thermal expansion..Phys Rev Lett1999;82:4240-3

[38]

Sanson A.Local dynamical properties of crystalline germanium and their effects in extended x-ray absorption fine structure..Phys Rev B2010;81:

[39]

Cusack NE.The physics of structurally disordered matter: an introduction..Physics Today1988;41:110-2

[40]

Tranquada JM.Extended x-ray - absorption fine-structure study of anharmonicity in CuBr..Phys Rev B1983;28:3520-8

[41]

Stern EA,Zhang Z.Thermal vibration and melting from a local perspective..Phys Rev B Condens Matter1991;43:8850-60

[42]

Dalba G,Grisenti R,Diop D.Anharmonicity effects on the extended x-ray-absorption fine structure: the case of cadmium selenide..Phys Rev B1998;58:4793-802

[43]

Sanson A.Bond thermal expansion and effective pair potential in crystals: the case of cadmium selenide..J Phys Condens Matter2011;23:315401

[44]

Comaschi T,Mobilio S.Thermal dependent anharmonicity effects on gold bulk studied by extended x-ray-absorption fine structure..J Phys Condens Matter2009;21:325404

[45]

Kamishima O,Maeda H.EXAFS study on temperature dependence of nearest neighbor distance in CuBr..Solid State Communications1997;103:141-4

[46]

Dalba G,Gotter R.Anharmonicity effects on the extended x-ray-absorption fine structure: the case of beta -AgI..Phys Rev B Condens Matter1995;52:149-57

[47]

Frenkel AI.Thermal expansion and x-ray-absorption fine-structure cumulants..Phys Rev B Condens Matter1993;48:585-8

[48]

Yokoyama T.Path-integral effective-potential theory for EXAFS cumulants compared with the second-order perturbation..J Synchrotron Radiat1999;6:323-5

[49]

Van Hung N.Anharmonic correlated Einstein-model Debye-Waller factors..Phys Rev B1997;56:43-6

[50]

Van Hung N.Anharmonic effective potential, correlation effects, and EXAFS cumulants calculated from a morse interaction potential for fcc metals..J Phys Soc Jpn2007;76:084601

[51]

Hung NV,Duc NB.High-order expanded XAFS Debye-Waller factors of HCP crystals based on classical anharmonic correlated Einstein model..Mod Phys Lett B2014;28:1450174

[52]

Vila FD,Rehr JJ.X-ray absorption Debye-Waller factors from ab initio molecular dynamics..Phys Rev B2012;85:

[53]

Miyanaga T.Quantum statistical approach to Debye-Waller factors in EXAFS, EELS and ARXPS. VI. Path-integral approach to morse potential systems..J Phys Soc Jpn1998;67:2930-7

[54]

Rehr JJ.Theoretical approaches to x-ray absorption fine structure..Rev Mod Phys2000;72:621-54

[55]

Rehr JJ,Vila FD,Jorissen K.Parameter-free calculations of X-ray spectra with FEFF9..Phys Chem Chem Phys2010;12:5503-13

[56]

Purans J,Dalba G.Isotopic effect in extended x-ray-absorption fine structure of germanium..Phys Rev Lett2008;100:055901

[57]

Sanson A.Isotopic effect on the local dynamics of crystalline germanium..Solid State Sciences2010;12:1988-92

[58]

Yokoyama T,Sato H.Thermal expansion and anharmonicity of solid Kr studied by extended x-ray-absorption fine structure..Phys Rev B1997;55:11320-9

[59]

Sanson A.On the neglecting of higher-order cumulants in EXAFS data analysis..J Synchrotron Radiat2009;16:864-8

[60]

Jeong I,Graf MJ.Lattice dynamics and correlated atomic motion from the atomic pair distribution function..Phys Rev B2003;67:

[61]

Beccara SA.Path-integral Monte Carlo calculation of the effects of thermal disorder in extended x-ray-absorption fine structure of copper..Phys Rev B2008;77:

[62]

Maradudin AA,Weiss GH.Theory of lattice dynamics in the harmonic approximation.1971;New YorkAcademic Press

[63]

Sevillano E,Rehr JJ.Extended x-ray absorption fine structure Debye-Waller factors. I. Monatomic crystals..Phys Rev B1979;20:4908-11

[64]

Vaccari M.Einstein and Debye models for EXAFS parallel and perpendicular mean-square relative displacements..J Synchrotron Radiat2006;13:321-5

[65]

Hu L,Sanson A.New insights into the negative thermal expansion: direct experimental evidence for the “Guitar-String” effect in cubic ScF3..J Am Chem Soc2016;138:8320-3

[66]

Li CW,Muñoz JA.Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3..Phys Rev Lett2011;107:195504

[67]

Sanson A.On the Einstein model for EXAFS parallel and perpendicular mean-square relative displacements..J Synchrotron Radiat2008;15:514-8

[68]

Timoshenko J,Kalinko A.Local structure and dynamics of wurtzite-type ZnO from simulation-based EXAFS analysis: local structure and dynamics of wurtzite-type ZnO from simulation-based EXAFS analysis..Phys Status Solidi C2014;11:1472-5

[69]

Jonane I,Timoshenko J.Temperature-dependent EXAFS study of the local structure and lattice dynamics in cubic Y2O3..J Synchrotron Radiat2016;23:510-8

[70]

Timoshenko J,Purans J.Molecular dynamics simulations of EXAFS in germanium..Open Physics2011;9:

[71]

Yokoyama T.Path-integral effective-potential method applied to extended x-ray-absorption fine-structure cumulants..Phys Rev B1998;57:3423-32

[72]

Beccara S,Fornasini P.Local thermal expansion in copper: Extended x-ray-absorption fine-structure measurements and path-integral Monte Carlo calculations..Phys Rev B2003;68:

[73]

Palmer BJ,Fulton JL.Direct modeling of EXAFS spectra from molecular dynamics simulations..J Phys Chem1996;100:13393-8

[74]

Price SWT,Skylaris C,Ravel B.Fitting EXAFS data using molecular dynamics outputs and a histogram approach..Phys Rev B2012;85:

[75]

Kuzmin A,Efimova E,Pascarelli S.Interpretation of the Co K-edge EXAFS in LaCoO3 using molecular dynamics simulations..Solid State Ionics2011;188:21-4

[76]

Bocharov D,Rafalskij Y,Purans J.Ab initio molecular dynamics simulations of negative thermal expansion in ScF3: the effect of the supercell size..Computational Materials Science2020;171:109198

[77]

Sanson A.Toward an understanding of the local origin of negative thermal expansion in ZrW2O8: limits and inconsistencies of the tent and rigid unit mode models..Chem Mater2014;26:3716-20

[78]

Bocharov D,Timoshenko J,Krack M.Interpretation of the Cu K-edge EXAFS spectra of Cu3N using ab initio molecular dynamics..Radiation Physics and Chemistry2020;175:108100

[79]

Roscioni OM,Price SWT,Comaschi T.Computational prediction of L3 EXAFS spectra of gold nanoparticles from classical molecular dynamics simulations..Phys Rev B2011;83:

[80]

Mierzwa B.EXAFS studies of bimetallic palladium-cobalt nanoclusters using Molecular Dynamics simulations..J Alloys Compd2005;401:127-34

[81]

Anspoks A.Interpretation of the Ni K-edge EXAFS in nanocrystalline nickel oxide using molecular dynamics simulations..J Non Cryst Solids2011;357:2604-10

[82]

Rybicki J,Witkowska A.The structure of lead-silicate glasses: molecular dynamics and EXAFS studies..J Phys: Condens Matter2001;13:9781-97

[83]

Rossano S,Delaye JM.Iron surrounding in CaO-FeO-2SiO2 glass: EXAFS and molecular dynamics simulation..J Synchrotron Radiat1999;6:247-8

[84]

Dziegielewski P,Kantor I.High pressure atomic structure of Zr-Cu metallic glass via EXAFS spectroscopy and molecular dynamics simulations..High Pressure Research2020;40:54-64

[85]

Migliorati V,Aquilanti G.Combining EXAFS spectroscopy and molecular dynamics simulations to understand the structural and dynamic properties of an imidazolium iodide ionic liquid..Phys Chem Chem Phys2015;17:2464-74

[86]

Serva A,Spezia R.How does CeIII nitrate dissolve in a protic ionic liquid? a combined molecular dynamics and EXAFS study..Chemistry2017;23:8424-33

[87]

Busato M,D’Angelo P.Coordination of the Co2+ and Ni2+ ions in Tf2N- based ionic liquids: a combined x-ray absorption and molecular dynamics study..J Phys Chem B2021;125:6639-48 PMCID:PMC8279557

[88]

Rockenberger J,Kornowski A.EXAFS studies on the size dependence of structural and dynamic properties of CdS nanoparticles..J Phys Chem B1997;101:2691-701

[89]

Araujo LL,de M. Azevedo G.Vibrational properties of Ge nanocrystals determined by EXAFS..Phys Rev B2006;74:

[90]

Gilbert B,Zhang H,Banfield JF.Nanoparticles: strained and stiff..Science2004;305:651-4

[91]

Rockenberger J,Rogach AL.The contribution of particle core and surface to strain, disorder and vibrations in thiolcapped CdTe nanocrystals..J Chem Phys1998;108:7807-15

[92]

Sprouster DJ,Araujo LL.Structural and vibrational properties of Co nanoparticles formed by ion implantation..J Appl Phys2010;107:014313

[93]

Comaschi T,Mobilio S.Temperature dependence of the structural parameters of gold nanoparticles investigated with EXAFS..Phys Rev B2008;77:

[94]

Li WH,Yang CC.Thermal contraction of au nanoparticles..Phys Rev Lett2002;89:135504

[95]

Duan Z,Timoshenko J.A combined theoretical and experimental EXAFS study of the structure and dynamics of Au147 nanoparticles..Catal Sci Technol2016;6:6879-85

[96]

Timoshenko J,Henkelman G,Frenkel AI.Solving the structure and dynamics of metal nanoparticles by combining X-Ray absorption fine structure spectroscopy and atomistic structure simulations..Annu Rev Anal Chem (Palo Alto Calif)2019;12:501-22

[97]

Hu L,Sanson A.Localized symmetry breaking for tuning thermal expansion in ScF3 nanoscale frameworks..J Am Chem Soc2018;140:4477-80

[98]

Mary TA,Vogt T.Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8..Science1996;272:90-2

[99]

Cai W.Giant negative linear compression positively coupled to massive thermal expansion in a metal-organic framework..Nat Commun2014;5:4337

[100]

Chen J,Deng J.Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications..Chem Soc Rev2015;44:3522-67

[101]

Cao D,Kowach GR.Frustrated soft modes and negative thermal expansion in ZrW2O8..Phys Rev Lett2002;89:215902

[102]

Cao D,Kowach GR.Correlated atomic motions in the negative thermal expansion material ZrW2O8: a local structure study..Phys Rev B2003;68:

[103]

Beccara S,Fornasini P,Sanson A.Local thermal expansion in a cuprite structure: the case of Ag(2)O..Phys Rev Lett2002;89:025503

[104]

Dapiaggi M,Artioli G,Fornasini P.The thermal behaviour of cuprite: An XRD-EXAFS combined approach..Nucl Instrum Methods Phys Res B2003;200:231-6

[105]

Hammonds KD,Giddy AP,Winkler B.Rigid-unit phonon modes and structural phase transitions in framework silicates..American Mineralogist1996;81:1057-79

[106]

Sanson A.Tension effect in local dynamics of cuprite structures..Solid State Sciences2009;11:1489-93

[107]

Abd el All N,Diop D.Negative thermal expansion in crystals with the zincblende structure: an EXAFS study of CdTe..J Phys Condens Matter2012;24:115403

[108]

Barrera GD,Barron THK.Negative thermal expansion..J Phys: Condens Matter2005;17:R217-52

[109]

Qin F,Aydemir U.Isotropic zero thermal expansion and local vibrational dynamics in (Sc,Fe)F3..Inorg Chem2017;56:10840-3

[110]

Purans J,Ali SE,Kuzmin A.X-ray absorption spectroscopy study of local dynamics and thermal expansion in ReO3..Phys Rev B2015;92:

[111]

Zakaria MB.Recent advances in Prussian blue and Prussian blue analogues: synthesis and thermal treatments..Coordination Chemistry Reviews2017;352:328-45

[112]

Chapman KW,Kepert CJ.Compositional dependence of negative thermal expansion in the prussian blue analogues MIIPtIV(CN)6 (M: Mn, Fe, Co, Ni, Cu, Zn, Cd)..ChemInform2006;37:

[113]

Gao Q,Sun Q.Low-frequency phonon driven negative thermal expansion in cubic GaFe(CN)6 prussian blue analogues..Inorg Chem2018;57:10918-24

[114]

Shi N,Sanson A.Negative thermal expansion in cubic FeFe(CN)6 Prussian blue analogues..Dalton Trans2019;48:3658-63

[115]

Gao Q,Shi N.Large isotropic negative thermal expansion in water-free Prussian blue analogues of ScCo(CN)6..Scripta Materialia2020;187:119-24

[116]

Gao Q,Sun Q.Switching between giant positive and negative thermal expansions of a YFe(CN)6-based prussian blue analogue induced by guest species..Angew Chem Int Ed Engl2017;56:9023-8

[117]

Gao Q,Sanson A.Tunable thermal expansion from negative, zero, to positive in cubic prussian blue analogues of GaFe(CN)6..Inorg Chem2018;57:14027-30

[118]

Gao Q,Venier A.Effect of H2O molecules on thermal expansion of TiCo(CN)6..Inorg Chem2020;59:14852-5

[119]

Lanzara A,Bianconi A,Bordet P.Anomalous local atomic correlations in HgBa2CuO4+δ..Phys Rev B1999;59:3851-4

[120]

Joseph B,Malavasi L.Temperature-dependent local structure of NdFeAsO(1-x)F(x) system using arsenic K-edge extended x-ray absorption fine structure..J Phys Condens Matter2011;23:265701

[121]

Chu W,Chu S.Iron isotope effect and local lattice dynamics in the (Ba, K)Fe2As2 Superconductor studied by temperature-dependent EXAFS..Sci Rep2013;3:

[122]

Paris E,Wakita T.Temperature dependent local atomic displacements in ammonia intercalated iron selenide superconductor..Sci Rep2016;6:27646 PMCID:PMC4899715

[123]

Saini NL,Ito T.Temperature dependent local Cu-O displacements from underdoped to overdoped La-Sr-Cu-O superconductor..The European Physical Journal B - Condensed Matter2003;36:75-80

[124]

Saini NL,Oyanagi H,Iyo A.Temperature-dependent local structure in the Nb3Ge superconductor studied by high-resolution Ge K -edge EXAFS measurements..Phys Rev B2003;68:

[125]

Chu WS,Yu MJ.Correlation between local vibrations and metal mass in AlB2-type transition-metal diborides..J Synchrotron Radiat2009;16:30-7

[126]

Yokoyama T,Kiguchi M,Kojima N.Spin-crossover phase transition of a chain Fe(II) complex studied by x-ray-absorption fine-structure spectroscopy..Phys Rev B1998;58:14238-44

[127]

Yokoyama T.Anharmonicity and quantum effects in thermal expansion of an Invar alloy..Phys Rev Lett2011;107:065901

[128]

Panchwanee A,Mobilio S.An evidence of local structural disorder across spin-reorientation transition in DyFeO3: an extended x-ray absorption fine structure (EXAFS) study..J Phys Condens Matter2019;31:345403

[129]

Fischer M,Maglione M.Local disorder studied in SrTiO3 at low temperature by EXAFS spectroscopy..Phys Rev B Condens Matter1994;49:12451-6

[130]

Sanson A,Pascarelli S.Local vibrational dynamics of hematite (α-Fe2O3) studied by extended x-ray absorption fine structure and molecular dynamics..J Chem Phys2014;140:224504

[131]

Miyanaga T,Ikeda S.Study of the local structure changes in PbTiO 3 by Pb L III EXAFS..Ferroelectrics2002;274:41-53

[132]

Subías G,Blasco J.Local structure at the manganese site in mixed-valence manganites..Phys Rev B1998;57:748-54

[133]

Yang CY,Sayers DE.Determination of bond strengths of arsenic and arsenic chalcogen compounds using the temperature dependence of extended x-ray-absorption fine structure..Phys Rev B Condens Matter1987;36:980-8

[134]

Sanson A,Armellini C,Grisenti R.Local study on the MoO4 units in AgI-doped silver molybdate glasses..J Non Cryst Solids2008;354:94-7

[135]

Sanson A,Dalba G,Grisenti R.Influence of temperature on the local structure around iodine in fast-ion-conducting AgI:Ag2 MoO4 glasses..New J Phys2007;9:88

[136]

Siqueira MC,Araujo RM,Stolf SF.Structural and thermal investigations of an amorphous GaSe9 alloy using EXAFS, cumulant expansion, and reverse Monte Carlo simulations..J Chem Phys2015;142:054504

[137]

Yoshitake H,Tatsumi T.XAFS study on the local structure of Ti in amorphous mesoporous titania..Phys Chem Chem Phys2003;3:767-72

[138]

Strauch D,Nerb N.Atomic thermal vibrations in semiconductors: Ab initio calculations and EXAFS measurements..Physica B: Condensed Matter1996;219-220:436-8

AI Summary AI Mindmap
PDF

53

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/