Thermal expansion coefficient of monolayer MoS2 determined using temperature-dependent Raman spectroscopy combined with finite element simulations

Yang Yang , Zhongtao Lin , Renfei Li , Yutong Li , Wuguo Liu , Shibing Tian , Ke Zhu , Lianchun Long

Microstructures ›› 2021, Vol. 1 ›› Issue (1) : 2021002

PDF
Microstructures ›› 2021, Vol. 1 ›› Issue (1) :2021002 DOI: 10.20517/microstructures.2021.02
Research Article
Research Article

Thermal expansion coefficient of monolayer MoS2 determined using temperature-dependent Raman spectroscopy combined with finite element simulations

Author information +
History +
PDF

Abstract

The thermal expansion coefficient is an important parameter of monolayer MoS2 that affects the performance of its related optoelectronic devices. To obtain the thermal expansion coefficient of monolayer MoS2, suspended and supported MoS2 are systematically investigated using micro-Raman spectroscopy in a temperature range of 77-557 K. Obvious differences in the temperature-dependent evolution of the Raman peaks between suspended and supported MoS2 are observed, which result from the thermal expansion coefficient mismatch between MoS2 and the substrate. With the help of the finite element method, the thermal strain in suspended and supported MoS2 is calculated and used to deduce the thermal expansion coefficient mismatch-induced Raman shift. By matching the simulation and experimental results, the thermal expansion coefficient of MoS2 is identified through the numerical inversion calculation. Our results demonstrate that the combination of micro-Raman spectroscopy and finite element simulations is highly effective for identifying the intrinsic thermal expansion coefficient of two-dimensional materials.

Keywords

Monolayer MoS2 / thermal expansion coefficient / Raman spectroscopy / finite element method

Cite this article

Download citation ▾
Yang Yang, Zhongtao Lin, Renfei Li, Yutong Li, Wuguo Liu, Shibing Tian, Ke Zhu, Lianchun Long. Thermal expansion coefficient of monolayer MoS2 determined using temperature-dependent Raman spectroscopy combined with finite element simulations. Microstructures, 2021, 1(1): 2021002 DOI:10.20517/microstructures.2021.02

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chhowalla M,Zhang H.Two-dimensional transition metal dichalcogenide (TMD) nanosheets..Chem Soc Rev2015;44:2584-6

[2]

Lv R,Schaak RE.Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets..Acc Chem Res2015;3:897

[3]

Huang X,Zhang H.Metal dichalcogenide nanosheets: preparation, properties and applications..Chem Soc Rev2013;42:1934-46

[4]

Chhowalla M,Eda G,Loh KP.The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets..Nat Chem2013;5:263-75

[5]

Ding Y,Ni J,Shi S.First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers..Physica B Condens Matter2011;406:2254-60

[6]

Mak KF,Hone J,Heinz TF.Atomically thin MoS2: a new direct-gap semiconductor..Phys Rev Lett2010;105:136805

[7]

Radisavljevic B,Brivio J,Kis A.Single-layer MoS2 transistors..Nat Nanotechnol2011;6:147-50

[8]

Yu Y,Xu C.Engineering substrate interactions for high luminescence efficiency of transition-metal dichalcogenide monolayers..Adv Funct Mater2016;26:4733-9

[9]

Dai Z,Zhang Z.Strain engineering of 2D materials: issues and opportunities at the interface..Adv Mater2019;31:e1805417

[10]

Yan Z,Khan JM.Graphene quilts for thermal management of high-power GaN transistors..Nat Commun2012;3:827

[11]

Sevik C.Assessment on lattice thermal properties of two-dimensional honeycomb structures: Graphene, h-BN, h-MoS2, and h-MoSe2..Phys Rev B2014;89:

[12]

Ding Y.Thermal expansion tensors, Grüneisen parameters and phonon velocities of bulk MT 2 (M = W and Mo; T = S and Se) from first principles calculations..RSC Adv2015;5:18391-400

[13]

Huang LF,Zeng Z.Correlation between structure, phonon spectra, thermal expansion, and thermomechanics of single-layer MoS2..Phys Rev B2014;90:

[14]

Yuan J,Lu Q,Chen X.First-principles study of the phonon vibrational spectra and thermal properties of hexagonal MoS2..Solid State Sciences2015;40:1-6

[15]

Liang L,Sumpter BG,Tan PH.Low-frequency shear and layer-breathing modes in Raman scattering of two-dimensional materials..ACS Nano2017;11:11777-802

[16]

Wang Y,Qiu C.Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain..Small2013;9:2857-61

[17]

Saigal N,Čapeta D.Effect of lithium doping on the optical properties of monolayer MoS2..Appl Phys Lett2018;112:121902

[18]

Huang X,Liu L.Raman spectra evidence for the covalent-like quasi-bonding between exfoliated MoS2 and Au films..Sci China Inf Sci2021;64:

[19]

Mouri S,Nanishi Y.Thermal conductivity of van der Waals hetero-bilayer of MoS2/MoSe2..Appl Phys Express2020;13:075001

[20]

Zhang L,Song Y.Thermal expansion coefficient of monolayer molybdenum disulfide using micro-raman spectroscopy..Nano Lett2019;19:4745-51

[21]

Lin Z,Tian S,Huang Y.Thermal expansion coefficient of few-layer MoS2 studied by temperature-dependent Raman spectroscopy..Sci Rep2021;11:7037

[22]

Huang Y,Yang R.Universal mechanical exfoliation of large-area 2D crystals..Nat Commun2020;11:2453

[23]

Baek SH,Choi W.Large-area growth of uniform single-layer MoS2 thin films by chemical vapor deposition..Nanoscale Res Lett2015;10:388 PMCID:PMC4595407

[24]

Yang Y,Lin Z.Micro-defects in monolayer MoS2 studied by low-temperature magneto-Raman mapping..J Phys Chem C2020;124:17418-22

[25]

Chakraborty B,Sood AK.Layer-dependent resonant Raman scattering of a few layer MoS2: Raman scattering of a few layer MoS2..J Raman Spectrosc2013;44:92-6

[26]

Tian S,Liu Z.Temperature-dependent Raman investigation on suspended graphene: Contribution from thermal expansion coefficient mismatch between graphene and substrate..Carbon2016;104:27-32

[27]

Huang X,Yang T,Cheng HM.Quantitative analysis of temperature dependence of raman shift of monolayer WS2..Sci Rep2016;6:32236 PMCID:PMC5006054

[28]

Chen Y,Zhu Y.Temperature-dependent photoluminescence emission and Raman scattering from Mo1-x W x S2 monolayers..Nanotechnology2016;27:445705

[29]

Late DJ,Waghmare UV,Rao CN.Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single- and few-layer MoSe2 and WSe2..Chemphyschem2014;15:1592-8

[30]

Zouboulis ES.Raman scattering in diamond up to 1900 K..Phys Rev B Condens Matter1991;43:12490-3

[31]

Su L,Cao L.In situ monitoring of the thermal-annealing effect in a monolayer of MoS2..Phys Rev Applied2017;7:

[32]

Chakraborty B,Muthu DVS,Waghmare UV.Symmetry-dependent phonon renormalization in monolayer MoS2 transistor..Phys Rev B2012;85:

[33]

Iqbal MW,Akbar R.A review on Raman finger prints of doping and strain effect in TMDCs..Microelectron Eng2020;219:111152

[34]

Yoon D,Cheong H.Negative thermal expansion coefficient of graphene measured by Raman spectroscopy..Nano Lett2011;11:3227-31

[35]

McCreary A,Amani M.Effects of uniaxial and biaxial strain on few-layered terrace structures of MoS2 grown by vapor transport..ACS Nano2016;10:3186-97

[36]

Zhang H.Electronic, thermal expanding, and optical absorption properties of transition metal dichalcogenides: a first-principles study..J Wuhan Univ Technol-Mat Sci Edit2018;33:1355-9

[37]

Hu X,Jokisaari J,Salehi-Khojin A.Mapping thermal expansion coefficients in freestanding 2D materials at the nanometer scale..Phys Rev Lett2018;120:055902

AI Summary AI Mindmap
PDF

43

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/