miRNA interplay: Mechanisms and therapeutic interventions in cancer

Zehua Wang , Hangxuan Wang , Shuhan Zhou , Jiasheng Mao , Zhiqing Zhan , Shiwei Duan

MEDCOMM - Oncology ›› 2024, Vol. 3 ›› Issue (4) : e93

PDF
MEDCOMM - Oncology ›› 2024, Vol. 3 ›› Issue (4) : e93 DOI: 10.1002/mog2.93
REVIEW ARTICLE

miRNA interplay: Mechanisms and therapeutic interventions in cancer

Author information +
History +
PDF

Abstract

MicroRNAs (miRNAs) are key molecules that regulate gene expression. miRNAs regulate protein synthesis by binding to mRNA, influencing processes such as cell proliferation, metastasis, and apoptosis. They play a pivotal role in cancer development. Current research mainly explores miRNA mechanisms and applications, and the techniques underpinning this research are foundational to both basic science and clinical translation. However, no review has comprehensively examined miRNA mechanisms and applications from a technical perspective, creating a need for this work. Advances in RNA sequencing technology, CRISPR/Cas9 technology, and bioinformatics tools have deepened our understanding of miRNA interactions. miRNA can serve as a biomarker for cancer diagnosis and prognosis, with significant clinical potential. The development of miRNA mimics and inhibitors has brought new hope for cancer treatment, especially in reversing cancer drug resistance. This article reviews the vital role of miRNA interactions in cancer occurrence, development, diagnosis, and treatment, providing new perspectives and strategies for personalized medicine and cancer therapy.

Keywords

biomarkers / cancer / microRNAs / therapeutics

Cite this article

Download citation ▾
Zehua Wang, Hangxuan Wang, Shuhan Zhou, Jiasheng Mao, Zhiqing Zhan, Shiwei Duan. miRNA interplay: Mechanisms and therapeutic interventions in cancer. MEDCOMM - Oncology, 2024, 3(4): e93 DOI:10.1002/mog2.93

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MacfarlaneLA, R. Murphy P. MicroRNA: biogenesis, function and role in cancer. Curr Genomics. 2010;11(7):537-561.

[2]

HeB, ZhaoZ, CaiQ, et al. miRNA-based biomarkers, therapies, and resistance in cancer. Int J Biol Sci. 2020;16(14):2628-2647.

[3]

O’BrienJ, HayderH, ZayedY, et al. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018;9:402.

[4]

SaliminejadK, Khorram Khorshid HR, Soleymani FardS, GhaffariSH. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234(5):5451-5465.

[5]

RyczekN, Łyś A, MakałowskaI. The functional meaning of 5’UTR in protein-coding genes. Int J Mol Sci. 2023;24(3):2976.

[6]

TufekciKU, Meuwissen RL, GencS. The role of microRNAs in biological processes. Methods Mol Biol. 2014;1107:15-31.

[7]

VishnoiA, RaniS. MiRNA biogenesis and regulation of diseases: an overview. Methods Mol Biol. 2017;1509:1-10.

[8]

WithanageMHH, LiangH, ZengE. RNA-Seq experiment and data analysis. Methods Mol Biol. 2022;2418:405-424.

[9]

BenesovaS, Kubista M, ValihrachL. Small RNA-sequencing: approaches and considerations for miRNA analysis. Diagnostics. 2021;11(6):964.

[10]

PengJ, SunBF, ChenCY, et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 2019;29(9):725-738.

[11]

TanZ, ChenX, ZuoJ, FuS, WangH, Wang J. Comprehensive analysis of scRNA-Seq and bulk RNA-Seq reveals dynamic changes in the tumor immune microenvironment of bladder cancer and establishes a prognostic model. J Transl Med. 2023;21(1):223.

[12]

NookaewI, PapiniM, PornputtapongN, et al. A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in saccharomyces cerevisiae. Nucleic Acids Res. 2012;40(20):10084-10097.

[13]

ShiJ, ZhangY, TanD, et al. PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications. Nat Cell Biol. 2021;23(4):424-436.

[14]

SekiM, Katsumata E, SuzukiA, et al. Evaluation and application of RNA-Seq by MinION. DNA Res. 2019;26(1):55-65.

[15]

ChangH, YiB, MaR, ZhangX, ZhaoH, Xi Y. CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep. 2016;6:22312.

[16]

ZhangY, WangLY, LiJZ, JiangPF, HuJD, ChenBY. CRISPR/Cas9-mediated microRNA-21 knockout increased imatinib sensitivity in chronic myeloid leukemia cells. Zhonghua xue ye xue za zhi =Zhonghua xueyexue zazhi. 2021;42(3):243-249.

[17]

HussenBM, RasulMF, AbdullahSR, et al. Targeting miRNA by CRISPR/Cas in cancer: advantages and challenges. Mil Med Res. 2023;10(1):32.

[18]

FonfaraI, Richter H, BratovičM, Le RhunA, Charpentier E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature. 2016;532(7600):517-521.

[19]

LuY, ChanYT, WuJ, et al. CRISPR/Cas9 screens unravel miR-3689a-3p regulating sorafenib resistance in hepatocellular carcinoma via suppressing CCS/SOD1-dependent mitochondrial oxidative stress. Drug Resist Updates. 2023;71:101015.

[20]

PacesaM, PeleaO, JinekM. Past, present, and future of CRISPR genome editing technologies. Cell. 2024;187(5):1076-1100.

[21]

Ali SyedaZ, Langden SSS, MunkhzulC, LeeM, SongSJ. Regulatory mechanism of MicroRNA expression in cancer. Int J Mol Sci. 2020;21(5):1723.

[22]

HuangZ, KallerM, HermekingH. CRISPR/Cas9-mediated inactivation of miR-34a and miR-34b/c in HCT116 colorectal cancer cells: comprehensive characterization after exposure to 5-FU reveals EMT and autophagy as key processes regulated by miR-34. Cell Death Differ. 2023;30(8):2017-2034.

[23]

ChenL, Heikkinen L, WangC, YangY, SunH, WongG. Trends in the development of miRNA bioinformatics tools. Brief Bioinform. 2019;20(5):1836-1852.

[24]

BetelD, KoppalA, AgiusP, Sander C, LeslieC. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010;11(8):R90.

[25]

KozomaraA, Birgaoanu M, Griffiths-JonesS. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155-D162.

[26]

AgarwalV, BellGW, NamJW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4:e05005.

[27]

LallS, Grün D, KrekA, et al. A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol. 2006;16(5):460-471.

[28]

KrugerJ, Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 2006;34(Web Server issue):W451-W454.

[29]

KaragkouniD, Paraskevopoulou MD, ChatzopoulosS, et al. DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA-gene interactions. Nucleic Acids Res. 2018;46(D1):D239-D245.

[30]

LoherP, Rigoutsos I. Interactive exploration of RNA22 microRNA target predictions. Bioinformatics. 2012;28(24):3322-3323.

[31]

HuangJC, BabakT, CorsonTW, et al. Using expression profiling data to identify human microRNA targets. Nat Methods. 2007;4(12):1045-1049.

[32]

BhattacharyaA, Ziebarth JD, CuiY. PolymiRTS database 3.0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways. Nucleic Acids Res. 2014;42(Database issue):D86-D91.

[33]

ChenY, WangX. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127-D131.

[34]

ChoS, JangI, JunY, et al. MiRGator v3.0: a microRNA portal for deep sequencing, expression profiling and mRNA targeting. Nucleic Acids Res. 2013;41:252-257.

[35]

XiaoF, ZuoZ, CaiG, KangS, GaoX, LiT. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 2009;37:D105-D110.

[36]

HeikkinenL, Kolehmainen M, WongG. Prediction of microRNA targets in Caenorhabditis elegans using a self-organizing map. Bioinformatics. 2011;27(9):1247-1254.

[37]

TokarT, Pastrello C, RossosAEM, et al. mirDIP 4.1-integrative database of human microRNA target predictions. Nucleic Acids Res. 2018;46(D1):D360-D370.

[38]

ChouCH, Shrestha S, YangCD, et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2018;46(D1):D296-D302.

[39]

DaiX, ZhaoPX. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res. 2011;39:W155-W159.

[40]

ChengS, GuoM, WangC, Liu X, LiuY, WuX. MiRTDL: a deep learning approach for miRNA target prediction. IEEE/ACM Trans Comput Biol Bioinf. 2016;13(6):1161-1169.

[41]

TastsoglouS, Alexiou A, KaragkouniD, SkoufosG, Zacharopoulou E, HatzigeorgiouAG. DIANA-microT 2023: including predicted targets of virally encoded miRNAs. Nucleic Acids Res. 2023;51(W1):W148-W153.

[42]

Van PeerG, De Paepe A, StockM, et al. miSTAR: miRNA target prediction through modeling quantitative and qualitative miRNA binding site information in a stacked model structure. Nucleic Acids Res. 2017;45(7):e51.

[43]

PerdikopanisN, Georgakilas GK, GrigoriadisD, et al. DIANA-miRGen v4: indexing promoters and regulators for more than 1500 microRNAs. Nucleic Acids Res. 2021;49(D1):D151-D159.

[44]

TastsoglouS, Skoufos G, MiliotisM, et al. DIANA-miRPath v4.0: expanding target-based miRNA functional analysis in cell-type and tissue contexts. Nucleic Acids Res. 2023;51(W1):W154-W159.

[45]

LiJH, LiuS, ZhouH, Qu LH, YangJH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92-D97.

[46]

DweepH, GretzN. miRWalk2.0: a comprehensive Atlas of microRNA-target interactions. Nat Methods. 2015;12(8):697.

[47]

ChouCH, LinFM, ChouMT, et al. A computational approach for identifying microRNA-target interactions using high-throughput CLIP and PAR-CLIP sequencing. BMC Genom. 2013;14(suppl 1):S2.

[48]

BottiniS, Hamouda-Tekaya N, TanasaB, et al. From benchmarking HITS-CLIP peak detection programs to a new method for identification of miRNA-binding sites from Ago2-CLIP data. Nucleic Acids Res. 2017;45(9):gkx007.

[49]

AhadiA, SablokG, HutvagnerG. miRTar2GO: a novel rule-based model learning method for cell line specific microRNA target prediction that integrates Ago2 CLIP-Seq and validated microRNA-target interaction data. Nucleic Acids Res. 2017;45(6):e42.

[50]

YangS, WangY, LinY, ShaoD, HeK, HuangL. LncMirNet: predicting LncRNA-miRNA interaction based on deep learning of ribonucleic acid sequences. Molecules. 2020;25(19):4372.

[51]

WuR, MaR, DuanX, et al. Identification of specific prognostic markers for lung squamous cell carcinoma based on tumor progression, immune infiltration, and stem index. Front Immunol. 2023;14:1236444.

[52]

ChenY, YaoL, TangY, et al. CircNet 2.0: an updated database for exploring circular RNA regulatory networks in cancers. Nucleic Acids Res. 2022;50(D1):D93-D101.

[53]

FengJ, ChenW, DongX, et al. CSCD2: an integrated interactional database of cancer-specific circular RNAs. Nucleic Acids Res. 2022;50(D1):D1179-D1183.

[54]

LiuM, WangQ, ShenJ, Yang BB, DingX. Circbank: a comprehensive database for circRNA with standard nomenclature. RNA Biol. 2019;16(7):899-905.

[55]

DudekulaDB, PandaAC, GrammatikakisI, DeS, Abdelmohsen K, GorospeM. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 2016;13(1):34-42.

[56]

WeiMM, YuCQ, LiLP, YouZH, WangL. BCMCMI: a fusion model for predicting circRNA-miRNA interactions combining semantic and meta-path. J Chem Inf Model. 2023;63(16):5384-5394.

[57]

AlsayedRKME, Sheikhan KSAM, AlamMA, et al. Epigenetic programing of cancer stemness by transcription factors-non-coding RNAs interactions. Sem Cancer Biol. 2023;92:74-83.

[58]

LeTD, LiuL, ZhangJ, Liu B, LiJ. From miRNA regulation to miRNA-TF co-regulation: computational approaches and challenges. Brief Bioinform. 2015;16(3):475-496.

[59]

de VeldeJV, Heyndrickx KS, VandepoeleK. Inference of transcriptional networks inarabidopsisthrough conserved noncoding sequence analysis. Plant Cell. 2014;26(7):2729-2745.

[60]

ZhangX, ShenB, CuiY. Ago HITS-CLIP expands microRNA-mRNA interactions in nucleus and cytoplasm of gastric cancer cells. BMC Cancer. 2019;19(1):29.

[61]

HuangGT, Athanassiou C, BenosPV. mirConnX: condition-specific mRNA-microRNA network integrator. Nucleic Acids Res. 2011;39(Web Server issue):W416-W423.

[62]

FeitosaRMMW, Prieto-Oliveira P, BrentaniH, Machado-LimaA. MicroRNA target prediction tools for animals: where we are at and where we are going to -A systematic review. Comput Biol Chem. 2022;100:107729.

[63]

FanJ, Slowikowski K, ZhangF. Single-cell transcriptomics in cancer: computational challenges and opportunities. Exp Mol Med. 2020;52(9):1452-1465.

[64]

ChaudharyK, Poirion OB, LuL, GarmireLX. Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin Cancer Res. 2018;24(6):1248-1259.

[65]

SumathipalaM, WeissST. Predicting miRNA-based disease-disease relationships through network diffusion on multi-omics biological data. Sci Rep. 2020;10(1):8705.

[66]

ChhabraR. miRNA and methylation: a multifaceted liaison. ChemBioChem. 2015;16(2):195-203.

[67]

LinY, QiX, ChenJ, Shen B. Multivariate competing endogenous RNA network characterization for cancer microRNA biomarker discovery: a novel bioinformatics model with application to prostate cancer metastasis. Precis Clin Med. 2022;5(1):pbac001.

[68]

TianL, ChenF, MacoskoEZ. The expanding vistas of spatial transcriptomics. Nat Biotechnol. 2023;41(6):773-782.

[69]

KongM, HongDH, PaudelS, et al. Metabolomics and miRNA profiling reveals feature of gallbladder cancer-derived biliary extracellular vesicles. Biochem Biophys Res Commun. 2024;705:149724.

[70]

ZhangS, ShenC, LiJ, et al. Identification of hub genes for colorectal cancer with liver metastasis using miRNA-mRNA network. Dis Markers. 2023;2023:2295788.

[71]

HeK, LiWX, GuanD, et al. Regulatory network reconstruction of five essential microRNAs for survival analysis in breast cancer by integrating miRNA and mRNA expression datasets. Funct Integr Genomics. 2019;19(4):645-658.

[72]

ShaoT, WangG, ChenH, et al. Survey of miRNA-miRNA cooperative regulation principles across cancer types. Brief Bioinform. 2019;20(5):1621-1638.

[73]

KumeH, HinoK, GaliponJ, Ui-Tei K. A-to-I editing in the miRNA seed region regulates target mRNA selection and silencing efficiency. Nucleic Acids Res. 2014;42(15):10050-10060.

[74]

CherayM, Etcheverry A, JacquesC, et al. Cytosine methylation of mature microRNAs inhibits their functions and is associated with poor prognosis in glioblastoma multiforme. Mol Cancer. 2020;19(1):36.

[75]

ZhangX, ZhuWY, ShenSY, Shen JH, ChenXD. Biological roles of RNA m7G modification and its implications in cancer. Biol Direct. 2023;18(1):58.

[76]

Correia de SousaM, Gjorgjieva M, DolickaD, et al. Deciphering miRNAs’action through miRNA editing. Int J Mol Sci. 2019;20(24):6249.

[77]

HillM, TranN. miRNA interplay: mechanisms and consequences in cancer. Dis Models Mech. 2021;14(4):dmm047662.

[78]

DienerC, KellerA, MeeseE. The miRNA-target interactions: an underestimated intricacy. Nucleic Acids Res. 2024;52(4):1544-1557.

[79]

DharapA, Pokrzywa C, MuraliS, PandiG, Vemuganti R. MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS ONE. 2013;8(11):e79467.

[80]

YaoW, GuoG, ZhangQ, Fan L, WuN, BoY. The application of multiple miRNA response elements enables oncolytic adenoviruses to possess specificity to glioma cells. Virology. 2014;458-459:69-82.

[81]

HaM, KimVN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509-524.

[82]

KangD, LeeY, LeeJS. RNA-binding proteins in cancer: functional and therapeutic perspectives. Cancers. 2020;12(9):2699.

[83]

SeoY, RhimJ, KimJH. RNA-binding proteins and exoribonucleases modulating miRNA in cancer: the enemy within. Exp Mol Med. 2024;56(5):1080-1106.

[84]

HillM, TranN. MicroRNAs regulating MicroRNAs in cancer. Trends Cancer. 2018;4(7):465-468.

[85]

OdameE, ChenY, ZhengS, et al. Enhancer RNAs: transcriptional regulators and workmates of NamiRNAs in myogenesis. Cell Mol Biol Lett. 2021;26(1):4.

[86]

LiangY, LuQ, LiW, et al. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res. 2021;49(15):8556-8572.

[87]

FusoA, RaiaT, OrticelloM, Lucarelli M. The complex interplay between DNA methylation and miRNAs in gene expression regulation. Biochimie. 2020;173:12-16.

[88]

GebertLFR, MacRaeIJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 2019;20(1):21-37.

[89]

XieZ, ZhongC, ShenJ, Jia Y, DuanS. LINC00963: a potential cancer diagnostic and therapeutic target. Biomed Pharmacother. 2022;150:113019.

[90]

DongQ, QiuH, PiaoC, Li Z, CuiX. LncRNA SNHG4 promotes prostate cancer cell survival and resistance to enzalutamide through a let-7a/RREB1 positive feedback loop and a ceRNA network. J Exp Clin Cancer Res. 2023;42(1):209.

[91]

ChenP, NieZY, LiuXF, Zhou M, LiuXX, WangB. CircXRCC5, as a potential novel biomarker, promotes glioma progression via the miR-490-3p/XRCC5/CLC3 competing endogenous RNA network. Neuroscience. 2022;494:104-118.

[92]

IftikharH, CarneyGE. Evidence and potential in vivo functions for biofluid miRNAs: from expression profiling to functional testing: potential roles of extracellular miRNAs as indicators of physiological change and as agents of intercellular information exchange. BioEssays. 2016;38(4):367-378.

[93]

TurchinovichA, Tonevitsky AG, BurwinkelB. Extracellular miRNA: a collision of two paradigms. Trends Biochem Sci. 2016;41(10):883-892.

[94]

MishraS, YadavT, RaniV. Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit Rev Oncol Hematol. 2016;98:12-23.

[95]

UzunerE, UluGT, GurlerSB, et al. The role of MiRNA in cancer: pathogenesis, diagnosis, and treatment. Methods Mol Biol. 2022;2257:375-422.

[96]

InoueJ, Inazawa J. Cancer-associated miRNAs and their therapeutic potential. J Hum Genet. 2021;66(9):937-945.

[97]

HussenBM, Hidayat HJ, SalihiA, SabirDK, TaheriM, Ghafouri-FardS. MicroRNA: a signature for cancer progression. Biomed Pharmacother. 2021;138:111528.

[98]

ArghianiN, MatinMM. miR-21: a key small molecule with great effects in combination cancer therapy. Nucleic Acid Ther. 2021;31(4):271-283.

[99]

MenonA, Abd-Aziz N, KhalidK, PohCL, NaiduR. miRNA: a promising therapeutic target in cancer. Int J Mol Sci. 2022;23(19):11502.

[100]

MensMMJ, Ghanbari M. Cell cycle regulation of stem cells by MicroRNAs. Stem Cell Rev Rep. 2018;14(3):309-322.

[101]

DongB, LiS, ZhuS, YiM, LuoS, WuK. MiRNA-mediated EMT and CSCs in cancer chemoresistance. Exp Hematol Oncol. 2021;10(1):12.

[102]

WangH. MicroRNAs and apoptosis in colorectal cancer. Int J Mol Sci. 2020;21(15):5353.

[103]

Ferragut CardosoAP, Banerjee M, NailAN, LykoudiA, StatesJC. miRNA dysregulation is an emerging modulator of genomic instability. Sem Cancer Biol. 2021;76:120-131.

[104]

GuptaJ, TayyibNA, JalilAT, et al. Angiogenesis and prostate cancer: MicroRNAs comes into view. Pathol Res Pract. 2023;248:154591.

[105]

PinwehaP, Rattanapornsompong K, CharoensawanV, JitrapakdeeS. MicroRNAs and oncogenic transcriptional regulatory networks controlling metabolic reprogramming in cancers. Comput Struct Biotechnol J. 2016;14:223-233.

[106]

KumarR, MishraA, GautamP, et al. Metabolic pathways, enzymes, and metabolites: opportunities in cancer therapy. Cancers. 2022;14(21):5268.

[107]

YangY, YuanH, ZhaoL, et al. Targeting the miR-34a/LRPPRC/MDR1 axis collapse the chemoresistance in P53 inactive colorectal cancer. Cell Death Differ. 2022;29(11):2177-2189.

[108]

XingY, WangZ, LuZ, et al. MicroRNAs: immune modulators in cancer immunotherapy. Immunother Adv. 2021;1(1):ltab006.

[109]

YaoQ, ChenY, ZhouX. The roles of microRNAs in epigenetic regulation. Curr Opin Chem Biol. 2019;51:11-17.

[110]

MoutinhoC, Esteller M. MicroRNAs and epigenetics. Adv Cancer Res. 2017;135:189-220.

[111]

WangS, WuW, ClaretFX. Mutual regulation of microRNAs and DNA methylation in human cancers. Epigenetics. 2017;12(3):187-197.

[112]

BerulavaT, Rahmann S, RademacherK, Klein-HitpassL, Horsthemke B. N6-adenosine methylation in MiRNAs. PLoS ONE. 2015;10(2):e0118438.

[113]

AmodioN, RossiM, RaimondiL, et al. miR-29s: a family of epi-miRNAs with therapeutic implications in hematologic malignancies. Oncotarget. 2015;6(15):12837-12861.

[114]

YanF, ShenN, PangJ, et al. Restoration of miR-101 suppresses lung tumorigenesis through inhibition of DNMT3a-dependent DNA methylation. Cell Death Dis. 2014;5(9):e1413.

[115]

AmodioN, Stamato MA, GullàAM, et al. Therapeutic targeting of miR-29b/HDAC4 epigenetic loop in multiple myeloma. Mol Cancer Ther. 2016;15(6):1364-1375.

[116]

HaigD, Mainieri A. The evolution of imprinted microRNAs and their RNA targets. Genes. 2020;11(9):1038.

[117]

ArtsFA, KeoghL, SmythP, et al. miR-223 potentially targets SWI/SNF complex protein SMARCD1 in atypical proliferative serous tumor and high-grade ovarian serous carcinoma. Hum Pathol. 2017;70:98-104.

[118]

FaniniF, FabbriM. Cancer-derived exosomic microRNAs shape the immune system within the tumor microenvironment: state of the art. Semin Cell Dev Biol. 2017;67:23-28.

[119]

RupaimooleR, CalinGA, Lopez-BeresteinG, SoodAK. miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov. 2016;6(3):235-246.

[120]

ZhouX, ZhangJ, LvW, et al. The pleiotropic roles of adipocyte secretome in remodeling breast cancer. J Exp Clin Cancer Res. 2022;41(1):203.

[121]

TomasettiM, LeeW, SantarelliL, Neuzil J. Exosome-derived microRNAs in cancer metabolism: possible implications in cancer diagnostics and therapy. Exp Mol Med. 2017;49(1):e285.

[122]

TanS, XiaL, YiP, et al. Exosomal miRNAs in tumor microenvironment. J Exp Clin Cancer Res. 2020;39(1):67.

[123]

XingY, RuanG, NiH, et al. Tumor immune microenvironment and its related miRNAs in tumor progression. Front Immunol. 2021;12:624725.

[124]

WangJ, GeJ, WangY, et al. EBV miRNAs BART11 and BART17-3p promote immune escape through the enhancer-mediated transcription of PD-L1. Nat Commun. 2022;13(1):866.

[125]

ZhuangJ, ShenL, LiM, et al. Cancer-associated fibroblast-derived miR-146a-5p generates a niche that promotes bladder cancer stemness and chemoresistance. Cancer Res. 2023;83(10):1611-1627.

[126]

ZhaoS, MiY, ZhengB, et al. Highly-metastatic colorectal cancer cell released miR-181a-5p-rich extracellular vesicles promote liver metastasis by activating hepatic stellate cells and remodelling the tumour microenvironment. J Extracell Vesicles. 2022;11(1):e12186.

[127]

DuY, TuG, YangG, et al. MiR-205/YAP1 in activated fibroblasts of breast tumor promotes VEGF-independent angiogenesis through STAT3 signaling. Theranostics. 2017;7(16):3972-3988.

[128]

ZhangZ, LiX, SunW, et al. Loss of exosomal miR-320a from cancer-associated fibroblasts contributes to HCC proliferation and metastasis. Cancer Lett. 2017;397:33-42.

[129]

SunZ, ShiK, YangS, et al. Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer. 2018;17(1):147.

[130]

Ghafouri-FardS, HussenBM, ShooreiH, et al. Interactions between non-coding RNAs and HIF-1alpha in the context of cancer. Eur J Pharmacol. 2023;943:175535.

[131]

WuF, LiF, LinX, et al. Exosomes increased angiogenesis in papillary thyroid cancer microenvironment. Endocr Relat Cancer. 2019;26(5):525-538.

[132]

YanW, WuX, ZhouW, et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nature Cell Biol. 2018;20(5):597-609.

[133]

Carles-FontanaR, HeatonN, PalmaE, Khorsandi S. Extracellular Vesicle-Mediated mitochondrial reprogramming in cancer. Cancers. 2022;14(8):1865.

[134]

SchmittgenTD. Exosomal miRNA cargo as mediator of immune escape mechanisms in neuroblastoma. Cancer Res. 2019;79(7):1293-1294.

[135]

ZhangZ, HuangQ, YuL, et al. The Role of miRNA in Tumor Immune Escape and miRNA-Based Therapeutic Strategies. Front Immunol. 2021;12:807895.

[136]

DesvignesT, BatzelP, SydesJ, Eames BF, PostlethwaitJH. miRNA analysis with prost! reveals evolutionary conservation of organ-enriched expression and post-transcriptional modifications in three-spined stickleback and zebrafish. Sci Rep. 2019;9(1):3913.

[137]

KellerA, Gröger L, TschernigT, et al. miRNATissueAtlas2: an update to the human miRNA tissue Atlas. Nucleic Acids Res. 2022;50(D1):D211-D221.

[138]

DexheimerPJ, Cochella L. MicroRNAs: from mechanism to organism. Front Cell Dev Biol. 2020;8:409.

[139]

BalakittnenJ, Ekanayake Weeramange C, WallaceDF, et al. A novel saliva-based miRNA profile to diagnose and predict oral cancer. Int J Oral Sci. 2024;16(1):14.

[140]

MarkouA, Tzanikou E, LianidouE. The potential of liquid biopsy in the management of cancer patients. Sem Cancer Biol. 2022;84:69-79.

[141]

MugoniV, CianiY, NardellaC, Demichelis F. Circulating RNAs in prostate cancer patients. Cancer Lett. 2022;524:57-69.

[142]

SzelenbergerR, Kacprzak M, Saluk-BijakJ, ZielinskaM, BijakM. Plasma MicroRNA as a novel diagnostic. Clin Chim Acta. 2019;499:98-107.

[143]

SynNL, WangL, ChowEKH, Lim CT, GohBC. Exosomes in cancer nanomedicine and immunotherapy: prospects and challenges. Trends Biotechnol. 2017;35(7):665-676.

[144]

WuP, ZhangC, TangX, et al. Pan-cancer characterization of cell-free immune-related miRNA identified as a robust biomarker for cancer diagnosis. Mol Cancer. 2024;23(1):31.

[145]

Di LevaG, Garofalo M, CroceCM. MicroRNAs in cancer. Annu Rev Pathol: Mech Dis. 2014;9:287-314.

[146]

ChakrabortyDS, LahiryS, ChoudhuryS. Hypertension clinical practice guidelines (ISH, 2020): what is new? Med Princ Pract. 2021;30(6):579-584.

[147]

BhardwajAR, PandeyR, AgarwalM, et al. Northern blotting technique for detection and expression analysis of mRNAs and small RNAs. Methods Mol Biol. 2021;2170:155-183.

[148]

WuJ, LuAD, ZhangLP, Zuo YX, JiaYP. Study of clinical outcome and prognosis in pediatric core binding factor-acute myeloid leukemia. Zhonghua xue ye xue za zhi. 2019;40(1):52-57.

[149]

YaylakB, AkgulB. Experimental MicroRNA detection methods. Methods Mol Biol. 2022;2257:33-55.

[150]

LiuK, TongH, LiT, WangX, ChenY. Research progress in molecular biology related quantitative methods of MicroRNA. Am J Transl Res. 2020;12(7):3198-3211.

[151]

MaiHT, Vanness BC, LinzTH. Reverse transcription-free digital-quantitative-PCR for microRNA analysis. Analyst. 2023;148(13):3019-3027.

[152]

ChuYH, HardinH, ZhangR, Guo Z, LloydRV. In situ hybridization: introduction to techniques, applications and pitfalls in the performance and interpretation of assays. Semin Diagn Pathol. 2019;36(5):336-341.

[153]

MuthamilselvanS, Ramasami Sundhar Baabu P, PalaniappanA. Microfluidics for profiling miRNA biomarker panels in AI-assisted cancer diagnosis and prognosis. Technol Cancer Res Treat. 2023;22:15330338231185284.

[154]

HoPTB, ClarkIM, LeLTT. MicroRNA-based diagnosis and therapy. Int J Mol Sci. 2022;23(13):7167.

[155]

BhowmickSS, SahaI, BhattacharjeeD, GenoveseLM, GeraciF. Genome-wide analysis of NGS data to compile cancer-specific panels of miRNA biomarkers. PLoS ONE. 2018;13(7):e0200353.

[156]

FiammengoR. Can nanotechnology improve cancer diagnosis through miRNA detection? Biomark Med. 2017;11(1):69-86.

[157]

YuS, LeiX, QuC. MicroRNA sensors based on CRISPR/Cas12a technologies: evolution from indirect to direct detection. Crit Rev Anal Chem. 2024. In press.

[158]

WeiJ, ZhangJ, WangW, et al. Precision miRNA profiling: electrochemiluminescence powered by CRISPR-Cas13a and hybridization chain reaction. Anal Chim Acta. 2024;1307:342641.

[159]

QiuX, LiuC, ZhuC, et al. MicroRNA detection with CRISPR/Cas. Methods Mol Biol. 2023;2630:25-45.

[160]

Al-HawarySIS, SalehRO, MansouriS, et al. Isothermal amplification methods in cancer-related miRNA detection;a new paradigm in study of cancer pathology. Pathol Res Prac. 2024;254:155072.

[161]

YanH, WenY, TianZ, et al. A one-pot isothermal Cas12-based assay for the sensitive detection of microRNAs. Nat Biomed Eng. 2023;7(12):1583-1601.

[162]

HanY, HuH, YuL, ZengS, MinJZ, Cai S. A duplex-specific nuclease (DSN) and catalytic hairpin assembly (CHA)-mediated dual amplification method for miR-146b detection. Analyst. 2023;148(3):556-561.

[163]

ZhaoS, ZhangS, HuH, et al. Selective in situ analysis of mature microRNAs in extracellular vesicles using a DNA cage-based thermophoretic assay. Angew Chem Int Ed. 2023;62(24):e202303121.

[164]

TreerattrakoonK, Roeksrungruang P, DharakulT, et al. Detection of a miRNA biomarker for cancer diagnosis using SERS tags and magnetic separation. Anal Methods. 2022;14(20):1938-1945.

[165]

LiY, JiangL, YuZ, JiangC, ZhangF, Jin S. SPRi/SERS dual-mode biosensor based on ployA-DNA/miRNA/AuNPs-enhanced probe sandwich structure for the detection of multiple miRNA biomarkers. Spectrochim Acta Part A. 2024;308:123664.

[166]

SunZ, TongY, ZhaoL, et al. MoS(2)@Ti(3)C(2) nanohybrid-based photoelectrochemical biosensor: A platform for ultrasensitive detection of cancer biomarker exosomal miRNA. Talanta. 2022;238(Pt 2):123077.

[167]

SiY, XuL, WangN, Zheng J, YangR, LiJ. Target MicroRNA-responsive DNA hydrogel-based surface-enhanced Raman scattering sensor arrays for MicroRNA-marked cancer screening. Anal Chem. 2020;92(3):2649-2655.

[168]

YaoS, XiangL, WangL, Gong H, ChenF, CaiC. pH-responsive DNA hydrogels with ratiometric fluorescence for accurate detection of miRNA-21. Anal Chim Acta. 2022;1207:339795.

[169]

GuoJ, ZhuY, MiaoP. Nano-impact electrochemical biosensing based on a CRISPR-responsive DNA hydrogel. Nano Lett. 2023;23(23):11099-11104.

[170]

AntonelliG, Filippi J, D’OrazioM, et al. Integrating machine learning and biosensors in microfluidic devices: a review. Biosens Bioelectron. 2024;263:116632.

[171]

RamshaniZ, ZhangC, RichardsK, et al. Extracellular vesicle microRNA quantification from plasma using an integrated microfluidic device. Commun Biol. 2019;2:189.

[172]

HøgdallD, O’Rourke CJ, LarsenFO, et al. Whole blood microRNAs capture systemic reprogramming and have diagnostic potential in patients with biliary tract cancer. J Hepatol. 2022;77(4):1047-1058.

[173]

MiyoshiJ, ZhuZ, LuoA, et al. A microRNA-based liquid biopsy signature for the early detection of esophageal squamous cell carcinoma: a retrospective, prospective and multicenter study. Mol Cancer. 2022;21(1):44.

[174]

MatsuzakiJ, OchiyaT. Circulating microRNAs: next-generation cancer detection. Keio J Med. 2020;69(4):88-96.

[175]

SuarezB, SoleC, MarquezM, et al. Circulating MicroRNAs as cancer biomarkers in liquid biopsies. Adv Exp Med Biol. 2022;1385:23-73.

[176]

WangN, ZhangJ, XiaoB, Sun X, XieR, ChenA. Recent advances in the rapid detection of microRNA with lateral flow assays. Biosens Bioelectron. 2022;211:114345.

[177]

MoroG, FratteCD, NormannoN, Polo F, CintiS. Point-of-care testing for the detection of MicroRNAs: towards liquid biopsy on a chip. Angew Chem Int Ed. 2023;62(51):e202309135.

[178]

ArdizzoneA, Calabrese G, CampoloM, et al. Role of miRNA-19a in cancer diagnosis and poor prognosis. Int J Mol Sci. 2021;22(9):4697.

[179]

WangW, LouW, DingB, et al. A novel mRNA-miRNA-lncRNA competing endogenous RNA triple sub-network associated with prognosis of pancreatic cancer. Aging. 2019;11(9):2610-2627.

[180]

ShangC, LiY, HeT, et al. The prognostic miR-532-5p-correlated ceRNA-mediated lipid droplet accumulation drives nodal metastasis of cervical cancer. J Adv Res. 2022;37:169-184.

[181]

BaoJ, LiJ, LinH, et al. Deciphering a novel necroptosis-related miRNA signature for predicting the prognosis of clear cell renal carcinoma. Anal Cell Pathol. 2022;2022:2721005.

[182]

MazumderS, DattaS, RayJG, Chaudhuri K, ChatterjeeR. Liquid biopsy: miRNA as a potential biomarker in oral cancer. Cancer Epidemiology. 2019;58:137-145.

[183]

PanC, LuoJ, ZhangJ. Computational identification of RNA-Seq based miRNA-mediated prognostic modules in cancer. IEEE J Biomed Health Inform. 2020;24(2):626-633.

[184]

Yerukala SathipatiS, Tsai MJ, ShuklaSK, HoSY. Artificial intelligence-driven pan-cancer analysis reveals miRNA signatures for cancer stage prediction. Human Genet Genomics Adv. 2023;4(3):100190.

[185]

BertoliG, CavaC, CastiglioniI. MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics. 2015;5(10):1122-1143.

[186]

SinghS, SainiH, SharmaA, Gupta S, HuddarVG, TripathiR. Breast cancer: miRNAs monitoring chemoresistance and systemic therapy. Front Oncol. 2023;13:1155254.

[187]

GrendaA, Krawczyk P. New dancing couple: PD-L1 and MicroRNA. Scand J Immunol. 2017;86(3):130-134.

[188]

SeijoLM, PeledN, AjonaD, et al. Biomarkers in lung cancer screening: achievements, promises, and challenges. J Thorac Oncol. 2019;14(3):343-357.

[189]

SestiniS, BoeriM, MarchianoA, et al. Circulating microRNA signature as liquid-biopsy to monitor lung cancer in low-dose computed tomography screening. Oncotarget. 2015;6(32):32868-32877.

[190]

KimHS, NaMJ, SonKH, et al. ADAR1-dependent miR-3144-3p editing simultaneously induces MSI2 expression and suppresses SLC38A4 expression in liver cancer. Exp Mol Med. 2023;55(1):95-107.

[191]

LiaoY, JungSH, KimT. A-to-I RNA editing as a tuner of noncoding RNAs in cancer. Cancer Lett. 2020;494:88-93.

[192]

JayasreePJ, DuttaS, KaremoreP, Khandelia P. Crosstalk between m6A RNA methylation and miRNA biogenesis in cancer: an unholy nexus. Mol Biotechnol. 2023. In press.

[193]

KimT, CroceCM. MicroRNA: trends in clinical trials of cancer diagnosis and therapy strategies. Exp Mol Med. 2023;55(7):1314-1321.

[194]

ZylaJ, Dziadziuszko R, MarczykM, et al. miR-122 and miR-21 are stable components of miRNA signatures of early lung cancer after validation in three independent cohorts. J Mol Diagn. 2024;26(1):37-48.

[195]

SoJBY, KapoorR, ZhuF, et al. Development and validation of a serum microRNA biomarker panel for detecting gastric cancer in a high-risk population. Gut. 2021;70(5):829-837.

[196]

FredsøeJ, GludE, BoesenL, et al. Danish prostate cancer consortium study 1 (DPCC-1) protocol: multicentre prospective validation of the urine-based three-microRNA biomarker model uCaP. BMJ Open. 2023;13(11):e077020.

[197]

SøreideK, WatsonMM, LeaD, et al. Assessment of clinically related outcomes and biomarker analysis for translational integration in colorectal cancer (ACROBATICC): study protocol for a population-based, consecutive cohort of surgically treated colorectal cancers and resected colorectal liver metastasis. J Transl Med. 2016;14(1):192.

[198]

TeufelM, SeidelH, KöchertK, et al. Biomarkers associated with response to regorafenib in patients with hepatocellular carcinoma. Gastroenterology. 2019;156(6):1731-1741.

[199]

Duroux-RichardI, GagezAL, AlaterreE, et al. miRNA profile at diagnosis predicts treatment outcome in patients with b-chronic lymphocytic leukemia: a FILO study. Front Immunol. 2022;13:983771.

[200]

MonsellatoI, Garibaldi E, CassinottiE, et al. Expression levels of circulating miRNAs as biomarkers during multimodal treatment of rectal cancer -TiMiSNAR-mirna: a substudy of the TiMiSNAR trial (NCT03962088). Trials. 2020;21(1):678.

[201]

WiemerEAC, Wozniak A, BurgerH, et al. Identification of microRNA biomarkers for response of advanced soft tissue sarcomas to eribulin: translational results of the EORTC 62052 trial. Eur J Cancer. 2017;75:33-40.

[202]

HedayatS, Cascione L, CunninghamD, et al. Circulating microRNA analysis in a prospective co-clinical trial identifies MIR652-3p as a response biomarker and driver of regorafenib resistance mechanisms in colorectal cancer. Clin Cancer Res. 2024;30(10):2140-2159.

[203]

MollaeiH, Safaralizadeh R, RostamiZ. MicroRNA replacement therapy in cancer. J Cell Physiol. 2019;234(8):12369-12384.

[204]

RupaimooleR, SlackFJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discovery. 2017;16(3):203-222.

[205]

GasparelloJ, PapiC, ZurloM, et al. Cationic Calix[4]arene vectors to efficiently deliver AntimiRNA peptide nucleic acids (PNAs) and miRNA mimics. Pharmaceutics. 2023;15(8):2121.

[206]

ManikkathJ, JishnuPV, WichPR, Manikkath A, RadhakrishnanR. Nanoparticulate strategies for the delivery of miRNA mimics and inhibitors in anticancer therapy and its potential utility in oral submucous fibrosis. Nanomedicine. 2022;17(3):181-195.

[207]

OtoukeshB, AbbasiM, GorganiHL, et al. MicroRNAs signatures, bioinformatics analysis of miRNAs, miRNA mimics and antagonists, and miRNA therapeutics in osteosarcoma. Cancer Cell Int. 2020;20:254.

[208]

RomanoG, KwongLN. Diagnostic and therapeutic applications of miRNA-based strategies to cancer immunotherapy. Cancer Metastasis Rev. 2018;37(1):45-53.

[209]

IqbalMA, AroraS, PrakasamG, Calin GA, SyedMA. MicroRNA in lung cancer: role, mechanisms, pathways and therapeutic relevance. Mol Aspects Med. 2019;70:3-20.

[210]

DienerC, KellerA, MeeseE. Emerging concepts of miRNA therapeutics: from cells to clinic. TIG. 2022;38(6):613-626.

[211]

TangL, ChenHY, HaoNB, et al. microRNA inhibitors: natural and artificial sequestration of microRNA. Cancer Lett. 2017;407:139-147.

[212]

KangS, ParkS, YoonS, Min H. Machine learning-based identification of endogenous cellular microRNA sponges against viral microRNAs. Methods. 2017;129:33-40.

[213]

Abu-LabanM, HamalP, ArrizabalagaJH, et al. Combinatorial delivery of miRNA-nanoparticle conjugates in human adipose stem cells for amplified osteogenesis. Small. 2019;15(50):e1902864.

[214]

LucasT, Schäfer F, MüllerP, EmingSA, HeckelA, DimmelerS. Light-inducible antimiR-92a as a therapeutic strategy to promote skin repair in healing-impaired diabetic mice. Nat Commun. 2017;8:15162.

[215]

van ZandwijkN, Pavlakis N, KaoSC, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 2017;18(10):1386-1396.

[216]

ReidG, KaoSC, PavlakisN, et al. Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics. 2016;8(8):1079-1085.

[217]

BegMS, Brenner AJ, SachdevJ, et al. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs. 2017;35(2):180-188.

[218]

DaigeCL, Wiggins JF, PriddyL, Nelligan-DavisT, ZhaoJ, BrownD. Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer. Mol Cancer Ther. 2014;13(10):2352-2360.

[219]

YanY, LiuXY, LuA, WangXY, JiangLX, Wang JC. Non-viral vectors for RNA delivery. J Control Release. 2022;342:241-279.

[220]

WittenL, SlackFJ. miR-155 as a novel clinical target for hematological malignancies. Carcinogenesis. 2020;41(1):2-7.

[221]

RomanoG, AcunzoM, Nana-SinkamP. microRNAs as novel therapeutics in cancer. Cancers. 2021;13(7):1526.

[222]

BinzelDW, ShuY, LiH, et al. Specific delivery of MiRNA for high efficient inhibition of prostate cancer by RNA nanotechnology. Mol Ther. 2016;24(7):1267-1277.

[223]

FengR, SangQ, ZhuY, et al. MiRNA-320 in the human follicular fluid is associated with embryo quality in vivo and affects mouse embryonic development in vitro. Sci Rep. 2015;5:8689.

[224]

DasguptaI, Chatterjee A. Recent advances in miRNA delivery systems. Methods Protocols. 2021;4(1):10.

[225]

FortunatoO, BoeriM, VerriC, Moro M, SozziG. Therapeutic use of microRNAs in lung cancer. BioMed Res Int. 2014;2014:756975.

[226]

LeeSWL, Paoletti C, CampisiM, et al. MicroRNA delivery through nanoparticles. J Control Release. 2019;313:80-95.

[227]

ZhangW, LiuM, LiuA, ZhaiG. Advances in functionalized mesoporous silica nanoparticles for tumor targeted drug delivery and theranostics. Curr Pharm Des. 2017;23(23):3367-3382.

[228]

DahlmanJE, Kauffman KJ, XingY, et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc Nat Acad Sci. 2017;114(8):2060-2065.

[229]

RuseskaI, ZimmerA. Cellular uptake and trafficking of peptide-based drug delivery systems for miRNA. Eur J Pharmaceut Biopharmaceut. 2023;191:189-204.

[230]

AndersonCF, SinghA, StephensT, Hoang CD, SchneiderJP. Kinetically controlled polyelectrolyte complex assembly of microRNA-peptide nanoparticles toward treating mesothelioma. Adv Mater. 2024;36(24):e2314367.

[231]

LiuL, YiH, HeH, PanH, CaiL, MaY. Tumor associated macrophage-targeted microRNA delivery with dual-responsive polypeptide nanovectors for anti-cancer therapy. Biomaterials. 2017;134:166-179.

[232]

GaoS, TianH, GuoY, et al. miRNA oligonucleotide and sponge for miRNA-21 inhibition mediated by PEI-PLL in breast cancer therapy. Acta Biomater. 2015;25:184-193.

[233]

IsaacR, ReisFCG, YingW, Olefsky JM. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab. 2021;33(9):1744-1762.

[234]

ReidG, Johnson TG, van ZandwijkN. Manipulating microRNAs for the treatment of malignant pleural mesothelioma: past, present and future. Front Oncol. 2020;10:105.

[235]

ZhangL, LiaoY, TangL. MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res. 2019;38(1):53.

[236]

GuptaA, Andresen JL, MananRS, LangerR. Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev. 2021;178:113834.

[237]

ParodiA, Quattrocchi N, van de VenAL, et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol. 2013;8(1):61-68.

[238]

DuJ, LaneLA, NieS. Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J Control Release. 2015;219:205-214.

[239]

ParodiA, CorboC, CeveniniA, et al. Enabling cytoplasmic delivery and organelle targeting by surface modification of nanocarriers. Nanomedicine. 2015;10(12):1923-1940.

[240]

ZhangT, XueX, HeD, HsiehJT. A prostate cancer-targeted polyarginine-disulfide linked PEI nanocarrier for delivery of microRNA. Cancer Lett. 2015;365(2):156-165.

[241]

van BeijnumJR, Giovannetti E, PoelD, Nowak-SliwinskaP, Griffioen AW. miRNAs: micro-managers of anticancer combination therapies. Angiogenesis. 2017;20(2):269-285.

[242]

CurtinNJ. DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer. 2012;12(12):801-817.

[243]

SmolleMA, CalinHN, PichlerM, Calin GA. Noncoding RNAs and immune checkpoints-clinical implications as cancer therapeutics. FEBS J. 2017;284(13):1952-1966.

[244]

CoenenM, HinzeAV, MengelM, et al. Immune-and miRNA-response to recombinant interferon beta-1a: a biomarker evaluation study to guide the development of novel type I interferon-based therapies. BMC Pharmacol Toxicol. 2015;16:25.

[245]

JiY, HockerJD, GattinoniL. Enhancing adoptive T cell immunotherapy with microRNA therapeutics. Sem Immunol. 2016;28(1):45-53.

[246]

ZhangT, ZhangZ, LiF, et al. miR-143 regulates memory T cell differentiation by reprogramming T cell metabolism. J Immunol. 2018;201(7):2165-2175.

[247]

OhnoM, OhkuriT, KosakaA, et al. Expression of miR-17-92 enhances anti-tumor activity of T-cells transduced with the anti-EGFRvIII chimeric antigen receptor in mice bearing human GBM xenografts. J Immunother Cancer. 2013;1:21.

[248]

WangLQ, KumarS, CalinGA, Li Z, ChimCS. Frequent methylation of the tumour suppressor miR-1258 targeting PDL1: implication in multiple myeloma-specific cytotoxicity and prognostification. Br J Haematol. 2020;190(2):249-261.

[249]

Pérez-HerreroE, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharmaceut Biopharmaceut. 2015;93:52-79.

[250]

SiW, ShenJ, ZhengH, Fan W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics. 2019;11(1):25.

[251]

SantosP, Almeida F. Role of exosomal miRNAs and the tumor microenvironment in drug resistance. Cells. 2020;9(6):1450.

[252]

Peixoto da SilvaS, Caires HR, BergantimR, GuimarãesJE, Vasconcelos MH. miRNAs mediated drug resistance in hematological malignancies. Sem Cancer Biol. 2022;83:283-302.

[253]

LinG, XuK. Advances in tumor chemo-resistance regulated by MicroRNA. Zhongguo Fei Ai Za Zhi. 2014;17(10):741-749.

[254]

GiovannettiE, Erozenci A, SmitJ, DanesiR, PetersGJ. Molecular mechanisms underlying the role of microRNAs (miRNAs) in anticancer drug resistance and implications for clinical practice. Crit Rev Oncol Hematol. 2012;81(2):103-122.

[255]

GaoM, MiaoL, LiuM, et al. miR-145 sensitizes breast cancer to doxorubicin by targeting multidrug resistance-associated protein-1. Oncotarget. 2016;7(37):59714-59726.

[256]

YangH, LiuY, ChenL, et al. MiRNA-based therapies for lung cancer: opportunities and challenges? Biomolecules. 2023;13(6):877.

[257]

BachDH, HongJY, ParkHJ, Lee SK. The role of exosomes and miRNAs in drug-resistance of cancer cells. Int J Cancer. 2017;141(2):220-230.

[258]

WangX, ZhouY, DingK. Roles of exosomes in cancer chemotherapy resistance, progression, metastasis and immunity, and their clinical applications (Review). Int J Oncol. 2021;59(1):44.

[259]

JanjiB, Berchem G, ChouaibS. Targeting autophagy in the tumor microenvironment: new challenges and opportunities for regulating tumor immunity. Front Immunol. 2018;9:887.

[260]

NallasamyP, Nimmakayala RK, ParteS, AreAC, BatraSK, PonnusamyMP. Tumor microenvironment enriches the stemness features: the architectural event of therapy resistance and metastasis. Mol Cancer. 2022;21(1):225.

[261]

CuiTX, Kryczek I, ZhaoL, et al. Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity. 2013;39(3):611-621.

[262]

Abu SamaanTM, SamecM, LiskovaA, Kubatka P, BüsselbergD. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules. 2019;9(12):789.

[263]

YangQ, ZhaoS, ShiZ, et al. Chemotherapy-elicited exosomal miR-378a-3p and miR-378d promote breast cancer stemness and chemoresistance via the activation of EZH2/STAT3 signaling. J Exp Clin Cancer Res. 2021;40(1):120.

[264]

TufailM, HuJJ, LiangJ, et al. Hallmarks of cancer resistance. iScience. 2024;27(6):109979.

[265]

CarielloM, Squilla A, PiacenteM, VenutoloG, FasanoA. Drug resistance: the role of exosomal miRNA in the microenvironment of hematopoietic tumors. Molecules. 2022;28(1):116.

[266]

WuD, HuangC, GuanK. Mechanistic and therapeutic perspectives of miRNA-PTEN signaling axis in cancer therapy resistance. Biochem Pharmacol. 2024;226:116406.

[267]

ZhaoY, HanM, XiongY, et al. A miRNA-200c/cathepsin L feedback loop determines paclitaxel resistance in human lung cancer A549 cells in vitro through regulating epithelial-mesenchymal transition. Acta Pharmacol Sin. 2018;39(6):1034-1047.

[268]

WangY, WangH, DingY, et al. N-peptide of vMIP-II reverses paclitaxel-resistance by regulating miRNA-335 in breast cancer. Int J Oncol. 2017;51(3):918-930.

[269]

ShiC, RenS, ZhaoX, Li Q. lncRNA MALAT1 regulates the resistance of breast cancer cells to paclitaxel via the miR-497-5p/SHOC2 axis. Pharmacogenomics. 2022;23(18):973-985.

[270]

ShiT, LiR, DuanP, et al. TRPM2-AS promotes paclitaxel resistance in prostate cancer by regulating FOXK1 via sponging miR-497-5p. Drug Dev Res. 2022;83(4):967-978.

[271]

MiyamotoM, SawadaK, NakamuraK, et al. Paclitaxel exposure downregulates miR-522 expression and its downregulation induces paclitaxel resistance in ovarian cancer cells. Sci Rep. 2020;10(1):16755.

[272]

YuAM, JianC, YuAH, TuMJ. RNA therapy: are we using the right molecules? Pharmacol Ther. 2019;196:91-104.

[273]

Montero-CondeC, Graña-Castro O, Martín-SerranoG, et al. Hsa-miR-139-5p is a prognostic thyroid cancer marker involved in HNRNPF-mediated alternative splicing. Int J Cancer. 2020;146(2):521-530.

[274]

YuAM, TianY, TuMJ, HoPY, JilekJL. MicroRNA pharmacoepigenetics: posttranscriptional regulation mechanisms behind variable drug disposition and strategy to develop more effective therapy. Drug Metab Dispos. 2016;44(3):308-319.

[275]

LiangD, Minikes AM, JiangX. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell. 2022;82(12):2215-2227.

[276]

WangY, WuX, RenZ, et al. Overcoming cancer chemotherapy resistance by the induction of ferroptosis. Drug Resist Updates. 2023;66:100916.

[277]

ZhangC, LiuX, JinS, ChenY, GuoR. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Mol Cancer. 2022;21(1):47.

[278]

ZhangH, DengT, LiuR, et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 2020;19(1):43.

[279]

MaSC, ZhangJQ, YanTH, et al. Novel strategies to reverse chemoresistance in colorectal cancer. Cancer Med. 2023;12(10):11073-11096.

[280]

SharmaP, SinghS. Combinatorial effect of DCA and Let-7a on Triple-Negative MDA-MB-231 cells: a metabolic approach of treatment. Integr Cancer Ther. 2020;19:1534735420911437.

[281]

PagoniM, CavaC, SiderisDC, et al. miRNA-based technologies in cancer therapy. J Pers Med. 2023;13(11):1586.

[282]

GanH, LinL, HuN, et al. Aspirin ameliorates lung cancer by targeting the miR-98/WNT1 axis. Thorac Cancer. 2019;10(4):744-750.

[283]

KarlicH, ThalerR, GernerC, et al. Inhibition of the mevalonate pathway affects epigenetic regulation in cancer cells. Cancer Genetics. 2015;208(5):241-252.

[284]

BazavarM, FazliJ, ValizadehA, et al. miR-192 enhances sensitivity of methotrexate drug to MG-63 osteosarcoma cancer cells. Pathol Res Pract. 2020;216(11):153176.

[285]

AnsariMA, Thiruvengadam M, FarooquiZ, et al. Nanotechnology, in silico and endocrine-based strategy for delivering paclitaxel and miRNA: prospects for the therapeutic management of breast cancer. Sem Cancer Biol. 2021;69:109-128.

[286]

ChenQX, WangWP, ZengS, Urayama S, YuAM. A general approach to high-yield biosynthesis of chimeric RNAs bearing various types of functional small RNAs for broad applications. Nucleic Acids Res. 2015;43(7):3857-3869.

[287]

WangWP, HoPY, ChenQX, et al. Bioengineering novel chimeric microRNA-34a for prodrug cancer therapy: high-yield expression and purification, and structural and functional characterization. J Pharmacol Exp Ther. 2015;354(2):131-141.

[288]

HoPY, YuAM. Bioengineering of noncoding RNAs for research agents and therapeutics. WIREs RNA. 2016;7(2):186-197.

[289]

HoPY, DuanZ, BatraN, et al. Bioengineered noncoding RNAs selectively change cellular miRNome profiles for cancer therapy. J Pharmacol Exp Ther. 2018;365(3):494-506.

[290]

WangH, Ellipilli S, LeeWJ, et al. Multivalent rubber-like RNA nanoparticles for targeted co-delivery of paclitaxel and MiRNA to silence the drug efflux transporter and liver cancer drug resistance. J Control Release. 2021;330:173-184.

[291]

JacquetK, Vidal-Cruchez O, RezzonicoR, et al. New technologies for improved relevance in miRNA research. TIG. 2021;37(12):1060-1063.

[292]

SasakiHM, Tadakuma H, TomariY. Single-molecule analysis for RISC assembly and target cleavage. Methods Mol Biol. 2018;1680:145-164.

[293]

AhmedKT, SunJ, ChengS, Yong J, ZhangW. Multi-omics data integration by generative adversarial network. Bioinformatics. 2021;38(1):179-186.

[294]

KishikawaM, InoueJ, HamamotoH, Kobayashi K, AsakageT, InazawaJ. Augmentation of lenvatinib efficacy by topical treatment of miR-634 ointment in anaplastic thyroid cancer. Biochem Biophys Rep. 2021;26:101009.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm – Oncology published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).

AI Summary AI Mindmap
PDF

293

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/