Breast Cancer Brain Metastasis: Bridging Biological Mechanisms to Therapeutic Innovations

Jing Feng , Yuwei Tao , Fengkai Li , Suling Liu

MEDCOMM - Oncology ›› 2025, Vol. 4 ›› Issue (4) : e70043

PDF
MEDCOMM - Oncology ›› 2025, Vol. 4 ›› Issue (4) : e70043 DOI: 10.1002/mog2.70043
REVIEW ARTICLE

Breast Cancer Brain Metastasis: Bridging Biological Mechanisms to Therapeutic Innovations

Author information +
History +
PDF

Abstract

Breast cancer brain metastasis (BCBrM) remains a major clinical challenge with limited therapeutic options and poor prognosis. Despite advances in systemic therapy, the incidence of BCBrM is rising due to prolonged survival of patients with advanced breast cancer, yet effective brain-targeted strategies remain scarce, underscoring a critical research gap. This review integrates recent mechanistic insights that illuminate the complex biology underpinning BCBrM and explores how these discoveries are driving therapeutic innovation. We detail the metastatic cascade from local invasion to brain colonization, and examine key signaling pathways orchestrating brain-specific metastasis. Emphasis is placed on the dynamic crosstalk between tumor cells and the brain microenvironment, including astrocytes, microglia, and neurons, as well as metabolic reprogramming and immune evasion. We critically evaluate current preclinical models and their translational relevance, highlighting recent advances in humanized and imaging-based systems. Emerging therapies, such as central nervous system-penetrant kinase inhibitors, antibody–drug conjugates, and immunotherapies, are discussed alongside persistent challenges in drug delivery and resistance. Finally, we outline future directions, calling for cross-disciplinary collaboration and innovative clinical trial designs to personalize care and improve patient outcomes. Together, this review underscores the urgent need to bridge biology and therapy to transform the management of BCBrM.

Keywords

brain metastasis / breast cancer / tumor microenvironment

Cite this article

Download citation ▾
Jing Feng, Yuwei Tao, Fengkai Li, Suling Liu. Breast Cancer Brain Metastasis: Bridging Biological Mechanisms to Therapeutic Innovations. MEDCOMM - Oncology, 2025, 4(4): e70043 DOI:10.1002/mog2.70043

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. Bray, M. Laversanne, H. Sung, et al., “Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA: A Cancer Journal for Clinicians 74, no. 3 (2024): 229–263.

[2]

A. I. Riggio, K. E. Varley, and A. L. Welm, “The Lingering Mysteries of Metastatic Recurrence in Breast Cancer,” British Journal of Cancer 124, no. 1 (2021): 13–26.

[3]

S. Seltzer, M. Corrigan, and S. O'Reilly, “The Clinicomolecular Landscape of De Novo Versus Relapsed Stage IV Metastatic Breast Cancer,” Experimental and Molecular Pathology 114 (2020): 104404.

[4]

Y. Liang, H. Zhang, X. Song, and Q. Yang, “Metastatic Heterogeneity of Breast Cancer: Molecular Mechanism and Potential Therapeutic Targets,” Seminars in Cancer Biology 60 (2020): 14–27.

[5]

A. Musolino, L. Ciccolallo, M. Panebianco, et al., “Multifactorial Central Nervous System Recurrence Susceptibility in Patients With HER2-Positive Breast Cancer: Epidemiological and Clinical Data From a Population-Based Cancer Registry Study,” Cancer 117, no. 9 (2011): 1837–1846.

[6]

N. Nathoo, S. A. Toms, and G. H. Barnett, “Metastases to the Brain: Current Management Perspectives,” Expert Review of Neurotherapeutics 4, no. 4 (2004): 633–640.

[7]

B. Gril, L. Evans, D. Palmieri, and P. S. Steeg, “Translational Research in Brain Metastasis Is Identifying Molecular Pathways That May Lead to the Development of New Therapeutic Strategies,” European Journal of Cancer 46, no. 7 (2010): 1204–1210.

[8]

A. S. Berghoff, S. Schur, L. M. Füreder, et al., “Descriptive Statistical Analysis of a Real Life Cohort of 2419 Patients With Brain Metastases of Solid Cancers,” ESMO Open 1, no. 2 (2016): e000024.

[9]

A. S. Achrol, R. C. Rennert, C. Anders, et al., “Brain Metastases,” Nature Reviews Disease Primers 5, no. 1 (2019): 5.

[10]

P. W. Sperduto, T. J. Yang, K. Beal, et al., “Estimating Survival in Patients With Lung Cancer and Brain Metastases: An Update of the Graded Prognostic Assessment for Lung Cancer Using Molecular Markers (Lung-molGPA),” JAMA Oncology 3, no. 6 (2017): 827–831.

[11]

P. D. Brown, K. V. Ballman, J. H. Cerhan, et al., “Postoperative Stereotactic Radiosurgery Compared With Whole Brain Radiotherapy for Resected Metastatic Brain Disease (NCCTG N107C/CEC·3): A Multicentre, Randomised, Controlled, Phase 3 Trial,” Lancet Oncology 18, no. 8 (2017): 1049–1060.

[12]

M. R. Quigley, O. Fukui, B. Chew, S. Bhatia, and S. Karlovits, “The Shifting Landscape of Metastatic Breast Cancer to the CNS,” Neurosurgical Review 36, no. 3 (2013): 377–382.

[13]

C. M. Perou, T. Sørlie, M. B. Eisen, et al., “Molecular Portraits of Human Breast Tumours,” Nature 406, no. 6797 (2000): 747–752.

[14]

L. A. Carey, C. M. Perou, C. A. Livasy, et al., “Race, Breast Cancer Subtypes, and Survival in the Carolina Breast Cancer Study,” Journal of the American Medical Association 295, no. 21 (2006): 2492–2502.

[15]

J. I. Herschkowitz, K. Simin, V. J. Weigman, et al., “Identification of Conserved Gene Expression Features Between Murine Mammary Carcinoma Models and Human Breast Tumors,” Genome Biology 8, no. 5 (2007): R76.

[16]

T. Sørlie, C. M. Perou, R. Tibshirani, et al., “Gene Expression Patterns of Breast Carcinomas Distinguish Tumor Subclasses With Clinical Implications,” Proceedings of the National Academy of Sciences 98, no. 19 (2001): 10869–10874.

[17]

H. G. Russnes, O. C. Lingjærde, A. L. Børresen-Dale, and C. Caldas, “Breast Cancer Molecular Stratification,” American Journal of Pathology 187, no. 10 (2017): 2152–2162.

[18]

A. M. Martin, D. N. Cagney, P. J. Catalano, et al., “Brain Metastases in Newly Diagnosed Breast Cancer: A Population-Based Study,” JAMA Oncology 3, no. 8 (2017): 1069–1077.

[19]

H. Kennecke, R. Yerushalmi, R. Woods, et al., “Metastatic Behavior of Breast Cancer Subtypes,” Journal of Clinical Oncology 28, no. 20 (2010): 3271–3277.

[20]

G. Frisk, T. Svensson, L. M. Bäcklund, E. Lidbrink, P. Blomqvist, and K. E. Smedby, “Incidence and Time Trends of Brain Metastases Admissions Among Breast Cancer Patients in Sweden,” British Journal of Cancer 106, no. 11 (2012): 1850–1853.

[21]

R. M. S. M. Pedrosa, D. A. Mustafa, R. Soffietti, and J. M. Kros, “Breast Cancer Brain Metastasis: Molecular Mechanisms and Directions for Treatment,” Neuro-Oncology 20, no. 11 (2018): 1439–1449.

[22]

R. Rostami, S. Mittal, P. Rostami, F. Tavassoli, and B. Jabbari, “Brain Metastasis in Breast Cancer: A Comprehensive Literature Review,” Journal of Neuro-Oncology 127, no. 3 (2016): 407–414.

[23]

A. Niwińska, M. Murawska, and K. Pogoda, “Breast Cancer Subtypes and Response to Systemic Treatment After Whole-Brain Radiotherapy in Patients With Brain Metastases,” Cancer 116, no. 18 (2010): 4238–4247.

[24]

N. Ramakrishna, S. Temin, S. Chandarlapaty, et al., “Recommendations on Disease Management for Patients With Advanced Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer and Brain Metastases: American Society of Clinical Oncology Clinical Practice Guideline,” Journal of Clinical Oncology 32, no. 19 (2014): 2100–2108.

[25]

M. J. Moravan, P. E. Fecci, C. K. Anders, et al., “Current Multidisciplinary Management of Brain Metastases,” Cancer 126, no. 7 (2020): 1390–1406.

[26]

T. Bachelot, G. Romieu, M. Campone, et al., “Lapatinib Plus Capecitabine in Patients With Previously Untreated Brain Metastases From HER2-Positive Metastatic Breast Cancer (LANDSCAPE): A Single-Group Phase 2 Study,” Lancet Oncology 14, no. 1 (2013): 64–71.

[27]

T. Fan, G. Kuang, R. Long, Y. Han, and J. Wang, “The Overall Process of Metastasis: From Initiation to a New Tumor,” Biochimica et Biophysica Acta (BBA) – Reviews on Cancer 1877, no. 4 (2022): 188750.

[28]

M. A. Nieto, R. Y. J. Huang, R. A. Jackson, and J. P. Thiery, “EMT: 2016,” Cell 166, no. 1 (2016): 21–45.

[29]

K. Kessenbrock, V. Plaks, and Z. Werb, “Matrix Metalloproteinases: Regulators of the Tumor Microenvironment,” Cell 141, no. 1 (2010): 52–67.

[30]

M. Lorger and B. Felding-Habermann, “Capturing Changes in the Brain Microenvironment During Initial Steps of Breast Cancer Brain Metastasis,” American Journal of Pathology 176, no. 6 (2010): 2958–2971.

[31]

P. D. Bos, X. H. F. Zhang, C. Nadal, et al., “Genes That Mediate Breast Cancer Metastasis to the Brain,” Nature 459, no. 7249 (2009): 1005–1009.

[32]

I. Wilhelm, J. Molnár, C. Fazakas, J. Haskó, and I. Krizbai, “Role of the Blood-Brain Barrier in the Formation of Brain Metastases,” International Journal of Molecular Sciences 14, no. 1 (2013): 1383–1411.

[33]

B. J. Scott and S. Kesari, “Leptomeningeal Metastases in Breast Cancer,” American Journal of Cancer Research 3, no. 2 (2013): 117–126.

[34]

T. Custódio-Santos, M. Videira, and M. A. Brito, “Brain Metastasization of Breast Cancer,” Biochimica et Biophysica Acta (BBA) – Reviews on Cancer 1868, no. 1 (2017): 132–147.

[35]

N. Parker, J. Forge, and D. Lalich, “Leptomeningeal Carcinomatosis: A Case Report of Metastatic Triple-Negative Breast Adenocarcinoma,” Cureus 11, no. 3 (2019): e4278.

[36]

J. E. Allen, A. S. Patel, V. V. Prabhu, et al., “COX-2 Drives Metastatic Breast Cells From Brain Lesions Into the Cerebrospinal Fluid and Systemic Circulation,” Cancer Research 74, no. 9 (2014): 2385–2390.

[37]

E. Kadioglu and M. De Palma, “Cancer Metastasis: Perivascular Macrophages Under Watch,” Cancer Discovery 5, no. 9 (2015): 906–908.

[38]

B. D. Robinson, G. L. Sica, Y. F. Liu, et al., “Tumor Microenvironment of Metastasis in Human Breast Carcinoma: A Potential Prognostic Marker Linked to Hematogenous Dissemination,” Clinical Cancer Research 15, no. 7 (2009): 2433–2441.

[39]

N. Aceto, A. Bardia, D. T. Miyamoto, et al., “Circulating Tumor Cell Clusters Are Oligoclonal Precursors of Breast Cancer Metastasis,” Cell 158, no. 5 (2014): 1110–1122.

[40]

J. Massagué and A. C. Obenauf, “Metastatic Colonization by Circulating Tumour Cells,” Nature 529, no. 7586 (2016): 298–306.

[41]

D. X. Nguyen, P. D. Bos, and J. Massagué, “Metastasis: From Dissemination to Organ-Specific Colonization,” Nature Reviews Cancer 9, no. 4 (2009): 274–284.

[42]

I. J. Fidler, “The Pathogenesis of Cancer Metastasis: The ‘Seed and Soil’ Hypothesis Revisited,” Nature Reviews Cancer 3, no. 6 (2003): 453–458.

[43]

W. S. Carbonell, O. Ansorge, N. Sibson, and R. Muschel, “The Vascular Basement Membrane as ‘Soil’ in Brain Metastasis,” PLoS One 4, no. 6 (2009): e5857.

[44]

B. Chung, A. A. Esmaeili, S. Gopalakrishna-Pillai, et al., “Human Brain Metastatic Stroma Attracts Breast Cancer Cells via Chemokines CXCL16 and CXCL12,” NPJ Breast Cancer 3 (2017): 6.

[45]

L. Sevenich, R. L. Bowman, S. D. Mason, et al., “Analysis of Tumour- and Stroma-Supplied Proteolytic Networks Reveals a Brain-Metastasis-Promoting Role for Cathepsin S,” Nature Cell Biology 16, no. 9 (2014): 876–888.

[46]

N. Priego, L. Zhu, C. Monteiro, et al., “STAT3 Labels a Subpopulation of Reactive Astrocytes Required for Brain Metastasis,” Nature Medicine 24, no. 7 (2018): 1024–1035.

[47]

S. W. Kim, H. J. Choi, H.-J. Lee, et al., “Role of the Endothelin Axis in Astrocyte- and Endothelial Cell-Mediated Chemoprotection of Cancer Cells,” Neuro-Oncology 16, no. 12 (2014): 1585–1598.

[48]

Q. Chen, A. Boire, X. Jin, et al., “Carcinoma–Astrocyte Gap Junctions Promote Brain Metastasis by cGAMP Transfer,” Nature 533, no. 7604 (2016): 493–498.

[49]

I. Witzel, L. Oliveira-Ferrer, K. Pantel, V. Müller, and H. Wikman, “Breast Cancer Brain Metastases: Biology and New Clinical Perspectives,” Breast Cancer Research 18, no. 1 (2016): 8.

[50]

M. Valiente, A. C. Obenauf, X. Jin, et al., “Serpins Promote Cancer Cell Survival and Vascular Co-Option in Brain Metastasis,” Cell 156, no. 5 (2014): 1002–1016.

[51]

J. Neman, J. Termini, S. Wilczynski, et al., “Human Breast Cancer Metastases to the Brain Display GABAergic Properties in the Neural Niche,” Proceedings of the National Academy of Sciences 111, no. 3 (2014): 984–989.

[52]

P. K. Parida, M. Marquez-Palencia, V. Nair, et al., “Metabolic Diversity Within Breast Cancer Brain-Tropic Cells Determines Metastatic Fitness,” Cell Metabolism 34, no. 1 (2022): 90–105.e7.

[53]

A. Hoshino, B. Costa-Silva, T.-L. Shen, et al., “Tumour Exosome Integrins Determine Organotropic Metastasis,” Nature 527, no. 7578 (2015): 329–335.

[54]

F. D. Oliveira, M. A. R. B. Castanho, and V. Neves, “Exosomes and Brain Metastases: A Review on Their Role and Potential Applications,” International Journal of Molecular Sciences 22, no. 19 (2021): 10899.

[55]

J. Massagué, “TGFβ in Cancer,” Cell 134, no. 2 (2008): 215–230.

[56]

M. Tian, J. R. Neil, and W. P. Schiemann, “Transforming Growth Factor-β and the Hallmarks of Cancer,” Cellular Signalling 23, no. 6 (2011): 951–962.

[57]

X. Gong, Z. Hou, M. P. Endsley, et al., “Interaction of Tumor Cells and Astrocytes Promotes Breast Cancer Brain Metastases Through TGF-β2/ANGPTL4 Axes,” NPJ Precision Oncology 3 (2019): 24.

[58]

B. McDonald, K. Barth, and M. H. H. Schmidt, “The Origin of Brain Malignancies at the Blood-Brain Barrier,” Cellular and Molecular Life Sciences 80, no. 10 (2023): 282.

[59]

J. K. Wrobel and M. Toborek, “Blood-Brain Barrier Remodeling During Brain Metastasis Formation,” Molecular Medicine 22, no. 1 (2016): 32–40.

[60]

R. Ueda, M. Fujita, X. Zhu, et al., “Systemic Inhibition of Transforming Growth Factor-β in Glioma-Bearing Mice Improves the Therapeutic Efficacy of Glioma-Associated Antigen Peptide Vaccines,” Clinical Cancer Research 15, no. 21 (2009): 6551–6559.

[61]

N. Tominaga, N. Kosaka, M. Ono, et al., “Brain Metastatic Cancer Cells Release MicroRNA-181c-Containing Extracellular Vesicles Capable of Destructing Blood–Brain Barrier,” Nature Communications 6, no. 1 (2015): 6716.

[62]

P. De, J. H. Carlson, H. Wu, A. Marcus, B. Leyland-Jones, and N. Dey, “Wnt-Beta-Catenin Pathway Signals Metastasis-Associated Tumor Cell Phenotypes in Triple Negative Breast Cancers,” Oncotarget 7, no. 28 (2016): 43124–43149.

[63]

J. Cai, H. Guan, L. Fang, et al., “MicroRNA-374a Activates Wnt/β-Catenin Signaling to Promote Breast Cancer Metastasis,” Journal of Clinical Investigation 123, no. 2 (2013): 566–579.

[64]

W. A. Yeudall, C. A. Vaughan, H. Miyazaki, et al., “Gain-of-Function Mutant p53 Upregulates CXC Chemokines and Enhances Cell Migration,” Carcinogenesis 33, no. 2 (2012): 442–451.

[65]

X. Xu, M. Zhang, F. Xu, and S. Jiang, “Wnt Signaling in Breast Cancer: Biological Mechanisms, Challenges and Opportunities,” Molecular Cancer 19, no. 1 (2020): 165.

[66]

D. Smart, A. Garcia-Glaessner, D. Palmieri, et al., “Analysis of Radiation Therapy in a Model of Triple-Negative Breast Cancer Brain Metastasis,” Clinical & Experimental Metastasis 32, no. 7 (2015): 717–727.

[67]

M. D. Laksitorini, V. Yathindranath, W. Xiong, S. Hombach-Klonisch, and D. W. Miller, “Modulation of Wnt/β-Catenin Signaling Promotes Blood-Brain Barrier Phenotype in Cultured Brain Endothelial Cells,” Scientific Reports 9, no. 1 (2019): 19718.

[68]

M. Martin, S. Vermeiren, N. Bostaille, et al., “Engineered Wnt Ligands Enable Blood-Brain Barrier Repair in Neurological Disorders,” Science 375, no. 6582 (2022): eabm4459.

[69]

R. Daneman, D. Agalliu, L. Zhou, F. Kuhnert, C. J. Kuo, and B. A. Barres, “Wnt/β-Catenin Signaling Is Required for CNS, But Not Non-CNS, Angiogenesis,” Proceedings of the National Academy of Sciences 106, no. 2 (2009): 641–646.

[70]

F. Klemm, A. Bleckmann, L. Siam, et al., “β-Catenin-Independent WNT Signaling in Basal-Like Breast Cancer and Brain Metastasis,” Carcinogenesis 32, no. 3 (2010): 434–442.

[71]

N. Krishnamurthy and R. Kurzrock, “Targeting the Wnt/Beta-Catenin Pathway in Cancer: Update on Effectors and Inhibitors,” Cancer Treatment Reviews 62 (2018): 50–60.

[72]

P. F. Peddi and S. A. Hurvitz, “PI3K Pathway Inhibitors for the Treatment of Brain Metastases With a Focus on HER2+ Breast Cancer,” Journal of Neuro-Oncology 117, no. 1 (2014): 7–13.

[73]

F. Batalini, S. L. Moulder, E. P. Winer, H. S. Rugo, N. U. Lin, and G. M. Wulf, “Response of Brain Metastases From PIK3CA-Mutant Breast Cancer to Alpelisib,” JCO Precision Oncology 4 (2020), https://doi.org/10.1200/PO.19.00403.

[74]

B. Adamo, A. M. Deal, E. Burrows, et al., “Phosphatidylinositol 3-Kinase Pathway Activation in Breast Cancer Brain Metastases,” Breast Cancer Research 13 (2011): R125.

[75]

F. M. Ippen, J. K. Grosch, M. Subramanian, et al., “Targeting the PI3K/Akt/mTOR Pathway With the Pan-Akt Inhibitor GDC-0068 in PIK3CA-Mutant Breast Cancer Brain Metastases,” Neuro-Oncology 21, no. 11 (2019): 1401–1411.

[76]

D. R. Manu, M. Slevin, L. Barcutean, T. Forro, T. Boghitoiu, and R. Balasa, “Astrocyte Involvement in Blood-Brain Barrier Function: A Critical Update Highlighting Novel, Complex, Neurovascular Interactions,” International Journal of Molecular Sciences 24, no. 24 (2023): 17146.

[77]

J. Fares, A. Cordero, D. Kanojia, and M. S. Lesniak, “The Network of Cytokines in Brain Metastases,” Cancers 13, no. 1 (2021): 142.

[78]

Z. Liang, Y. Mo, Y. Zhang, Y. Yu, and Y. Ji, “Molecular Mechanisms and Signaling Pathways Related to Brain Metastasis in Breast Cancer,” Frontiers in Pharmacology 16 (2025): 1585668.

[79]

E. C. Lien, C. A. Lyssiotis, and L. C. Cantley, “Metabolic Reprogramming by the PI3K-Akt-mTOR Pathway in Cancer, Recent Results in Cancer Research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer,” Metabolism in Cancer 207 (2016): 39–72.

[80]

M. Benjamin, P. Malakar, R. A. Sinha, et al., “Molecular Signaling Network and Therapeutic Developments in Breast Cancer Brain Metastasis,” Advances in Cancer Biology – Metastasis 7 (2023): 100079.

[81]

Y. He, M. M. Sun, G. G. Zhang, et al., “Targeting PI3K/Akt Signal Transduction for Cancer Therapy,” Signal Transduction and Targeted Therapy 6, no. 1 (2021): 425.

[82]

Q. Chen, J. Xiong, Y. Ma, J. Wei, C. Liu, and Y. Zhao, “Systemic Treatments for Breast Cancer Brain Metastasis,” Frontiers in Oncology 12 (2023): 1086821.

[83]

W. Xiao, Z. Gao, Y. Duan, W. Yuan, and Y. Ke, “Notch Signaling Plays a Crucial Role in Cancer Stem-Like Cells Maintaining Stemness and Mediating Chemotaxis in Renal Cell Carcinoma,” Journal of Experimental & Clinical Cancer Research: CR 36 (2017): 41.

[84]

D. Hong, A. J. Fritz, S. K. Zaidi, et al., “Epithelial-to-Mesenchymal Transition and Cancer Stem Cells Contribute to Breast Cancer Heterogeneity,” Journal of Cellular Physiology 233, no. 12 (2018): 9136–9144.

[85]

P. M. McGowan, C. Simedrea, E. J. Ribot, et al., “Notch1 Inhibition Alters the CD44hi/CD24lo Population and Reduces the Formation of Brain Metastases From Breast Cancer,” Molecular Cancer Research 9, no. 7 (2011): 834–844.

[86]

A. Edwards and K. Brennan, “Notch Signalling in Breast Development and Cancer,” Frontiers in Cell and Developmental Biology 9 (2021): 692173.

[87]

F. Xing, A. Kobayashi, H. Okuda, et al., “Reactive Astrocytes Promote the Metastatic Growth of Breast Cancer Stem-Like Cells by Activating Notch Signalling in Brain,” EMBO Molecular Medicine 5, no. 3 (2013): 384–396.

[88]

J. Meng, Y. Jiang, S. Zhao, et al., “Tumor-Derived Jagged1 Promotes Cancer Progression Through Immune Evasion,” Cell Reports 38, no. 10 (2022): 110492.

[89]

E. W. J. Mollen, J. Ient, V. C. G. Tjan-Heijnen, et al., “Moving Breast Cancer Therapy Up a Notch,” Frontiers in Oncology 8 (2018): 518.

[90]

A. Nandi and R. Chakrabarti, “The Many Facets of Notch Signaling in Breast Cancer: Toward Overcoming Therapeutic Resistance,” Genes & Development 34, no. 21–22 (2020): 1422–1438.

[91]

M.-X. Xiu, Y.-M. Liu, and B.-H. Kuang, “The Oncogenic Role of Jagged1/Notch Signaling in Cancer,” Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 129 (2020): 110416.

[92]

D. Li, “The Notch Ligand JAGGED1 as a Target for Anti-Tumor Therapy,” Frontiers in Oncology 4 (2014): 254.

[93]

A. Majumder, M. Sandhu, D. Banerji, V. Steri, A. Olshen, and M. M. Moasser, “The Role of HER2 and HER3 in HER2-Amplified Cancers Beyond Breast Cancers,” Scientific Reports 11, no. 1 (2021): 9091.

[94]

D. Diwanji, R. Trenker, T. M. Thaker, et al., “Structures of the HER2–HER3–NRG1β Complex Reveal a Dynamic Dimer Interface,” Nature 600, no. 7888 (2021): 339–343.

[95]

M. Lim, T. H. Nguyen, C. Niland, et al., “Landscape of Epidermal Growth Factor Receptor Heterodimers in Brain Metastases,” Cancers 14, no. 3 (2022): 533.

[96]

H. Sun, J. Xu, S. Dai, Y. Ma, and T. Sun, “Breast Cancer Brain Metastasis: Current Evidence and Future Directions,” Cancer Medicine 12, no. 2 (2023): 1007–1024.

[97]

S. Kabraji, J. Ni, N. U. Lin, S. Xie, E. P. Winer, and J. J. Zhao, “Drug Resistance in HER2-Positive Breast Cancer Brain Metastases: Blame the Barrier or the Brain?,” Clinical Cancer Research 24, no. 8 (2018): 1795–1804.

[98]

L. Da Silva, P. T. Simpson, C. E. Smart, et al., “HER3 and Downstream Pathways Are Involved in Colonization of Brain Metastases From Breast Cancer,” Breast Cancer Research 12, no. 4 (2010): R46.

[99]

M. Momeny, J. M. Saunus, F. Marturana, et al., “Heregulin-HER3-HER2 Signaling Promotes Matrix Metalloproteinase-Dependent Blood-Brain-Barrier Transendothelial Migration of Human Breast Cancer Cell Lines,” Oncotarget 6, no. 6 (2015): 3932–3946.

[100]

M. Momeny, M. Tienhaara, M. Sharma, et al., “DUSP6 Inhibition Overcomes Neuregulin/HER3-Driven Therapy Tolerance in HER2+ Breast Cancer,” EMBO Molecular Medicine 16, no. 7 (2024): 1603–1629.

[101]

J. Saunus, A. McCart Reed, Z. Lim, and S. Lakhani, “Breast Cancer Brain Metastases: Clonal Evolution in Clinical Context,” International Journal of Molecular Sciences 18, no. 1 (2017): 152.

[102]

D. Xu, Z. Hu, K. Wang, et al., “Why Does HER2-Positive Breast Cancer Metastasize to the Brain and What Can We Do About It?,” Critical Reviews in Oncology/Hematology 195 (2024): 104269.

[103]

C. Criscitiello, C. Corti, M. De Laurentiis, et al., “Tucatinib's Journey From Clinical Development to Clinical Practice: New Horizons for HER2-Positive Metastatic Disease and Promising Prospects for Brain Metastatic Spread,” Cancer Treatment Reviews 120 (2023): 102618.

[104]

N. U. Lin, V. Borges, C. Anders, et al., “Intracranial Efficacy and Survival With Tucatinib Plus Trastuzumab and Capecitabine for Previously Treated HER2-Positive Breast Cancer With Brain Metastases in the HER2CLIMB Trial,” Journal of Clinical Oncology 38, no. 23 (2020): 2610–2619.

[105]

H. Miski, K. Krupa, M. P. Budzik, A. Deptała, and A. Badowska-Kozakiewicz, “HER2-Positive Breast Cancer—Current Treatment Management and New Therapeutic Methods for Brain Metastasis,” Biomedicines 13, no. 5 (2025): 1153.

[106]

D. Ippolitov, Y.-H. Lin, J. Spence, et al., “Overcoming Brain-Derived Therapeutic Resistance in HER2+ Breast Cancer Brain Metastasis,” preprint, bioRxiv, February 22, 2024, https://doi.org/10.1101/2024.02.19.581073.

[107]

G. Giordano, G. Griguolo, M. Landriscina, et al., “Multidisciplinary Management of HER2-Positive Breast Cancer With Brain Metastases: An Evidence-Based Pragmatic Approach Moving From Pathophysiology to Clinical Data,” Critical Reviews in Oncology/Hematology 192 (2023): 104185.

[108]

W. Geng, H. Thomas, Z. Chen, et al., “Mechanisms of Acquired Resistance to HER2-Positive Breast Cancer Therapies Induced by HER3: A Comprehensive Review,” European Journal of Pharmacology 977 (2024): 176725.

[109]

H. Zeng, W. Wang, L. Zhang, and Z. Lin, “HER3-Targeted Therapy: The Mechanism of Drug Resistance and the Development of Anticancer Drugs,” Cancer Drug Resistance 7 (2024): 14.

[110]

S. M. Chew, E. Ferraro, A. Safonov, et al., “Impact of Cyclin Dependent Kinase 4/6 Inhibitors on Breast Cancer Brain Metastasis Outcomes,” European Journal of Cancer 207 (2024): 114175.

[111]

T.-H. Wei, M.-Y. Lu, S.-H. Yao, et al., “Insight Into Janus Kinases Specificity: From Molecular Architecture to Cancer Therapeutics,” MedComm – Oncology 3, no. 1 (2024): e69.

[112]

S. G. Manore, D. L. Doheny, G. L. Wong, and H. W. Lo, “IL-6/JAK/STAT3 Signaling in Breast Cancer Metastasis: Biology and Treatment,” Frontiers in Oncology 12 (2022): 866014.

[113]

G. Huang, G. Xu, Q. Cao, et al., “Role of GPX3+ Astrocytes in Breast Cancer Brain Metastasis Activated by Circulating Tumor Cell Exosomes,” NPJ Precision Oncology 9, no. 1 (2025): 64.

[114]

I. Tošić and D. A. Frank, “STAT3 as a Mediator of Oncogenic Cellular Metabolism: Pathogenic and Therapeutic Implications,” Neoplasia 23, no. 12 (2021): 1167–1178.

[115]

B. C. McFarland and E. N. Benveniste, “Reactive Astrocytes Foster Brain Metastases via STAT3 Signaling,” Annals of Translational Medicine 7 (2019): S83.

[116]

X. Hu, J. Li, M. Fu, X. Zhao, and W. Wang, “The JAK/STAT Signaling Pathway: From Bench to Clinic,” Signal Transduction and Targeted Therapy 6, no. 1 (2021): 402.

[117]

F. Shao, X. Pang, and G. H. Baeg, “Targeting the JAK/STAT Signaling Pathway for Breast Cancer,” Current Medicinal Chemistry 28, no. 25 (2021): 5137–5151.

[118]

Y. Wang, Z. Wang, S. Li, J. Ma, X. Dai, and J. Lu, “Deciphering JAK/STAT Signaling Pathway: A Multifaceted Approach to Tumorigenesis, Progression and Therapeutic Interventions,” International Immunopharmacology 131 (2024): 111846.

[119]

H. Doron, T. Pukrop, and N. Erez, “A Blazing Landscape: Neuroinflammation Shapes Brain Metastasis,” Cancer Research 79, no. 3 (2019): 423–436.

[120]

D. Wasilewski, N. Priego, C. Fustero-Torre, and M. Valiente, “Reactive Astrocytes in Brain Metastasis,” Frontiers in Oncology 7 (2017): 298.

[121]

“Cancer Cell–Astrocyte Gap Junctions Promote Brain Metastasis Formation,” Cancer Discovery 6, no. 7 (2016): OF10.

[122]

C. Calì, I. Cantando, M. F. Veloz Castillo, L. Gonzalez, and P. Bezzi, “Metabolic Reprogramming of Astrocytes in Pathological Conditions: Implications for Neurodegenerative Diseases,” International Journal of Molecular Sciences 25, no. 16 (2024): 8922.

[123]

R. Pérez-Tomás and I. Pérez-Guillén, “Lactate in the Tumor Microenvironment: An Essential Molecule in Cancer Progression and Treatment,” Cancers 12, no. 11 (2020): 3244.

[124]

Y. Zhang, X. Shu, Y. Zhang, et al., “Astrocyte-Derived MMP-9 Is a Key Mediator of Pseudorabies Virus Penetration of the Blood-Brain Barrier and Tight Junction Disruption,” Veterinary Research 56, no. 1 (2025): 72.

[125]

J. J. Peters, C. Teng, K. Peng, and X. Li, “Deciphering the Blood-Brain Barrier Paradox in Brain Metastasis Development and Therapy,” Cancers 17, no. 2 (2025): 298.

[126]

K. T. Evans, K. Blake, A. Longworth, et al., “Microglia Promote Anti-Tumour Immunity and Suppress Breast Cancer Brain Metastasis,” Nature Cell Biology 25, no. 12 (2023): 1848–1859.

[127]

Q. Qin, C. Wang, Y. Li, and Q. Mo, “Microglia Increase CEMIP Expression and Promote Brain Metastasis in Breast Cancer Through the JAK2/STAT3 Signaling Pathway,” Oncologie 26, no. 2 (2023): 257–267.

[128]

X. Zhou, G. Jin, J. Zhang, and F. Liu, “Recruitment Mechanisms and Therapeutic Implications of Tumor-Associated Macrophages in the Glioma Microenvironment,” Frontiers in Immunology 14 (2023): 1067641.

[129]

C. Pallarés-Moratalla and G. Bergers, “The Ins and Outs of Microglial Cells in Brain Health and Disease,” Frontiers in Immunology 15 (2024): 1305087.

[130]

D. Hambardzumyan, D. H. Gutmann, and H. Kettenmann, “The Role of Microglia and Macrophages in Glioma Maintenance and Progression,” Nature Neuroscience 19, no. 1 (2016): 20–27.

[131]

S. Bryan, I. Witzel, K. Borgmann, and L. Oliveira-Ferrer, “Molecular Mechanisms Associated With Brain Metastases in HER2-Positive and Triple Negative Breast Cancers,” Cancers 13, no. 16 (2021): 4137.

[132]

X. Peng, H. Dong, L. Zhang, and S. Liu, “Role of Cancer Stem Cell Ecosystem on Breast Cancer Metastasis and Related Mouse Models,” Zoological Research 45, no. 3 (2024): 506–517.

[133]

I. A. Lindhout, T. E. Murray, C. M. Richards, and A. Klegeris, “Potential Neurotoxic Activity of Diverse Molecules Released by Microglia,” Neurochemistry International 148 (2021): 105117.

[134]

Y. Liu, D. Wang, M. Lei, et al., “GABARAP Suppresses EMT and Breast Cancer Progression via the AKT/mTOR Signaling Pathway,” Aging 13, no. 4 (2021): 5858–5874.

[135]

D. Zhang, X. Li, Z. Yao, C. Wei, N. Ning, and J. Li, “Gabaergic Signaling Facilitates Breast Cancer Metastasis by Promoting ERK1/2-dependent Phosphorylation,” Cancer Letters 348, no. 1–2 (2014): 100–108.

[136]

J. Fitamant, C. Guenebeaud, M.-M. Coissieux, et al., “Netrin-1 Expression Confers a Selective Advantage for Tumor Cell Survival in Metastatic Breast Cancer,” Proceedings of the National Academy of Sciences 105, no. 12 (2008): 4850–4855.

[137]

N. Andryszak, P. Kurzawa, M. Krzyżaniak, et al., “Expression of Semaphorin 3A (SEMA3A) in Breast Cancer Subtypes,” Scientific Reports 14, no. 1 (2024): 1969.

[138]

J. R. Sierra, S. Corso, L. Caione, et al., “Tumor Angiogenesis and Progression Are Enhanced by Sema4D Produced by Tumor-Associated Macrophages,” Journal of Experimental Medicine 205, no. 7 (2008): 1673–1685.

[139]

A. E. Whiteley, D. Ma, L. Wang, et al., “Breast Cancer Exploits Neural Signaling Pathways for Bone-to-Meninges Metastasis,” Science 384, no. 6702 (2024): eadh5548.

[140]

H. Hondermarck, “Neurotrophins and Their Receptors in Breast Cancer,” Cytokine & Growth Factor Reviews 23, no. 6 (2012): 357–365.

[141]

D. L. Gruol, K. Vo, and J. G. Bray, “Increased Astrocyte Expression of IL-6 or CCL2 in Transgenic Mice Alters Levels of Hippocampal and Cerebellar Proteins,” Frontiers in Cellular Neuroscience 8 (2014): 234.

[142]

C. M. Alberini, E. Cruz, G. Descalzi, B. Bessières, and V. Gao, “Astrocyte Glycogen and Lactate: New Insights Into Learning and Memory Mechanisms,” GLIA 66, no. 6 (2018): 1244–1262.

[143]

M. Du, J. Zhang, M. S. Wicha, and M. Luo, “Redox Regulation of Cancer Stem Cells: Biology and Therapeutic Implications,” MedComm – Oncology 3, no. 4 (2024): e70005.

[144]

E. Louie, X. F. Chen, A. Coomes, K. Ji, S. Tsirka, and E. I. Chen, “Neurotrophin-3 Modulates Breast Cancer Cells and the Microenvironment to Promote the Growth of Breast Cancer Brain Metastasis,” Oncogene 32, no. 35 (2013): 4064–4077.

[145]

J. de Ruiter Swain, E. Michalopoulou, E. K. Noch, M. J. Lukey, and L. Van Aelst, “Metabolic Partitioning in the Brain and Its Hijacking by Glioblastoma,” Genes & Development 37, no. 15–16 (2023): 681–702.

[146]

Z. Liu, G. L. Semenza, and H. Zhang, “Hypoxia-Inducible Factor 1 and Breast Cancer Metastasis,” Journal of Zhejiang University-SCIENCE B 16, no. 1 (2015): 32–43.

[147]

V. L. Payen, M. Y. Hsu, K. S. Rädecke, et al., “Monocarboxylate Transporter MCT1 Promotes Tumor Metastasis Independently of Its Activity as a Lactate Transporter,” Cancer Research 77, no. 20 (2017): 5591–5601.

[148]

M. Zhou, M. Zheng, X. Zhou, et al., “The Roles of Connexins and Gap Junctions in the Progression of Cancer,” Cell Communication and Signaling 21, no. 1 (2023): 8.

[149]

C. Lussey-Lepoutre, K. E. R. Hollinshead, C. Ludwig, et al., “Loss of Succinate Dehydrogenase Activity Results in Dependency on Pyruvate Carboxylation for Cellular Anabolism,” Nature Communications 6 (2015): 8784.

[150]

J. R. Moffett, N. Puthillathu, R. Vengilote, D. M. Jaworski, and A. M. Namboodiri, “Acetate Revisited: A Key Biomolecule at the Nexus of Metabolism, Epigenetics, and Oncogenesis – Part 2: Acetate and ACSS2 in Health and Disease,” Frontiers in Physiology 11 (2020): 580171.

[151]

A. Cordero, D. Kanojia, J. Miska, et al., “FABP7 Is a Key Metabolic Regulator in HER2+ Breast Cancer Brain Metastasis,” Oncogene 38, no. 37 (2019): 6445–6460.

[152]

N. U. Khan, J. Ni, X. Ju, T. Miao, H. Chen, and L. Han, “Escape From Abluminal LRP1-Mediated Clearance for Boosted Nanoparticle Brain Delivery and Brain Metastasis Treatment,” Acta Pharmaceutica Sinica B 11, no. 5 (2021): 1341–1354.

[153]

X. Zhang, G. Li, T. Chen, et al., “Single-Cell RNA Sequencing Reveals SLC31A1-Mediated M2 Polarization of Macrophages Promotes Malignant Progression in Triple-Negative Breast Cancer,” Journal of Cancer Research and Clinical Oncology 151, no. 5 (2025): 163.

[154]

Y. Jin, Y. Kang, M. Wang, et al., “Targeting Polarized Phenotype of Microglia via IL6/JAK2/STAT3 Signaling to Reduce NSCLC Brain Metastasis,” Signal Transduction and Targeted Therapy 7, no. 1 (2022): 52.

[155]

Q. Feng, C. Z. Li, Y. H. Zou, et al., “IL6/CCL2 From M2-Polarized Microglia Promotes Breast Cancer Brain Metastasis and the Reversal Effect of β-Elemene,” Frontiers in Pharmacology 16 (2025): 1547333.

[156]

J. de Vrij, S. L. N. Maas, K. M. C. Kwappenberg, et al., “Glioblastoma-Derived Extracellular Vesicles Modify the Phenotype of Monocytic Cells,” International Journal of Cancer 137, no. 7 (2015): 1630–1642.

[157]

N. Santana-Codina, L. Muixí, R. Foj, et al., “GRP94 Promotes Brain Metastasis by Engaging Pro-Survival Autophagy,” Neuro-Oncology 22, no. 5 (2020): 652–664.

[158]

J. Chen, H. J. Lee, X. Wu, et al., “Gain of Glucose-Independent Growth Upon Metastasis of Breast Cancer Cells to the Brain,” Cancer Research 75, no. 3 (2015): 554–565.

[159]

R. Blazquez, E. Rietkötter, B. Wenske, et al., “LEF1 Supports Metastatic Brain Colonization by Regulating Glutathione Metabolism and Increasing ROS Resistance in Breast Cancer,” International Journal of Cancer 146, no. 11 (2020): 3170–3183.

[160]

A. Louveau, T. H. Harris, and J. Kipnis, “Revisiting the Mechanisms of CNS Immune Privilege,” Trends in Immunology 36, no. 10 (2015): 569–577.

[161]

T. G. Agnihotri, S. Salave, T. Shinde, et al., “Understanding the Role of Endothelial Cells in Brain Tumor Formation and Metastasis: A Proposition to Be Explored for Better Therapy,” Journal of the National Cancer Center 3, no. 3 (2023): 222–235.

[162]

L. Burn, N. Gutowski, J. Whatmore, G. Giamas, and M. Z. I. Pranjol, “The Role of Astrocytes in Brain Metastasis at the Interface of Circulating Tumour Cells and the Blood Brain Barrier,” Frontiers in Bioscience – Landmark 26, no. 9 (2021): 590–601.

[163]

Y. Feng, X. Hu, Y. Zhang, and Y. Wang, “The Role of Microglia in Brain Metastases: Mechanisms and Strategies,” Aging and Disease 15, no. 1 (2024): 169–185.

[164]

I. Adam, A. Longworth, and D. Lawson, “Regulatory T Cells as Key Modulators of Breast Cancer Brain Metastasis,” supplement, Journal of Immunology 212, no. 1_Suppl (2024): 0450_5224.

[165]

T. Huang, D. Wu, L. Jiang, et al., “Neuro–Astrocytic Network in Breast Cancer Brain Metastases: Adaptive Mechanisms and Novel Therapeutic Targets,” International Journal of Cancer 157, no. 1 (2025): 18–31.

[166]

S. Xiong, X. Tan, X. Wu, et al., “Molecular Landscape and Emerging Therapeutic Strategies in Breast Cancer Brain Metastasis,” Therapeutic Advances in Medical Oncology 15 (2023): 17588359231165976.

[167]

J. Tian, C. Chau, T. G. Hales, and D. L. Kaufman, “GABA(A) Receptors Mediate Inhibition of T Cell Responses,” Journal of Neuroimmunology 96, no. 1 (1999): 21–28.

[168]

A. E. Yuzhalin, F. J. Lowery, Y. Saito, et al., “Astrocyte-Induced Cdk5 Expedites Breast Cancer Brain Metastasis by Suppressing MHC-I Expression to Evade Immune Recognition,” Nature Cell Biology 26, no. 10 (2024): 1773–1789.

[169]

B. I. Bassey-Archibong, C. Rajendra Chokshi, N. Aghaei, et al., “An HLA-G/SPAG9/STAT3 Axis Promotes Brain Metastases,” Proceedings of the National Academy of Sciences 120, no. 8 (2023): e2205247120.

[170]

M. Diossy, L. Reiniger, Z. Sztupinszki, et al., “Breast Cancer Brain Metastases Show Increased Levels of Genomic Aberration-Based Homologous Recombination Deficiency Scores Relative to Their Corresponding Primary Tumors,” Annals of Oncology 29, no. 9 (2018): 1948–1954.

[171]

G. Rodrigues, A. Hoshino, C. M. Kenific, et al., “Tumour Exosomal CEMIP Protein Promotes Cancer Cell Colonization in Brain Metastasis,” Nature Cell Biology 21, no. 11 (2019): 1403–1412.

[172]

A. Baschnagel, A. Russo, W. E. Burgan, et al., “Vorinostat Enhances the Radiosensitivity of a Breast Cancer Brain Metastatic Cell Line Grown In Vitro and as Intracranial Xenografts,” Molecular Cancer Therapeutics 8, no. 6 (2009): 1589–1595.

[173]

H. Zhou, M. Chen, and D. Zhao, “Longitudinal MRI Evaluation of Intracranial Development and Vascular Characteristics of Breast Cancer Brain Metastases in a Mouse Model,” PLoS One 8, no. 4 (2013): e62238.

[174]

M. Oshi, M. Okano, A. Maiti, et al., “Novel Breast Cancer Brain Metastasis Patient-Derived Orthotopic Xenograft Model for Preclinical Studies,” Cancers 12, no. 2 (2020): 444.

[175]

M. Boretto, N. Maenhoudt, X. Luo, et al., “Patient-Derived Organoids From Endometrial Disease Capture Clinical Heterogeneity and Are Amenable to Drug Screening,” Nature Cell Biology 21, no. 8 (2019): 1041–1051.

[176]

X. Qian, H. Song, and G. Ming, “Brain Organoids: Advances, Applications and Challenges,” Development 146, no. 8 (2019): dev166074.

[177]

M. Jian, L. Ren, G. He, et al., “A Novel Patient-Derived Organoids-Based Xenografts Model for Preclinical Drug Response Testing in Patients With Colorectal Liver Metastases,” Journal of Translational Medicine 18, no. 1 (2020): 234.

[178]

W. Zhang, J. Jiang, Z. Xu, et al., “Microglia-Containing Human Brain Organoids for the Study of Brain Development and Pathology,” Molecular Psychiatry 28, no. 1 (2023): 96–107.

[179]

M. Diksin, J. Rowlinson, A. Kondrashov, et al., “Characterisation of the Invasive Tumour Niche Using Astrocyte-Glioblastoma Organoids and Decellularised Human Brain,” supplement, Neuro-Oncology 21, no. Suppl_4 (2019): iv7.

[180]

Z. Liu, S. Dong, M. Liu, et al., “Experimental Models for Cancer Brain Metastasis,” Cancer Pathogenesis and Therapy 2, no. 1 (2024): 15–23.

[181]

V. Debien, A. De Caluwé, X. Wang, et al., “Immunotherapy in Breast Cancer: An Overview of Current Strategies and Perspectives,” NPJ Breast Cancer 9, no. 1 (2023): 7.

[182]

N. N. Knier, S. Pellizzari, J. Zhou, P. J. Foster, and A. Parsyan, “Preclinical Models of Brain Metastases in Breast Cancer,” Biomedicines 10, no. 3 (2022): 667.

[183]

L. Miarka and M. Valiente, “Animal Models of Brain Metastasis,” supplement, Neuro-Oncology Advances 3, no. Suppl_5 (2021): v144–v156.

[184]

M. M. Cogels, R. Rouas, G. E. Ghanem, et al., “Humanized Mice as a Valuable Pre-Clinical Model for Cancer Immunotherapy Research,” Frontiers in Oncology 11 (2021): 784947.

[185]

K. L. Mills and C. K. Tamnes, “Methods and Considerations for Longitudinal Structural Brain Imaging Analysis Across Development,” Developmental Cognitive Neuroscience 9 (2014): 172–190.

[186]

S. S. Watson, B. Duc, Z. Kang, et al., “Microenvironmental Reorganization in Brain Tumors Following Radiotherapy and Recurrence Revealed by Hyperplexed Immunofluorescence Imaging,” Nature Communications 15, no. 1 (2024): 3226.

[187]

C. Bailleux, L. Eberst, and T. Bachelot, “Treatment Strategies for Breast Cancer Brain Metastases,” British Journal of Cancer 124, no. 1 (2021): 142–155.

[188]

C. Chargari, F. Campana, J.-Y. Pierga, et al., “Whole-Brain Radiation Therapy in Breast Cancer Patients With Brain Metastases,” Nature Reviews Clinical Oncology 7, no. 11 (2010): 632–640.

[189]

M. Demeule, A. Régina, J. Jodoin, et al., “Drug Transport to the Brain: Key Roles for the Efflux Pump P-Glycoprotein in the Blood–Brain Barrier,” Vascular Pharmacology 38, no. 6 (2002): 339–348.

[190]

E. Rivera, C. Meyers, M. Groves, et al., “Phase I Study of Capecitabine in Combination With Temozolomide in the Treatment of Patients With Brain Metastases From Breast Carcinoma,” Cancer 107, no. 6 (2006): 1348–1354.

[191]

M. Shah, S. Wedam, J. Cheng, et al., “FDA Approval Summary: Tucatinib for the Treatment of Patients With Advanced or Metastatic HER2-Positive Breast Cancer,” Clinical Cancer Research 27, no. 5 (2021): 1220–1226.

[192]

T. J. A. Dekker, “Neratinib in HER2-Positive Breast Cancer With Brain Metastases,” Journal of Clinical Oncology 39, no. 3 (2020): 251–252.

[193]

G. Curigliano, V. Mueller, V. Borges, et al., “Tucatinib Versus Placebo Added to Trastuzumab and Capecitabine for Patients With Pretreated HER2+ Metastatic Breast Cancer With and Without Brain Metastases (HER2CLIMB): Final Overall Survival Analysis,” Annals of Oncology 33, no. 3 (2022): 321–329.

[194]

J. Li, J. Jiang, X. Bao, et al., “Mechanistic Modeling of Central Nervous System Pharmacokinetics and Target Engagement of HER2 Tyrosine Kinase Inhibitors to Inform Treatment of Breast Cancer Brain Metastases,” Clinical Cancer Research 28, no. 15 (2022): 3329–3341.

[195]

S. M. Tolaney, S. Sahebjam, E. Le Rhun, et al., “A Phase II Study of Abemaciclib in Patients With Brain Metastases Secondary to Hormone Receptor–Positive Breast Cancer,” Clinical Cancer Research 26, no. 20 (2020): 5310–5319.

[196]

J. M. Pérez-García, M. Vaz Batista, P. Cortez, et al., “Trastuzumab Deruxtecan in Patients With Central Nervous System Involvement From HER2-Positive Breast Cancer: The DEBBRAH Trial,” Neuro-Oncology 25, no. 1 (2023): 157–166.

[197]

T. Grinda, S. Morganti, L. Hsu, et al., “Real-World Outcomes With Sacituzumab Govitecan Among Breast Cancer Patients With Central Nervous System Metastases,” NPJ Breast Cancer 11, no. 1 (2025): 22.

[198]

I. Schlam and M. E. Gatti-Mays, “Immune Checkpoint Inhibitors in the Treatment of Breast Cancer Brain Metastases,” Oncologist 27, no. 7 (2022): 538–547.

[199]

N. J. Abbott, A. A. K. Patabendige, D. E. M. Dolman, S. R. Yusof, and D. J. Begley, “Structure and Function of the Blood–Brain Barrier,” Neurobiology of Disease 37, no. 1 (2010): 13–25.

[200]

W. Löscher and H. Potschka, “Blood-Brain Barrier Active Efflux Transporters: ATP-Binding Cassette Gene Family,” NeuroRx 2, no. 1 (2005): 86–98.

[201]

P. R. Lockman, R. K. Mittapalli, K. S. Taskar, et al., “Heterogeneous Blood-Tumor Barrier Permeability Determines Drug Efficacy in Experimental Brain Metastases of Breast Cancer,” Clinical Cancer Research 16, no. 23 (2010): 5664–5678.

[202]

J. L. Jimenez-Macias, P. Vaughn-Beaucaire, A. Bharati, et al., “Modulation of Blood-Tumor Barrier Transcriptional Programs Improves Intratumoral Drug Delivery and Potentiates Chemotherapy in GBM,” Science Advances 11, no. 9 (2025): eadr1481.

[203]

H. Qosa, D. S. Miller, P. Pasinelli, and D. Trotti, “Regulation of ABC Efflux Transporters at Blood-Brain Barrier in Health and Neurological Disorders,” Brain Research 1628, no. Pt B (2015): 298–316.

[204]

R. K. Murthy, S. Loi, A. Okines, et al., “Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer,” New England Journal of Medicine 382, no. 7 (2020): 597–609.

[205]

J. J. Peters, C. Teng, K. Peng, and X. Li, “Deciphering the Blood–Brain Barrier Paradox in Brain Metastasis Development and Therapy,” Cancers 17, no. 2 (2025): 298.

[206]

I. Schlam and S. M. Tolaney, “Is There a Role for CDK 4/6 Inhibitors in Breast Cancer Brain Metastases?,” Oncotarget 12, no. 9 (2021): 873–875.

[207]

S. Pan, J. Y. Gadrey, S. Sammons, et al., “Role of Antibody Drug Conjugates in the Treatment of Patients With Breast Cancer Brain Metastases,” Therapeutic Advances in Medical Oncology 16 (2024): 17588359241292266.

[208]

A. E. D. Van Swearingen, M. R. Lee, L. W. Rogers, et al., “Genomic and Immune Profiling of Breast Cancer Brain Metastases,” Acta Neuropathologica Communications 13, no. 1 (2025): 99.

[209]

L. Zhu, M. Liu, Y. Shang, et al., “Single-Cell Profiling Transcriptomic Reveals Cellular Heterogeneity and Cellular Crosstalk in Breast Cancer Lymphatic Node, Bone, and Brain Metastases,” Scientific Reports 15, no. 1 (2025): 2217.

[210]

A. M. Powell, L. Watson, L. Luzietti, S. Prekovic, L. S. Young, and D. Varešlija, “The Epigenetic Landscape of Brain Metastasis,” Oncogene 44, no. 27 (2025): 2227–2239.

[211]

A. Zhang, K. Miao, H. Sun, and C. X. Deng, “Tumor Heterogeneity Reshapes the Tumor Microenvironment to Influence Drug Resistance,” International Journal of Biological Sciences 18, no. 7 (2022): 3019–3033.

[212]

M. Gerlinger and C. Swanton, “How Darwinian Models Inform Therapeutic Failure Initiated by Clonal Heterogeneity in Cancer Medicine,” British Journal of Cancer 103, no. 8 (2010): 1139–1143.

[213]

H. Sun, J. Xu, S. Dai, Y. Ma, and T. Sun, “Breast Cancer Brain Metastasis: Current Evidence and Future Directions,” Cancer Medicine 12, no. 2 (2023): 1007–1024.

[214]

S. Morganti, H. A. Parsons, N. U. Lin, and A. Grinshpun, “Liquid Biopsy for Brain Metastases and Leptomeningeal Disease in Patients With Breast Cancer,” NPJ Breast Cancer 9, no. 1 (2023): 43.

[215]

S. Cho, B. Joo, M. Park, et al., “A Radiomics-Based Model for Potentially More Accurate Identification of Subtypes of Breast Cancer Brain Metastases,” Yonsei Medical Journal 64, no. 9 (2023): 573–580.

[216]

V. S. Parekh and M. A. Jacobs, “Multiparametric Radiomics Methods for Breast Cancer Tissue Characterization Using Radiological Imaging,” Breast Cancer Research and Treatment 180, no. 2 (2020): 407–421.

[217]

B. Salhia, J. Kiefer, J. T. D. Ross, et al., “Integrated Genomic and Epigenomic Analysis of Breast Cancer Brain Metastasis,” PLoS One 9, no. 1 (2014): e85448.

[218]

S. K. Maurya, A. U. Rehman, M. A. A. Zaidi, et al., “Epigenetic Alterations Fuel Brain Metastasis via Regulating Inflammatory Cascade,” Seminars in Cell & Developmental Biology 154 (2024): 261–274.

[219]

S. Krishnamurthy, J. Y. Oh, S. Gautham, J. Li, and Y. Shen, “Optimizing Drug Delivery to the Brain for Breast Metastasis: A Novel Method for Tumor Targeting,” Cureus 16, no. 11 (2024): e73598.

[220]

S. Kannan and V. W. T. Cheng, “Nanoparticle Drug Delivery to Target Breast Cancer Brain Metastasis: Current and Future Trends,” International Journal of Cancer 153, no. 6 (2023): 1118–1129.

[221]

R. Alkins, A. Burgess, M. Ganguly, et al., “Focused Ultrasound Delivers Targeted Immune Cells to Metastatic Brain Tumors,” Cancer Research 73, no. 6 (2013): 1892–1899.

[222]

S. Kabraji, J. Ni, S. Sammons, et al., “Abstract PD4-05: Preclinical and Clinical Efficacy of Trastuzumab Deruxtecan in Breast Cancer Brain Metastases (BCBM),” supplement, Cancer Research 82, no. 4_Suppl (2022): PD4-05.

[223]

J. Fares, D. Kanojia, A. Rashidi, A. U. Ahmed, I. V. Balyasnikova, and M. S. Lesniak, “Diagnostic Clinical Trials in Breast Cancer Brain Metastases: Barriers and Innovations,” Clinical Breast Cancer 19, no. 6 (2019): 383–391.

[224]

M. Konopka-Filippow, D. Hempel, and E. Sierko, “Actual, Personalized Approaches to Preserve Cognitive Functions in Brain Metastases Breast Cancer Patients,” Cancers 14, no. 13 (2022): 3119.

[225]

F. Du, R. Guo, Z. Feng, et al., “Precision Gas Therapy by Ultrasound-Triggered for Anticancer Therapeutics,” MedComm – Oncology 2, no. 1 (2023): e27.

[226]

J. Zhang, L. Zhang, Y. Yan, et al., “Are Capecitabine and the Active Metabolite 5-FU CNS Penetrable to Treat Breast Cancer Brain Metastasis?,” Drug Metabolism and Disposition 43, no. 3 (2015): 411–417.

[227]

M. N. Mills, N. B. Figura, J. A. Arrington, et al., “Management of Brain Metastases in Breast Cancer: A Review of Current Practices and Emerging Treatments,” Breast Cancer Research and Treatment 180, no. 2 (2020): 279–300.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm – Oncology published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).

AI Summary AI Mindmap
PDF

45

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/