The Interplay of Aging and Cancer: Mechanisms, Implications, and Therapeutic Strategies

Liangce Wang , Yaru Luo , Xin Chen , Yuan Wang , Yan Zhang

MEDCOMM - Oncology ›› 2025, Vol. 4 ›› Issue (3) : e70041

PDF
MEDCOMM - Oncology ›› 2025, Vol. 4 ›› Issue (3) : e70041 DOI: 10.1002/mog2.70041
REVIEW ARTICLE

The Interplay of Aging and Cancer: Mechanisms, Implications, and Therapeutic Strategies

Author information +
History +
PDF

Abstract

Aging is a complex biological process that significantly influences human health, including susceptibility to cancer. Although aging and cancer are distinct phenomena, they intersect through shared molecular mechanisms such as genomic instability, telomere attrition, epigenetic alterations, and chronic inflammation. Despite increasing recognition of these connections, how aging-related changes influence cancer development and treatment remains poorly understood. This review explores the intricate relationship between aging and cancer, highlighting how age-related changes in the tumor microenvironment, systemic inflammation and cellular senescence contribute to oncogenesis and tumor progression. We also assess the impact of aging on cancer treatment outcomes, as well as how cancer and its therapies may contribute to the acceleration of biological aging. Furthermore, we discuss potential intervention strategies that target the aging-related mechanisms that drive cancer development and progression. We review current progress and future directions in aging and cancer research, emphasizing that, with continuous technological advances and deepening insights, incorporating aging biology into oncology is both timely and necessary. By integrating recent advances in cancer biology and geroscience, this review offers insights critical for designing age-adapted therapeutic strategies. It underscores the need to shift toward personalized oncology approaches that account for the biological and clinical heterogeneity of aging.

Keywords

aging / cancer / geroscience / precision oncology / therapeutics / tumor initiation and progression

Cite this article

Download citation ▾
Liangce Wang, Yaru Luo, Xin Chen, Yuan Wang, Yan Zhang. The Interplay of Aging and Cancer: Mechanisms, Implications, and Therapeutic Strategies. MEDCOMM - Oncology, 2025, 4(3): e70041 DOI:10.1002/mog2.70041

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. I. Rozhok and J. DeGregori, “The Evolution of Lifespan and Age-Dependent Cancer Risk,” Trends in Cancer 2, no. 10 (2016): 552-560.

[2]

C. Tomasetti, R. Durrett, M. Kimmel, et al., “Role of Stem-Cell Divisions in Cancer Risk,” Nature 548, no. 7666 (2017): E13-E14.

[3]

B. Han, R. Zheng, H. Zeng, et al., “Cancer Incidence and Mortality in China, 2022,” Journal of the National Cancer Center 4, no. 1 (2024): 47-53.

[4]

D. Hashim, G. Carioli, M. Malvezzi, et al., “Cancer Mortality in the Oldest Old: A Global Overview,” Aging 12, no. 17 (2020): 16744-16758.

[5]

R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, “Cancer Statistics, 2021,” CA: A Cancer Journal for Clinicians 71, no. 1 (2021): 7-33.

[6]

T. W. Kang, T. Yevsa, N. Woller, et al., “Senescence Surveillance of Pre-Malignant Hepatocytes Limits Liver Cancer Development,” Nature 479, no. 7374 (2011): 547-551.

[7]

A. Cagan, A. Baez-Ortega, N. Brzozowska, et al., “Somatic Mutation Rates Scale With Lifespan Across Mammals,” Nature 604, no. 7906 (2022): 517-524.

[8]

D. Hanahan and R. A. Weinberg, “Hallmarks of Cancer: The Next Generation,” Cell 144, no. 5 (2011): 646-674.

[9]

M. Fane and A. T. Weeraratna, “How the Ageing Microenvironment Influences Tumour Progression,” Nature Reviews Cancer 20, no. 2 (2020): 89-106.

[10]

M. K. Ruhland, A. J. Loza, A. H. Capietto, et al., “Stromal Senescence Establishes an Immunosuppressive Microenvironment That Drives Tumorigenesis,” Nature Communications 7 (2016): 11762.

[11]

A. Kaur, M. R. Webster, K. Marchbank, et al., “sFRP2 in the Aged Microenvironment Drives Melanoma Metastasis and Therapy Resistance,” Nature 532, no. 7598 (2016): 250-254.

[12]

C. López-Otín, M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer, “Hallmarks of Aging: An Expanding Universe,” Cell 186, no. 2 (2023): 243-278.

[13]

D. Hanahan, “Hallmarks of Cancer: New Dimensions,” Cancer Discovery 12, no. 1 (2022): 31-46.

[14]

G. Genovese, A. K. Kähler, R. E. Handsaker, et al., “Clonal Hematopoiesis and Blood-Cancer Risk Inferred From Blood DNA Sequence,” New England Journal of Medicine 371, no. 26 (2014): 2477-2487.

[15]

S. Jaiswal, P. Natarajan, A. J. Silver, et al., “Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease,” New England Journal of Medicine 377, no. 2 (2017): 111-121.

[16]

T. Jiang, H. Jin, X. Ji, X. Zheng, C. X. Xu, and P. J. Zhang, “Drivers of Centrosome Abnormalities: Senescence Progression and Tumor Immune Escape,” Seminars in Cancer Biology 110 (2025): 56-64.

[17]

S. Demirsoy, S. Martin, H. Maes, and P. Agostinis, “Adapt, Recycle, and Move On: Proteostasis and Trafficking Mechanisms in Melanoma,” Frontiers in Oncology 6 (2016): 240.

[18]

Y. Zhao, X. Guo, L. Zhang, D. Wang, and Y. Li, “Mitochondria: A Crucial Factor in the Progression and Drug Resistance of Colorectal Cancer,” Frontiers in Immunology 15 (2024): 1512469.

[19]

J. Gao and H. A. Pickett, “Targeting Telomeres: Advances in Telomere Maintenance Mechanism-Specific Cancer Therapies,” Nature Reviews Cancer 22, no. 9 (2022): 515-532.

[20]

C. López-Otín, F. Pietrocola, D. Roiz-Valle, L. Galluzzi, and G. Kroemer, “Meta-Hallmarks of Aging and Cancer,” Cell Metabolism 35, no. 1 (2023): 12-35.

[21]

N. Ahmed, R. Escalona, D. Leung, E. Chan, and G. Kannourakis, “Tumour Microenvironment and Metabolic Plasticity in Cancer and Cancer Stem Cells: Perspectives on Metabolic and Immune Regulatory Signatures in Chemoresistant Ovarian Cancer Stem Cells,” Seminars in Cancer Biology 53 (2018): 265-281.

[22]

R. Paul, J. F. Dorsey, and Y. Fan, “Cell Plasticity, Senescence, and Quiescence in Cancer Stem Cells: Biological and Therapeutic Implications,” Pharmacology & Therapeutics 231 (2022): 107985.

[23]

A. Udristioiu and D. Nica-Badea, “Autophagy Dysfunctions Associated With Cancer Cells and Their Therapeutic Implications,” Biomedicine & Pharmacotherapy 115 (2019): 108892.

[24]

G. El Tekle and W. S. Garrett, “Bacteria in Cancer Initiation, Promotion and Progression,” Nature Reviews Cancer 23, no. 9 (2023): 600-618.

[25]

N. M. Gatto, “Environmental Carcinogens and Cancer Risk,” Cancers 13, no. 4 (2021): 622.

[26]

Y. B. Zhang, X. F. Pan, J. Chen, et al., “Combined Lifestyle Factors, Incident Cancer, and Cancer Mortality: A Systematic Review and Meta-Analysis of Prospective Cohort Studies,” British Journal of Cancer 122, no. 7 (2020): 1085-1093.

[27]

P. Anand, A. B. Kunnumakara, C. Sundaram, et al., “Cancer Is a Preventable Disease That Requires Major Lifestyle Changes,” Pharmaceutical Research 25, no. 9 (2008): 2097-2116.

[28]

E. Laconi, F. Marongiu, and J. DeGregori, “Cancer as a Disease of Old Age: Changing Mutational and Microenvironmental Landscapes,” British Journal of Cancer 122, no. 7 (2020): 943-952.

[29]

L. J. Niedernhofer, A. U. Gurkar, Y. Wang, J. Vijg, J. H. J. Hoeijmakers, and P. D. Robbins, “Nuclear Genomic Instability and Aging,” Annual Review of Biochemistry 87 (2018): 295-322.

[30]

C. C. Laurie, C. A. Laurie, K. Rice, et al., “Detectable Clonal Mosaicism From Birth to Old Age and Its Relationship to Cancer,” Nature Genetics 44, no. 6 (2012): 642-650.

[31]

B. Milholland, A. Auton, Y. Suh, and J. Vijg, “Age-Related Somatic Mutations in the Cancer Genome,” Oncotarget 6, no. 28 (2015): 24627-24635.

[32]

I. Martincorena and P. J. Campbell, “Somatic Mutation in Cancer and Normal Cells,” Science 349, no. 6255 (2015): 1483-1489.

[33]

M. Nakayama and M. Oshima, “Mutant p53 in Colon Cancer,” Journal of Molecular Cell Biology 11, no. 4 (2019): 267-276.

[34]

L. Venturutti, M. Teater, A. Zhai, et al., “TBL1XR1 Mutations Drive Extranodal Lymphoma by Inducing a Pro-Tumorigenic Memory Fate,” Cell 182, no. 2 (2020): 297-316.e27.

[35]

L. Guo, Y. Wang, W. Yang, et al., “Molecular Profiling Provides Clinical Insights Into Targeted and Immunotherapies as Well as Colorectal Cancer Prognosis,” Gastroenterology 165, no. 2 (2023): 414-428 e7.

[36]

S. Mäki-Nevala, S. Valo, A. Ristimäki, et al., “DNA Methylation Changes and Somatic Mutations as Tumorigenic Events in Lynch Syndrome-Associated Adenomas Retaining Mismatch Repair Protein Expression,” EBioMedicine 39 (2019): 280-291.

[37]

P. A. Jacobs, W. M. Court Brown, and R. Doll, “Distribution of Human Chromosome Counts in Relation to Age,” Nature 191 (1961): 1178-1180.

[38]

C. V. Rao, A. S. Asch, and H. Y. Yamada, “Emerging Links Among Chromosome Instability (CIN), Cancer, and Aging,” Molecular Carcinogenesis 56, no. 3 (2017): 791-803.

[39]

Z. Wu, J. Qu, and G. H. Liu, “Roles of Chromatin and Genome Instability in Cellular Senescence and Their Relevance to Ageing and Related Diseases,” Nature Reviews Molecular Cell Biology 25, no. 12 (2024): 979-1000.

[40]

M. Barroso-Vilares and E. Logarinho, “Chromosomal Instability and Pro-Inflammatory Response in Aging,” Mechanisms of Ageing and Development 182 (2019): 111118.

[41]

I. Y. Iourov, Y. B. Yurov, S. G. Vorsanova, and S. I. Kutsev, “Chromosome Instability, Aging and Brain Diseases,” Cells 10, no. 5 (2021): 1256.

[42]

L. Garribba, G. De Feudis, V. Martis, et al., “Short-Term Molecular Consequences of Chromosome Mis-Segregation for Genome Stability,” Nature Communications 14, no. 1 (2023): 1353.

[43]

C. J. Anderson, L. Talmane, J. Luft, et al., “Strand-Resolved Mutagenicity of DNA Damage and Repair,” Nature 630, no. 8017 (2024): 744-751.

[44]

B. Vogelstein, N. Papadopoulos, V. E. Velculescu, S. Zhou, L. A. Diaz , and K. W. Kinzler, “Cancer Genome Landscapes,” Science 339, no. 6127 (2013): 1546-1558.

[45]

A. Yokoyama, N. Kakiuchi, T. Yoshizato, et al., “Age-Related Remodelling of Oesophageal Epithelia by Mutated Cancer Drivers,” Nature 565, no. 7739 (2019): 312-317.

[46]

I. Martincorena, J. C. Fowler, A. Wabik, et al., “Somatic Mutant Clones Colonize the Human Esophagus With Age,” Science 362, no. 6417 (2018): 911-917.

[47]

S. Jaiswal and B. L. Ebert, “Clonal Hematopoiesis in Human Aging and Disease,” Science 366, no. 6465 (2019): eaan4673.

[48]

M. Xie, C. Lu, J. Wang, et al., “Age-Related Mutations Associated With Clonal Hematopoietic Expansion and Malignancies,” Nature Medicine 20, no. 12 (2014): 1472-1478.

[49]

M. A. Evans, S. Sano, and K. Walsh, “Cardiovascular Disease, Aging, and Clonal Hematopoiesis,” Annual Review of Pathology: Mechanisms of Disease 15 (2020): 419-438.

[50]

M. A. Evans and K. Walsh, “Clonal Hematopoiesis, Somatic Mosaicism, and Age-Associated Disease,” Physiological Reviews 103, no. 1 (2023): 649-716.

[51]

S. Morino, T. Mashima, F. Shirai, S. Nagayama, R. Katayama, and H. Seimiya, “BET Protein-Dependent E2F Pathway Activity Confers Bell-Shaped Type Resistance to Tankyrase Inhibitors in APC-Mutated Colorectal Cancer,” Cancer Letters 584 (2024): 216632.

[52]

J. Zucman-Rossi, A. Villanueva, J. C. Nault, and J. M. Llovet, “Genetic Landscape and Biomarkers of Hepatocellular Carcinoma,” Gastroenterology 149, no. 5 (2015): 1226-1239.e4.

[53]

F. Blokzijl, J. de Ligt, M. Jager, et al., “Tissue-Specific Mutation Accumulation in Human Adult Stem Cells During Life,” Nature 538, no. 7624 (2016): 260-264.

[54]

N. G. Larsson, “Somatic Mitochondrial DNA Mutations in Mammalian Aging,” Annual Review of Biochemistry 79 (2010): 683-706.

[55]

L. A. Loeb, D. C. Wallace, and G. M. Martin, “The Mitochondrial Theory of Aging and Its Relationship to Reactive Oxygen Species Damage and Somatic mtDNA Mutations,” Proceedings of the National Academy of Sciences 102, no. 52 (2005): 18769-18770.

[56]

G. C. Kujoth, A. Hiona, T. D. Pugh, et al., “Mitochondrial DNA Mutations, Oxidative Stress, and Apoptosis in Mammalian Aging,” Science 309, no. 5733 (2005): 481-484.

[57]

A. L. M. Smith, J. C. Whitehall, and L. C. Greaves, “Mitochondrial DNA Mutations in Ageing and Cancer,” Molecular Oncology 16, no. 18 (2022): 3276-3294.

[58]

A. Wagner, H. Kosnacova, M. Chovanec, and D. Jurkovicova, “Mitochondrial Genetic and Epigenetic Regulations in Cancer: Therapeutic Potential,” International Journal of Molecular Sciences 23, no. 14 (2022): 7897.

[59]

S. Nowicki and E. Gottlieb, “Oncometabolites: Tailoring Our Genes,” FEBS Journal 282, no. 15 (2015): 2796-2805.

[60]

S. F. Bakhoum and L. C. Cantley, “The Multifaceted Role of Chromosomal Instability in Cancer and Its Microenvironment,” Cell 174, no. 6 (2018): 1347-1360.

[61]

X. Chen, A. S. Agustinus, J. Li, M. DiBona, and S. F. Bakhoum, “Chromosomal Instability as a Driver of Cancer Progression,” Nature Reviews Genetics 26, no. 1 (2025): 31-46.

[62]

C. Lengauer, K. W. Kinzler, and B. Vogelstein, “Genetic Instabilities in Human Cancers,” Nature 396, no. 6712 (1998): 643-649.

[63]

S. F. Bakhoum, B. Ngo, A. M. Laughney, et al., “Chromosomal Instability Drives Metastasis Through a Cytosolic DNA Response,” Nature 553, no. 7689 (2018): 467-472.

[64]

M. K. Ghosh and S. Roy, “Chromosomal Instability (CIN) Triggers Immune Evasion and Metastatic Potential in Cancer Through Rewired STING Signalling,” Molecular Biomedicine 5, no. 1 (2024): 4.

[65]

M. F. Bakhoum, J. H. Francis, A. Agustinus, et al., “Loss of Polycomb Repressive Complex 1 Activity and Chromosomal Instability Drive Uveal Melanoma Progression,” Nature Communications 12, no. 1 (2021): 5402.

[66]

P. T. Santana, I. S. de Lima, K. C. Silva e Souza, P. H. S. Barbosa, and H. S. P. de Souza, “Persistent Activation of the P2X7 Receptor Underlies Chronic Inflammation and Carcinogenic Changes in the Intestine,” International Journal of Molecular Sciences 25, no. 20 (2024): 10874.

[67]

Z. Liu, T. Zhang, A. Ergashev, et al., “CIP2A Inhibitors TD52 and Ethoxysanguinarine Promote Macrophage Autophagy and Alleviates Acute Pancreatitis by Modulating the AKT-mTOR Pathway,” Phytomedicine 136 (2025): 156263.

[68]

G. Keijzers, D. Liu, and L. J. Rasmussen, “Exonuclease 1 and Its Versatile Roles in DNA Repair,” Critical Reviews in Biochemistry and Molecular Biology 51, no. 6 (2016): 440-451.

[69]

F. A. Sinicrope and D. J. Sargent, “Molecular Pathways: Microsatellite Instability in Colorectal Cancer: Prognostic, Predictive, and Therapeutic Implications,” Clinical Cancer Research 18, no. 6 (2012): 1506-1512.

[70]

F. Honecker, H. Wermann, F. Mayer, et al., “Microsatellite Instability, Mismatch Repair Deficiency, and BRAF Mutation in Treatment-Resistant Germ Cell Tumors,” Journal of Clinical Oncology 27, no. 13 (2009): 2129-2136.

[71]

J. M. A. Pijnenborg, G. C. Dam-de Veen, J. de Haan, M. van Engeland, and P. G. Groothuis, “Defective Mismatch Repair and the Development of Recurrent Endometrial Carcinoma,” Gynecologic Oncology 94, no. 2 (2004): 550-559.

[72]

V. Yadav and M. F. Denning, “Fyn Is Induced by Ras/PI3K/Akt Signaling and Is Required for Enhanced Invasion/Migration,” Molecular Carcinogenesis 50, no. 5 (2011): 346-352.

[73]

S. Chen, J. Wang, W. F. Gou, et al., “The Involvement of RhoA and Wnt-5a in the Tumorigenesis and Progression of Ovarian Epithelial Carcinoma,” International Journal of Molecular Sciences 14, no. 12 (2013): 24187-24199.

[74]

Y. Zhang, C. K. Elechalawar, W. Yang, et al., “Disabling Partners in Crime: Gold Nanoparticles Disrupt Multicellular Communications Within the Tumor Microenvironment to Inhibit Ovarian Tumor Aggressiveness,” Materials Today 56 (2022): 79-95.

[75]

X. Si, F. Xu, F. Xu, M. Wei, Y. Ge, and S. Chenge, “CADM1 Inhibits Ovarian Cancer Cell Proliferation and Migration by Potentially Regulating the PI3K/Akt/mTOR Pathway,” Biomedicine & Pharmacotherapy 123 (2020): 109717.

[76]

P. Sen, P. P. Shah, R. Nativio, and S. L. Berger, “Epigenetic Mechanisms of Longevity and Aging,” Cell 166, no. 4 (2016): 822-839.

[77]

W. Zhang, J. Qu, G. H. Liu, and J. C. I. Belmonte, “The Ageing Epigenome and Its Rejuvenation,” Nature Reviews Molecular Cell Biology 21, no. 3 (2020): 137-150.

[78]

W. Zhang, M. Song, J. Qu, and G. H. Liu, “Epigenetic Modifications in Cardiovascular Aging and Diseases,” Circulation Research 123, no. 7 (2018): 773-786.

[79]

A. E. Kane and D. A. Sinclair, “Epigenetic Changes During Aging and Their Reprogramming Potential,” Critical Reviews in Biochemistry and Molecular Biology 54, no. 1 (2019): 61-83.

[80]

K. Seale, S. Horvath, A. Teschendorff, N. Eynon, and S. Voisin, “Making Sense of the Ageing Methylome,” Nature Reviews Genetics 23, no. 10 (2022): 585-605.

[81]

J. D. Faul, J. K. Kim, M. E. Levine, B. Thyagarajan, D. R. Weir, and E. M. Crimmins, “Epigenetic-Based Age Acceleration in a Representative Sample of Older Americans: Associations With Aging-Related Morbidity and Mortality,” Proceedings of the National Academy of Sciences 120, no. 9 (2023): e2215840120.

[82]

I. Yusipov, A. Kalyakulina, A. Trukhanov, C. Franceschi, and M. Ivanchenko, “Map of Epigenetic Age Acceleration: A Worldwide Analysis,” Ageing Research Reviews 100 (2024): 102418.

[83]

P. A. Dugué, J. K. Bassett, J. E. Joo, et al., “DNA Methylation-Based Biological Aging and Cancer Risk and Survival: Pooled Analysis of Seven Prospective Studies,” International Journal of Cancer 142, no. 8 (2018): 1611-1619.

[84]

S. B. Baylin, J. G. Herman, J. R. Graff, P. M. Vertino, and J. P. Issa, “Alterations in DNA Methylation: A Fundamental Aspect of Neoplasia,” Advances in Cancer Research 72 (1998): 141-196.

[85]

Y. X. Lu, J. C. Regan, J. Eßer, et al., “A TORC1-histone Axis Regulates Chromatin Organisation and Non-Canonical Induction of Autophagy to Ameliorate Ageing,” eLife 10 (2021): e62233.

[86]

E. S. Oh and A. Petronis, “Origins of Human Disease: The Chrono-Epigenetic Perspective,” Nature Reviews Genetics 22, no. 8 (2021): 533-546.

[87]

H. Katoh, Z. S. Qin, R. Liu, et al., “FOXP3 Orchestrates H4K16 Acetylation and H3K4 Trimethylation for Activation of Multiple Genes by Recruiting MOF and Causing Displacement of PLU-1,” Molecular Cell 44, no. 5 (2011): 770-784.

[88]

P. B. Swer and R. Sharma, “ATP-Dependent Chromatin Remodelers in Ageing and Age-Related Disorders,” Biogerontology 22, no. 1 (2021): 1-17.

[89]

K. Larson, S. J. Yan, A. Tsurumi, et al., “Heterochromatin Formation Promotes Longevity and Represses Ribosomal RNA Synthesis,” PLoS Genetics 8, no. 1 (2012): e1002473.

[90]

J. Xie, Z. N. Lu, S. H. Bai, et al., “Heterochromatin Formation and Remodeling by IRTKS Condensates Counteract Cellular Senescence,” EMBO Journal 43, no. 20 (2024): 4542-4577.

[91]

S. Ilango, B. Paital, P. Jayachandran, P. R. Padma, and R. Nirmaladevi, “Epigenetic Alterations in Cancer,” Front Biosci (Landmark Ed) 25, no. 6 (2020): 1058-1109.

[92]

H. Safwan-Zaiter, N. Wagner, and K. D. Wagner, “P16INK4A-More Than a Senescence Marker,” Life 12, no. 9 (2022): 1332.

[93]

J. P. J. Issa, Y. L. Ottaviano, P. Celano, S. R. Hamilton, N. E. Davidson, and S. B. Baylin, “Methylation of the Oestrogen Receptor CpG Island Links Ageing and Neoplasia in Human Colon,” Nature Genetics 7, no. 4 (1994): 536-540.

[94]

J. P. Issa, P. M. Vertino, C. D. Boehm, I. F. Newsham, and S. B. Baylin, “Switch From Monoallelic to Biallelic Human IGF2 Promoter Methylation During Aging and Carcinogenesis,” Proceedings of the National Academy of Sciences 93, no. 21 (1996): 11757-11762.

[95]

M. Yu, W. D. Hazelton, G. E. Luebeck, and W. M. Grady, “Epigenetic Aging: More Than Just a Clock When It Comes to Cancer,” Cancer Research 80, no. 3 (2020): 367-374.

[96]

M. Dmitrijeva, S. Ossowski, L. Serrano, and M. H. Schaefer, “Tissue-Specific DNA Methylation Loss During Ageing and Carcinogenesis Is Linked to Chromosome Structure, Replication Timing and Cell Division Rates,” Nucleic Acids Research 46, no. 14 (2018): 7022-7039.

[97]

J. Roels, M. Thénoz, B. Szarzyńska, et al., “Aging of Preleukemic Thymocytes Drives CpG Island Hypermethylation in T-Cell Acute Lymphoblastic Leukemia,” Blood Cancer Discovery 1, no. 3 (2020): 274-289.

[98]

M. Fane and A. T. Weeraratna, “Normal Aging and Its Role in Cancer Metastasis,” Cold Spring Harbor Perspectives in Medicine 10, no. 9 (2020): a037341.

[99]

E. Pretzsch, H. Nieß, F. Bösch, et al., “Age and Metastasis - How Age Influences Metastatic Spread in Cancer. Colorectal Cancer as a Model,” Cancer Epidemiology 77 (2022): 102112.

[100]

M. Mancini, M. Grasso, L. Muccillo, et al., “DNMT3A Epigenetically Regulates Key Micrornas Involved in Epithelial-to-Mesenchymal Transition in Prostate Cancer,” Carcinogenesis 42, no. 12 (2021): 1449-1460.

[101]

N. Niu, P. Lu, Y. Yang, et al., “Loss of Setd2 Promotes Kras-Induced Acinar-to-Ductal Metaplasia and Epithelia-Mesenchymal Transition During Pancreatic Carcinogenesis,” Gut 69, no. 4 (2020): 715-726.

[102]

H. Jiang, H. J. Cao, N. Ma, et al., “Chromatin Remodeling Factor ARID2 Suppresses Hepatocellular Carcinoma Metastasis via DNMT1-Snail Axis,” Proceedings of the National Academy of Sciences 117, no. 9 (2020): 4770-4780.

[103]

X. Yang, R. Chen, Y. Chen, et al., “Methyltransferase SETD2 Inhibits Tumor Growth and Metastasis via STAT1-IL-8 Signaling-Mediated Epithelial-Mesenchymal Transition in Lung Adenocarcinoma,” Cancer Science 113, no. 4 (2022): 1195-1207.

[104]

H. Yuan, Y. Han, X. Wang, et al., “SETD2 Restricts Prostate Cancer Metastasis by Integrating EZH2 and AMPK Signaling Pathways,” Cancer Cell 38, no. 3 (2020): 350-365.e7.

[105]

Y. Xie, M. Sahin, S. Sinha, et al., “SETD2 Loss Perturbs the Kidney Cancer Epigenetic Landscape to Promote Metastasis and Engenders Actionable Dependencies on Histone Chaperone Complexes,” Nature Cancer 3, no. 2 (2022): 188-202.

[106]

T. Fukumoto, J. Lin, N. Fatkhutdinov, et al., “ARID2 Deficiency Correlates With the Response to Immune Checkpoint Blockade in Melanoma,” Journal of Investigative Dermatology 141, no. 6 (2021): 1564-1572.e4.

[107]

S. Carcamo, C. B. Nguyen, E. Grossi, et al., “Altered BAF Occupancy and Transcription Factor Dynamics in PBAF-Deficient Melanoma,” Cell Reports 39, no. 1 (2022): 110637.

[108]

Y. L. Su, X. Wang, M. Mann, et al., “Myeloid Cell-Targeted miR-146a Mimic Inhibits NF-κB-Driven Inflammation and Leukemia Progression In Vivo,” Blood 135, no. 3 (2020): 167-180.

[109]

K. Zhang, Y. Y. Wang, Y. Xu, et al., “A Two-miRNA Signature of Upregulated miR-185-5p and miR-362-5p as a Blood Biomarker for Breast Cancer,” Pathology - Research and Practice 222 (2021): 153458.

[110]

J. M. Grants, J. Wegrzyn, T. Hui, et al., “Altered microRNA Expression Links IL6 and TNF-Induced Inflammaging With Myeloid Malignancy in Humans and Mice,” Blood 135, no. 25 (2020): 2235-2251.

[111]

V. Davalos and M. Esteller, “Cancer Epigenetics in Clinical Practice,” CA: A Cancer Journal for Clinicians 73, no. 4 (2023): 376-424.

[112]

M. G. Jasiulionis, “Abnormal Epigenetic Regulation of Immune System During Aging,” Frontiers in Immunology 9 (2018): 197.

[113]

M. L. Burr, C. E. Sparbier, K. L. Chan, et al., “An Evolutionarily Conserved Function of Polycomb Silences the MHC Class I Antigen Presentation Pathway and Enables Immune Evasion in Cancer,” Cancer Cell 36, no. 4 (2019): 385-401.e8.

[114]

S. Wang, X. Zhang, Q. Chen, et al., “FTO Activates PD-L1 Promotes Immunosuppression in Breast Cancer via the m6A/YTHDF3/PDK1 Axis Under Hypoxic Conditions,” Journal of Advanced Research (2024). https://doi.org/10.1016/j.jare.2024.12.026.

[115]

A. J. Wagers and I. L. Weissman, “Plasticity of Adult Stem Cells,” Cell 116, no. 5 (2004): 639-648.

[116]

J. M. Vilas, C. Carneiro, S. Da Silva-Álvarez, et al., “Adult Sox2+ Stem Cell Exhaustion in Mice Results in Cellular Senescence and Premature Aging,” Aging Cell 17, no. 5 (2018): e12834.

[117]

R. Ren, A. Ocampo, G. H. Liu, and J. C. Izpisua Belmonte, “Regulation of Stem Cell Aging by Metabolism and Epigenetics,” Cell Metabolism 26, no. 3 (2017): 460-474.

[118]

P. Navarro Negredo, R. W. Yeo, and A. Brunet, “Aging and Rejuvenation of Neural Stem Cells and Their Niches,” Cell Stem Cell 27, no. 2 (2020): 202-223.

[119]

L. Moreno-Cugnon, O. Arrizabalaga, I. Llarena, and A. Matheu, “Elevated p38MAPK Activity Promotes Neural Stem Cell Aging,” Aging 12, no. 7 (2020): 6030-6036.

[120]

C. L. Wang, R. Ohkubo, W. C. Mu, et al., “The Mitochondrial Unfolded Protein Response Regulates Hippocampal Neural Stem Cell Aging,” Cell Metabolism 35, no. 6 (2023): 996-1008.e7.

[121]

D. Shevyrev, V. Tereshchenko, T. N. Berezina, and S. Rybtsov, “Hematopoietic Stem Cells and the Immune System in Development and Aging,” International Journal of Molecular Sciences 24, no. 6 (2023): 5862.

[122]

K. Young, E. Eudy, R. Bell, et al., “Decline in IGF1 in the Bone Marrow Microenvironment Initiates Hematopoietic Stem Cell Aging,” Cell Stem Cell 28, no. 8 (2021): 1473-1482.e7.

[123]

H. Cao, M. Chen, X. Cui, et al., “Cell-Free Osteoarthritis Treatment With Sustained-Release of Chondrocyte-Targeting Exosomes From Umbilical Cord-Derived Mesenchymal Stem Cells to Rejuvenate Aging Chondrocytes,” ACS Nano 17, no. 14 (2023): 13358-13376.

[124]

C. K. Kaufman, C. Mosimann, Z. P. Fan, et al., “A Zebrafish Melanoma Model Reveals Emergence of Neural Crest Identity During Melanoma Initiation,” Science 351, no. 6272 (2016): aad2197.

[125]

C. J. Halbrook, C. A. Lyssiotis, M. Pasca di Magliano, and A. Maitra, “Pancreatic Cancer: Advances and Challenges,” Cell 186, no. 8 (2023): 1729-1754.

[126]

C. J. Pirozzi and H. Yan, “The Implications of IDH Mutations for Cancer Development and Therapy,” Nature Reviews Clinical Oncology 18, no. 10 (2021): 645-661.

[127]

X. Zhuang, Q. Wang, S. Joost, et al., “Ageing Limits Stemness and Tumorigenesis by Reprogramming Iron Homeostasis,” Nature 637, no. 8044 (2025): 184-194.

[128]

I. Niechi, J. I. Erices, D. Carrillo-Beltrán, et al., “Cancer Stem Cell and Aggressiveness Traits Are Promoted by Stable Endothelin-Converting Enzyme-1c in Glioblastoma Cells,” Cells 12, no. 3 (2023): 506.

[129]

H. Li, P. Côté, M. Kuoch, et al., “The Dynamics of Hematopoiesis Over the Human Lifespan,” Nature Methods 22, no. 2 (2025): 422-434.

[130]

S. A. Mani, W. Guo, M. J. Liao, et al., “The Epithelial-Mesenchymal Transition Generates Cells With Properties of Stem Cells,” Cell 133, no. 4 (2008): 704-715.

[131]

B. Cui, Y. Luo, P. Tian, et al., “Stress-Induced Epinephrine Enhances Lactate Dehydrogenase A and Promotes Breast Cancer Stem-Like Cells,” Journal of Clinical Investigation 129, no. 3 (2019): 1030-1046.

[132]

S. Jain, J. W. Rick, R. S. Joshi, et al., “Single-Cell RNA Sequencing and Spatial Transcriptomics Reveal Cancer-Associated Fibroblasts in Glioblastoma With Protumoral Effects,” Journal of Clinical Investigation 133, no. 5 (2023): e147087.

[133]

T. Yasuda, M. Koiwa, A. Yonemura, et al., “Inflammation-Driven Senescence-Associated Secretory Phenotype in Cancer-Associated Fibroblasts Enhances Peritoneal Dissemination,” Cell Reports 34, no. 8 (2021): 108779.

[134]

L. Zhao, R. He, H. Long, et al., “Late-Stage Tumors Induce Anemia and Immunosuppressive Extramedullary Erythroid Progenitor Cells,” Nature Medicine 24, no. 10 (2018): 1536-1544.

[135]

G. Zhang, Y. Wang, J. Lin, et al., “Biological Activity Reduction and Mitochondrial and Lysosomal Dysfunction of Mesenchymal Stem Cells Aging In Vitro,” Stem Cell Research & Therapy 13, no. 1 (2022): 411.

[136]

Q. Rui, C. Li, Y. Rui, et al., “Human Umbilical Mesenchymal Stem Cells Ameliorate Atrophic Gastritis in Aging Mice by Participating in Mitochondrial Autophagy Through Ndufs8 Signaling,” Stem Cell Research & Therapy 15, no. 1 (2024): 491.

[137]

A. A. Padhiar, X. Yang, S. A. A. Zaidi, et al., “MAM-STAT3-Driven Mitochondrial Ca(+2) Upregulation Contributes to Immunosenescence in Type A Mandibuloacral Dysplasia Patients,” Advanced Science 12, no. 5 (2025): e2407398.

[138]

S. E. J. Preston, M. S. Dahabieh, R. E. Flores González, et al., “Blocking Tumor-Intrinsic MNK1 Kinase Restricts Metabolic Adaptation and Diminishes Liver Metastasis,” Science Advances 10, no. 37 (2024): eadi7673.

[139]

W. Fernando, B. M. Cruickshank, R. P. Arun, et al., “ALDH1A3 Is the Switch That Determines the Balance of ALDH(+) and CD24(-)CD44(+) Cancer Stem Cells, EMT-MET, and Glucose Metabolism in Breast Cancer,” Oncogene 43, no. 43 (2024): 3151-3169.

[140]

M. Hansen, D. C. Rubinsztein, and D. W. Walker, “Autophagy as a Promoter of Longevity: Insights From Model Organisms,” Nature Reviews Molecular Cell Biology 19, no. 9 (2018): 579-593.

[141]

Y. Aman, T. Schmauck-Medina, M. Hansen, et al., “Autophagy in Healthy Aging and Disease,” Nature Aging 1, no. 8 (2021): 634-650.

[142]

D. C. Rubinsztein, G. Mariño, and G. Kroemer, “Autophagy and Aging,” Cell 146, no. 5 (2011): 682-695.

[143]

A. M. Leidal, B. Levine, and J. Debnath, “Autophagy and the Cell Biology of Age-Related Disease,” Nature Cell Biology 20, no. 12 (2018): 1338-1348.

[144]

T. Hara, K. Nakamura, M. Matsui, et al., “Suppression of Basal Autophagy in Neural Cells Causes Neurodegenerative Disease in Mice,” Nature 441, no. 7095 (2006): 885-889.

[145]

M. Komatsu, S. Waguri, T. Chiba, et al., “Loss of Autophagy in the Central Nervous System Causes Neurodegeneration in Mice,” Nature 441, no. 7095 (2006): 880-884.

[146]

D. E. Harrison, R. Strong, Z. D. Sharp, et al., “Rapamycin Fed Late in Life Extends Lifespan in Genetically Heterogeneous Mice,” Nature 460, no. 7253 (2009): 392-395.

[147]

R. A. Nixon and D. C. Rubinsztein, “Mechanisms of Autophagy-Lysosome Dysfunction in Neurodegenerative Diseases,” Nature Reviews Molecular Cell Biology 25, no. 11 (2024): 926-946.

[148]

M. Bourdenx, A. Martín-Segura, A. Scrivo, et al., “Chaperone-Mediated Autophagy Prevents Collapse of the Neuronal Metastable Proteome,” Cell 184, no. 10 (2021): 2696-2714.e25.

[149]

D. R. Green, L. Galluzzi, and G. Kroemer, “Mitochondria and the Autophagy-Inflammation-Cell Death Axis in Organismal Aging,” Science 333, no. 6046 (2011): 1109-1112.

[150]

V. Deretic and G. Kroemer, “Autophagy in Metabolism and Quality Control: Opposing, Complementary or Interlinked Functions?,” Autophagy 18, no. 2 (2022): 283-292.

[151]

M. Bernabé-Rubio and F. M. Watt, “Caspase-8-Dependent Autophagy Regulates Neutrophil Infiltration in Oral Squamous Cell Carcinoma,” Proceedings of the National Academy of Sciences 121, no. 50 (2024): e2406944121.

[152]

M. Cicchini, R. Chakrabarti, S. Kongara, et al., “Autophagy Regulator BECN1 Suppresses Mammary Tumorigenesis Driven by WNT1 Activation and Following Parity,” Autophagy 10, no. 11 (2014): 2036-2052.

[153]

X. Xie, J. Y. Koh, S. Price, E. White, and J. M. Mehnert, “Atg7 Overcomes Senescence and Promotes Growth of BrafV600E-Driven Melanoma,” Cancer Discovery 5, no. 4 (2015): 410-423.

[154]

J. Debnath, N. Gammoh, and K. M. Ryan, “Autophagy and Autophagy-Related Pathways in Cancer,” Nature Reviews Molecular Cell Biology 24, no. 8 (2023): 560-575.

[155]

L. Galluzzi, F. Pietrocola, J. M. Bravo-San Pedro, et al., “Autophagy in Malignant Transformation and Cancer Progression,” EMBO Journal 34, no. 7 (2015): 856-880.

[156]

J. Y. Guo, H. Y. Chen, R. Mathew, et al., “Activated Ras Requires Autophagy to Maintain Oxidative Metabolism and Tumorigenesis,” Genes & Development 25, no. 5 (2011): 460-470.

[157]

Z. Zhang, Y. Yu, Z. Zhang, et al., “Cancer-Associated Fibroblasts-Derived CXCL12 Enhances Immune Escape of Bladder Cancer Through Inhibiting P62-Mediated Autophagic Degradation of PDL1,” Journal of Experimental & Clinical Cancer Research 42, no. 1 (2023): 316.

[158]

E. Sahai, I. Astsaturov, E. Cukierman, et al., “A Framework for Advancing Our Understanding of Cancer-Associated Fibroblasts,” Nature Reviews Cancer 20, no. 3 (2020): 174-186.

[159]

R. Gundamaraju, W. Lu, M. K. Paul, et al., “Autophagy and EMT in Cancer and Metastasis: Who Controls Whom?,” Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1868, no. 9 (2022): 166431.

[160]

L. Poillet-Perez, D. W. Sharp, Y. Yang, et al., “Autophagy Promotes Growth of Tumors With High Mutational Burden by Inhibiting a T-Cell Immune Response,” Nature Cancer 1, no. 9 (2020): 923-934.

[161]

L. D. Cunha, M. Yang, R. Carter, et al., “LC3-Associated Phagocytosis in Myeloid Cells Promotes Tumor Immune Tolerance,” Cell 175, no. 2 (2018): 429-441.e16.

[162]

Z. Zhang, B. Song, H. Wei, et al., “NDRG1 Overcomes Resistance to Immunotherapy of Pancreatic Ductal Adenocarcinoma Through Inhibiting ATG9A-Dependent Degradation of MHC-1,” Drug Resistance Updates 73 (2024): 101040.

[163]

K. Yamamoto, A. Venida, J. Yano, et al., “Autophagy Promotes Immune Evasion of Pancreatic Cancer by Degrading MHC-I,” Nature 581, no. 7806 (2020): 100-105.

[164]

G. Kroemer and L. Zitvogel, “Seeking Cellular Fitness and Immune Evasion: Autophagy in Pancreatic Carcinoma,” Cancer Cell 37, no. 6 (2020): 759-760.

[165]

K. Whittemore, E. Vera, E. Martínez-Nevado, C. Sanpera, and M. A. Blasco, “Telomere Shortening Rate Predicts Species Life Span,” Proceedings of the National Academy of Sciences 116, no. 30 (2019): 15122-15127.

[166]

B. Bernardes de Jesus, E. Vera, K. Schneeberger, et al., “Telomerase Gene Therapy in Adult and Old Mice Delays Aging and Increases Longevity Without Increasing Cancer,” EMBO Molecular Medicine 4, no. 8 (2012): 691-704.

[167]

M. A. Muñoz-Lorente, A. C. Cano-Martin, and M. A. Blasco, “Mice With Hyper-Long Telomeres Show Less Metabolic Aging and Longer Lifespans,” Nature Communications 10, no. 1 (2019): 4723.

[168]

E. G. Kosebent and S. Ozturk, “Telomere Associated Gene Expression as Well as TERT Protein Level and Telomerase Activity Are Altered in the Ovarian Follicles of Aged Mice,” Scientific Reports 11, no. 1 (2021): 15569.

[169]

A. T. Lu, L. Xue, E. L. Salfati, et al., “GWAS of Epigenetic Aging Rates in Blood Reveals a Critical Role for TERT,” Nature Communications 9, no. 1 (2018): 387.

[170]

H. S. Shim, J. Iaconelli, X. Shang, et al., “TERT Activation Targets DNA Methylation and Multiple Aging Hallmarks,” Cell 187, no. 15 (2024): 4030-4042.e13.

[171]

M. El Assar, J. Angulo, J. A. Carnicero, et al., “Association Between Telomere Length, Frailty and Death in Older Adults,” GeroScience 43, no. 2 (2021): 1015-1027.

[172]

N. W. Kim, M. A. Piatyszek, K. R. Prowse, et al., “Specific Association of Human Telomerase Activity With Immortal Cells and Cancer,” Science 266, no. 5193 (1994): 2011-2015.

[173]

M. Dratwa, B. Wysoczańska, P. Łacina, T. Kubik, and K. Bogunia-Kubik, “TERT-Regulation and Roles in Cancer Formation,” Frontiers in Immunology 11 (2020): 589929.

[174]

J. Vinagre, A. Almeida, H. Pópulo, et al., “Frequency of TERT Promoter Mutations in Human Cancers,” Nature Communications 4 (2013): 2185.

[175]

F. W. Huang, E. Hodis, M. J. Xu, G. V. Kryukov, L. Chin, and L. A. Garraway, “Highly Recurrent TERT Promoter Mutations in Human Melanoma,” Science 339, no. 6122 (2013): 957-959.

[176]

P. Chun-On, A. M. Hinchie, H. C. Beale, et al., “TPP1 Promoter Mutations Cooperate With TERT Promoter Mutations to Lengthen Telomeres in Melanoma,” Science 378, no. 6620 (2022): 664-668.

[177]

I. Mender, A. Zhang, Z. Ren, et al., “Telomere Stress Potentiates STING-Dependent Anti-Tumor Immunity,” Cancer Cell 38, no. 3 (2020): 400-411.e6.

[178]

K. L. Rudolph, S. Chang, H. W. Lee, et al., “Longevity, Stress Response, and Cancer in Aging Telomerase-Deficient Mice,” Cell 96, no. 5 (1999): 701-712.

[179]

L. F. B. Catto, L. C. Zanelatto, F. S. Donaires, et al., “Telomeric Repeat-Containing RNA Is Dysregulated in Acute Myeloid Leukemia,” Blood Advances 7, no. 22 (2023): 7067-7078.

[180]

V. Boccardi and L. Marano, “Aging, Cancer, and Inflammation: The Telomerase Connection,” International Journal of Molecular Sciences 25, no. 15 (2024): 8542.

[181]

V. Boccardi and L. Marano, “The Telomere Connection Between Aging and Cancer: The Burden of Replication Stress and Dysfunction,” Mechanisms of Ageing and Development 223 (2025): 112026.

[182]

K. E. de Visser and J. A. Joyce, “The Evolving Tumor Microenvironment: From Cancer Initiation to Metastatic Outgrowth,” Cancer Cell 41, no. 3 (2023): 374-403.

[183]

J. K. Mouw, G. Ou, and V. M. Weaver, “Extracellular Matrix Assembly: A Multiscale Deconstruction,” Nature Reviews Molecular Cell Biology 15, no. 12 (2014): 771-785.

[184]

W. Rungratanawanich, Y. Qu, X. Wang, M. M. Essa, and B. J. Song, “Advanced Glycation End Products (AGEs) and Other Adducts in Aging-Related Diseases and Alcohol-Mediated Tissue Injury,” Experimental & Molecular Medicine 53, no. 2 (2021): 168-188.

[185]

R. Schnellmann and S. Gerecht, “Reconstructing the Ageing Extracellular Matrix,” Nature Reviews Bioengineering 1, no. 7 (2023): 458-459.

[186]

E. Mavrogonatou, H. Pratsinis, A. Papadopoulou, N. K. Karamanos, and D. Kletsas, “Extracellular Matrix Alterations in Senescent Cells and Their Significance in Tissue Homeostasis,” Matrix Biology 75-76 (2019): 27-42.

[187]

S. Freitas-Rodríguez, A. R. Folgueras, and C. López-Otín, “The Role of Matrix Metalloproteinases in Aging: Tissue Remodeling and Beyond,” Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1864, no. 11 Pt A (2017): 2015-2025.

[188]

G. E. Marino and A. T. Weeraratna, “A Glitch in the Matrix: Age-Dependent Changes in the Extracellular Matrix Facilitate Common Sites of Metastasis,” Aging and Cancer 1, no. 1-4 (2020): 19-29.

[189]

J. A. Eble and S. Niland, “The Extracellular Matrix in Tumor Progression and Metastasis,” Clinical & Experimental Metastasis 36, no. 3 (2019): 171-198.

[190]

J. Winkler, A. Abisoye-Ogunniyan, K. J. Metcalf, and Z. Werb, “Concepts of Extracellular Matrix Remodelling in Tumour Progression and Metastasis,” Nature Communications 11, no. 1 (2020): 5120.

[191]

M. Paolillo and S. Schinelli, “Extracellular Matrix Alterations in Metastatic Processes,” International Journal of Molecular Sciences 20, no. 19 (2019): 4947.

[192]

A. Kaur, B. L. Ecker, S. M. Douglass, et al., “Remodeling of the Collagen Matrix in Aging Skin Promotes Melanoma Metastasis and Affects Immune Cell Motility,” Cancer Discovery 9, no. 1 (2019): 64-81.

[193]

G. Bahcecioglu, X. Yue, E. Howe, et al., “Aged Breast Extracellular Matrix Drives Mammary Epithelial Cells to an Invasive and Cancer-Like Phenotype,” Advanced Science 8, no. 22 (2021): e2100128.

[194]

K. Kawaguchi, K. Komoda, R. Mikawa, A. Asai, and M. Sugimoto, “Cellular Senescence Promotes Cancer Metastasis by Enhancing Soluble E-Cadherin Production,” iScience 24, no. 9 (2021): 103022.

[195]

J. F. Moreau, T. Pradeu, A. Grignolio, et al., “The Emerging Role of ECM Crosslinking in T Cell Mobility as a Hallmark of Immunosenescence in Humans,” Ageing Research Reviews 35 (2017): 322-335.

[196]

X. Li, C. Li, W. Zhang, Y. Wang, P. Qian, and H. Huang, “Inflammation and Aging: Signaling Pathways and Intervention Therapies,” Signal Transduction and Targeted Therapy 8, no. 1 (2023): 239.

[197]

A. R. J. Young and M. Narita, “SASP Reflects Senescence,” EMBO Reports 10, no. 3 (2009): 228-230.

[198]

J. Campisi, “Aging, Cellular Senescence, and Cancer,” Annual Review of Physiology 75 (2013): 685-705.

[199]

J. C. Acosta, A. O'Loghlen, A. Banito, et al., “Chemokine Signaling via the CXCR2 Receptor Reinforces Senescence,” Cell 133, no. 6 (2008): 1006-1018.

[200]

D. V. Faget, Q. Ren, and S. A. Stewart, “Unmasking Senescence: Context-Dependent Effects of SASP in Cancer,” Nature Reviews Cancer 19, no. 8 (2019): 439-453.

[201]

N. Herranz and J. Gil, “Mechanisms and Functions of Cellular Senescence,” Journal of Clinical Investigation 128, no. 4 (2018): 1238-1246.

[202]

B. K. Popivanova, K. Kitamura, Y. Wu, et al., “Blocking TNF-Alpha in Mice Reduces Colorectal Carcinogenesis Associated With Chronic Colitis,” Journal of Clinical Investigation 118, no. 2 (2008): 560-570.

[203]

A. Kuraishy, M. Karin, and S. I. Grivennikov, “Tumor Promotion via Injury- and Death-Induced Inflammation,” Immunity 35, no. 4 (2011): 467-477.

[204]

S. Grivennikov, E. Karin, J. Terzic, et al., “IL-6 and Stat3 Are Required for Survival of Intestinal Epithelial Cells and Development of Colitis-Associated Cancer,” Cancer Cell 15, no. 2 (2009): 103-113.

[205]

K. Liu, M. Jiang, Y. Lu, et al., “Sox2 Cooperates With Inflammation-Mediated Stat3 Activation in the Malignant Transformation of Foregut Basal Progenitor Cells,” Cell Stem Cell 12, no. 3 (2013): 304-315.

[206]

S. Schwitalla, A. A. Fingerle, P. Cammareri, et al., “Intestinal Tumorigenesis Initiated by Dedifferentiation and Acquisition of Stem-Cell-Like Properties,” Cell 152, no. 1/2 (2013): 25-38.

[207]

F. R. Greten and S. I. Grivennikov, “Inflammation and Cancer: Triggers, Mechanisms, and Consequences,” Immunity 51, no. 1 (2019): 27-41.

[208]

S. I. Grivennikov, “Inflammation and Colorectal Cancer: Colitis-Associated Neoplasia,” Seminars in Immunopathology 35, no. 2 (2013): 229-244.

[209]

G. Biffi, T. E. Oni, B. Spielman, et al., “IL1-Induced JAK/STAT Signaling Is Antagonized by TGFβ to Shape CAF Heterogeneity in Pancreatic Ductal Adenocarcinoma,” Cancer Discovery 9, no. 2 (2019): 282-301.

[210]

Y. Guo, J. L. Ayers, K. T. Carter, et al., “Senescence-Associated Tissue Microenvironment Promotes Colon Cancer Formation Through the Secretory Factor GDF15,” Aging Cell 18, no. 6 (2019): e13013.

[211]

P. Sansone, G. Storci, S. Tavolari, et al., “IL-6 Triggers Malignant Features in Mammospheres From Human Ductal Breast Carcinoma and Normal Mammary Gland,” Journal of Clinical Investigation 117, no. 12 (2007): 3988-4002.

[212]

A. Calon, E. Espinet, S. Palomo-Ponce, et al., “Dependency of Colorectal Cancer on a TGF-β-Driven Program in Stromal Cells for Metastasis Initiation,” Cancer Cell 22, no. 5 (2012): 571-584.

[213]

I. Kryczek, Y. Lin, N. Nagarsheth, et al., “IL-22(+)CD4(+) T Cells Promote Colorectal Cancer Stemness via STAT3 Transcription Factor Activation and Induction of the Methyltransferase DOT1L,” Immunity 40, no. 5 (2014): 772-784.

[214]

S. B. Coffelt, K. Kersten, C. W. Doornebal, et al., “IL-17-Producing γδ T Cells and Neutrophils Conspire to Promote Breast Cancer Metastasis,” Nature 522, no. 7556 (2015): 345-348.

[215]

K. Kersten, S. B. Coffelt, M. Hoogstraat, et al., “Mammary Tumor-Derived CCL2 Enhances Pro-Metastatic Systemic Inflammation Through Upregulation of IL1β in Tumor-Associated Macrophages,” Oncoimmunology 6, no. 8 (2017): e1334744.

[216]

C. A. Valenzuela, R. Quintanilla, A. Olate-Briones, et al., “SASP-Dependent Interactions Between Senescent Cells and Platelets Modulate Migration and Invasion of Cancer Cells,” International Journal of Molecular Sciences 20, no. 21 (2019): 5292.

[217]

X. Liu, J. Song, H. Zhang, et al., “Immune Checkpoint HLA-E:CD94-NKG2A Mediates Evasion of Circulating Tumor Cells From NK Cell Surveillance,” Cancer Cell 41, no. 2 (2023): 272-287.e9.

[218]

A. V. S. Faria, S. S. Andrade, M. P. Peppelenbosch, C. V. Ferreira-Halder, and G. M. Fuhler, “Platelets in Aging and Cancer-‘Double-Edged Sword’,” Cancer and Metastasis Reviews 39, no. 4 (2020): 1205-1221.

[219]

F. Veglia, M. Perego, and D. Gabrilovich, “Myeloid-Derived Suppressor Cells Coming of Age,” Nature Immunology 19, no. 2 (2018): 108-119.

[220]

C. Meyer, A. Sevko, M. Ramacher, et al., “Chronic Inflammation Promotes Myeloid-Derived Suppressor Cell Activation Blocking Antitumor Immunity in Transgenic Mouse Melanoma Model,” Proceedings of the National Academy of Sciences 108, no. 41 (2011): 17111-17116.

[221]

S. A. Lasser, F. G. Ozbay Kurt, I. Arkhypov, J. Utikal, and V. Umansky, “Myeloid-Derived Suppressor Cells in Cancer and Cancer Therapy,” Nature Reviews Clinical Oncology 21, no. 2 (2024): 147-164.

[222]

I. Liguori, G. Russo, F. Curcio, et al., “Oxidative Stress, Aging, and Diseases,” Clinical Interventions in Aging 13 (2018): 757-772.

[223]

Ö. Canli, A. M. Nicolas, J. Gupta, et al., “Myeloid Cell-Derived Reactive Oxygen Species Induce Epithelial Mutagenesis,” Cancer Cell 32, no. 6 (2017): 869-883.e5.

[224]

D. B. Lombard, K. F. Chua, R. Mostoslavsky, S. Franco, M. Gostissa, and F. W. Alt, “DNA Repair, Genome Stability, and Aging,” Cell 120, no. 4 (2005): 497-512.

[225]

L. B. Meira, J. M. Bugni, S. L. Green, et al., “DNA Damage Induced by Chronic Inflammation Contributes to Colon Carcinogenesis in Mice,” Journal of Clinical Investigation 118, no. 7 (2008): 2516-2525.

[226]

A. I. Robles, G. Traverso, M. Zhang, et al., “Whole-Exome Sequencing Analyses of Inflammatory Bowel Disease-Associated Colorectal Cancers,” Gastroenterology 150, no. 4 (2016): 931-943.

[227]

M. F. Gulen, N. Samson, A. Keller, et al., “cGAS-STING Drives Ageing-Related Inflammation and Neurodegeneration,” Nature 620, no. 7973 (2023): 374-380.

[228]

T. Li and Z. J. Chen, “The cGAS-cGAMP-STING Pathway Connects DNA Damage to Inflammation, Senescence, and Cancer,” Journal of Experimental Medicine 215, no. 5 (2018): 1287-1299.

[229]

P. M. Rothwell, M. Wilson, J. F. Price, J. F. Belch, T. W. Meade, and Z. Mehta, “Effect of Daily Aspirin on Risk of Cancer Metastasis: A Study of Incident Cancers During Randomised Controlled Trials,” Lancet 379, no. 9826 (2012): 1591-1601.

[230]

H. Zhao, L. Wu, G. Yan, et al., “Inflammation and Tumor Progression: Signaling Pathways and Targeted Intervention,” Signal Transduction and Targeted Therapy 6, no. 1 (2021): 263.

[231]

P. Sun, N. Yoshizuka, L. New, et al., “PRAK Is Essential for Ras-Induced Senescence and Tumor Suppression,” Cell 128, no. 2 (2007): 295-308.

[232]

Z. Liu, Q. Liang, Y. Ren, et al., “Immunosenescence: Molecular Mechanisms and Diseases,” Signal Transduction and Targeted Therapy 8, no. 1 (2023): 200.

[233]

T. Teissier, E. Boulanger, and L. S. Cox, “Interconnections Between Inflammageing and Immunosenescence During Ageing,” Cells 11, no. 3 (2022): 359.

[234]

T. Fulop, A. Larbi, G. Dupuis, et al., “Immunosenescence and Inflamm-Aging as Two Sides of the Same Coin: Friends or Foes?,” Frontiers in Immunology 8 (2018): 1960.

[235]

Z. Fu, H. Xu, L. Yue, et al., “Immunosenescence and Cancer: Opportunities and Challenges,” Medicine 102, no. 47 (2023): e36045.

[236]

J. Lian, Y. Yue, W. Yu, and Y. Zhang, “Immunosenescence: A Key Player in Cancer Development,” Journal of Hematology & Oncology 13, no. 1 (2020): 151.

[237]

A. Salminen, A. Kauppinen, and K. Kaarniranta, “Myeloid-Derived Suppressor Cells (MDSC): An Important Partner in Cellular/Tissue Senescence,” Biogerontology 19, no. 5 (2018): 325-339.

[238]

Y. Wang, Y. Ding, N. Guo, and S. Wang, “MDSCs: Key Criminals of Tumor Pre-Metastatic Niche Formation,” Frontiers in Immunology 10 (2019): 172.

[239]

M. Palatella, S. M. Guillaume, M. A. Linterman, and J. Huehn, “The Dark Side of Tregs During Aging,” Frontiers in Immunology 13 (2022): 940705.

[240]

O. Fornara, J. Odeberg, N. Wolmer Solberg, et al., “Poor Survival in Glioblastoma Patients Is Associated With Early Signs of Immunosenescence in the CD4 T-Cell Compartment After Surgery,” Oncoimmunology 4, no. 9 (2015): e1036211.

[241]

C. Jackaman, H. G. Radley-Crabb, Z. Soffe, T. Shavlakadze, M. D. Grounds, and D. J. Nelson, “Targeting Macrophages Rescues Age-Related Immune Deficiencies in C57BL/6J Geriatric Mice,” Aging Cell 12, no. 3 (2013): 345-357.

[242]

S. Aras and M. R. Zaidi, “TAMeless Traitors: Macrophages in Cancer Progression and Metastasis,” British Journal of Cancer 117, no. 11 (2017): 1583-1591.

[243]

S. Haston, E. Gonzalez-Gualda, S. Morsli, et al., “Clearance of Senescent Macrophages Ameliorates Tumorigenesis in KRAS-Driven Lung Cancer,” Cancer Cell 41, no. 7 (2023): 1242-1260.e6.

[244]

M. Bulati, C. Caruso, and G. Colonna-Romano, “From Lymphopoiesis to Plasma Cells Differentiation, the Age-Related Modifications of B Cell Compartment Are Influenced by ‘Inflamm-Ageing’,” Ageing Research Reviews 36 (2017): 125-136.

[245]

C. Jackaman, F. Tomay, L. Duong, et al., “Aging and Cancer: The Role of Macrophages and Neutrophils,” Ageing Research Reviews 36 (2017): 105-116.

[246]

A. Brauning, M. Rae, G. Zhu, et al., “Aging of the Immune System: Focus on Natural Killer Cells Phenotype and Functions,” Cells 11, no. 6 (2022): 1017.

[247]

M. Levy, A. A. Kolodziejczyk, C. A. Thaiss, and E. Elinav, “Dysbiosis and the Immune System,” Nature Reviews Immunology 17, no. 4 (2017): 219-232.

[248]

T. S. Ghosh, F. Shanahan, and P. W. O'Toole, “The Gut Microbiome as a Modulator of Healthy Ageing,” Nature Reviews Gastroenterology & Hepatology 19, no. 9 (2022): 565-584.

[249]

X. You, U. C. Dadwal, M. E. Lenburg, M. A. Kacena, and J. F. Charles, “Murine Gut Microbiome Meta-Analysis Reveals Alterations in Carbohydrate Metabolism in Response to Aging,” mSystems 7, no. 2 (2022): e0124821.

[250]

L. Sun, Z. Li, C. Hu, et al., “Age-Dependent Changes in the Gut Microbiota and Serum Metabolome Correlate With Renal Function and Human Aging,” Aging Cell 22, no. 12 (2023): e14028.

[251]

K. E. Bach Knudsen, H. N. Lærke, M. S. Hedemann, et al., “Impact of Diet-Modulated Butyrate Production on Intestinal Barrier Function and Inflammation,” Nutrients 10, no. 10 (2018): 1499.

[252]

T. Walrath, K. U. Dyamenahalli, H. J. Hulsebus, et al., “Age-Related Changes in Intestinal Immunity and the Microbiome,” Journal of Leukocyte Biology 109, no. 6 (2021): 1045-1061.

[253]

T. Wilmanski, C. Diener, N. Rappaport, et al., “Gut Microbiome Pattern Reflects Healthy Ageing and Predicts Survival in Humans,” Nature Metabolism 3, no. 2 (2021): 274-286.

[254]

Y. Sato, K. Atarashi, D. R. Plichta, et al., “Novel Bile Acid Biosynthetic Pathways Are Enriched in the Microbiome of Centenarians,” Nature 599, no. 7885 (2021): 458-464.

[255]

S. W. Lin, Y. S. Tsai, Y. L. Chen, et al., “Lactobacillus Plantarum GKM3 Promotes Longevity, Memory Retention, and Reduces Brain Oxidation Stress in SAMP8 Mice,” Nutrients 13, no. 8 (2021): 2860.

[256]

C. Bárcena, R. Valdés-Mas, P. Mayoral, et al., “Healthspan and Lifespan Extension by Fecal Microbiota Transplantation into Progeroid Mice,” Nature Medicine 25, no. 8 (2019): 1234-1242.

[257]

M. Matsumoto, S. Kurihara, R. Kibe, H. Ashida, and Y. Benno, “Longevity in Mice Is Promoted by Probiotic-Induced Suppression of Colonic Senescence Dependent on Upregulation of Gut Bacterial Polyamine Production,” PLoS One 6, no. 8 (2011): e23652.

[258]

Y. Yang, L. Du, D. Shi, et al., “Dysbiosis of Human Gut Microbiome in Young-Onset Colorectal Cancer,” Nature Communications 12, no. 1 (2021): 6757.

[259]

S. Zou, L. Fang, and M. H. Lee, “Dysbiosis of Gut Microbiota in Promoting the Development of Colorectal Cancer,” Gastroenterology Report 6, no. 1 (2018): 1-12.

[260]

S. W. Ruo, T. Alkayyali, M. Win, et al., “Role of Gut Microbiota Dysbiosis in Breast Cancer and Novel Approaches in Prevention, Diagnosis, and Treatment,” Cureus 13, no. 8 (2021): e17472.

[261]

H. Zhuang, L. Cheng, Y. Wang, et al., “Dysbiosis of the Gut Microbiome in Lung Cancer,” Frontiers in Cellular and Infection Microbiology 9 (2019): 112.

[262]

V. Gopalakrishnan, B. A. Helmink, C. N. Spencer, A. Reuben, and J. A. Wargo, “The Influence of the Gut Microbiome on Cancer, Immunity, and Cancer Immunotherapy,” Cancer Cell 33, no. 4 (2018): 570-580.

[263]

M. Vétizou, J. M. Pitt, R. Daillère, et al., “Anticancer Immunotherapy by CTLA-4 Blockade Relies on the Gut Microbiota,” Science 350, no. 6264 (2015): 1079-1084.

[264]

A. Sivan, L. Corrales, N. Hubert, et al., “Commensal Bifidobacterium Promotes Antitumor Immunity and Facilitates Anti-PD-L1 Efficacy,” Science 350, no. 6264 (2015): 1084-1089.

[265]

P. D. Cani, C. Depommier, M. Derrien, A. Everard, and W. M. de Vos, “Akkermansia Muciniphila: Paradigm for Next-Generation Beneficial Microorganisms,” Nature Reviews Gastroenterology & Hepatology 19, no. 10 (2022): 625-637.

[266]

Y. Gao, P. Xu, D. Sun, et al., “Faecalibacterium Prausnitzii Abrogates Intestinal Toxicity and Promotes Tumor Immunity to Increase the Efficacy of Dual CTLA4 and PD-1 Checkpoint Blockade,” Cancer Research 83, no. 22 (2023): 3710-3725.

[267]

S. Y. Zeng, Y. F. Liu, J. H. Liu, Z. L. Zeng, H. Xie, and J. H. Liu, “Potential Effects of Akkermansia Muciniphila in Aging and Aging-Related Diseases: Current Evidence and Perspectives,” Aging and Disease 14, no. 6 (2023): 2015-2027.

[268]

B. Routy, E. Le Chatelier, L. Derosa, et al., “Gut Microbiome Influences Efficacy of PD-1-Based Immunotherapy Against Epithelial Tumors,” Science 359, no. 6371 (2018): 91-97.

[269]

J. Ma, L. Sun, Y. Liu, et al., “Alter Between Gut Bacteria and Blood Metabolites and the Anti-Tumor Effects of Faecalibacterium Prausnitzii in Breast Cancer,” BMC Microbiology 20, no. 1 (2020): 82.

[270]

I. J. Dikeocha, A. M. Al-Kabsi, H. T. Chiu, and M. A. Alshawsh, “Faecalibacterium Prausnitzii Ameliorates Colorectal Tumorigenesis and Suppresses Proliferation of HCT116 Colorectal Cancer Cells,” Biomedicines 10, no. 5 (2022): 1128.

[271]

Z. Shi, M. Li, C. Zhang, et al., “Butyrate-Producing Faecalibacterium Prausnitzii Suppresses Natural Killer/T-Cell Lymphoma by Dampening the JAK-STAT Pathway,” Gut 74, no. 4 (2025): 557-570.

[272]

F. De Filippis, E. Pasolli, and D. Ercolini, “Newly Explored Faecalibacterium Diversity Is Connected to Age, Lifestyle, Geography, and Disease,” Current Biology 30, no. 24 (2020): 4932-4943.e4.

[273]

A. Singh, S. H. Schurman, A. Bektas, et al., “Aging and Inflammation,” Cold Spring Harbor Perspectives in Medicine 14, no. 6 (2024): a041197.

[274]

A. Biragyn and L. Ferrucci, “Gut Dysbiosis: A Potential Link Between Increased Cancer Risk in Ageing and Inflammaging,” Lancet Oncology 19, no. 6 (2018): e295-e304.

[275]

J. Ganz, L. J. Luquette, S. Bizzotto, et al., “Contrasting Somatic Mutation Patterns in Aging Human Neurons and Oligodendrocytes,” Cell 187, no. 8 (2024): 1955-1970.e23.

[276]

E. L. Boertjes, S. Massaar, A. Zeilemaker, et al., “Double Mutant DNMT3A AML: A Unique Subtype Experiencing Increased DNA Damage and Poor Prognosis,” Blood Advances 9, no. 6 (2025): 1344-1355.

[277]

A. Wagner, H. Kosnacova, M. Chovanec, and D. Jurkovicova, “Mitochondrial Genetic and Epigenetic Regulations in Cancer: Therapeutic Potential,” International Journal of Molecular Sciences 23, no. 14 (2022): 7897.

[278]

A. Hu, Z. Hu, J. Ye, et al., “Metformin Exerts Anti-Tumor Effects via Sonic Hedgehog Signaling Pathway by Targeting AMPK in HepG2 Cells,” Biochemistry and Cell Biology 100, no. 2 (2022): 142-151.

[279]

J. E. Visvader, “Cells of Origin in Cancer,” Nature 469, no. 7330 (2011): 314-322.

[280]

C. Hong, M. Schubert, A. E. Tijhuis, et al., “cGAS-STING Drives the IL-6-Dependent Survival of Chromosomally Instable Cancers,” Nature 607, no. 7918 (2022): 366-373.

[281]

J. Wang, J. J. Lee, L. Wang, et al., “Value of p16INK4a and RASSF1A Promoter Hypermethylation in Prognosis of Patients With Resectable Non-Small Cell Lung Cancer,” Clinical Cancer Research 10, no. 18 Pt 1 (2004): 6119-6125.

[282]

P. C. Wu, J. W. Lu, J. Y. Yang, et al., “H3K9 Histone Methyltransferase, KMT1E/SETDB1, Cooperates With the SMAD2/3 Pathway to Suppress Lung Cancer Metastasis,” Cancer Research 74, no. 24 (2014): 7333-7343.

[283]

H. Tang, P. Liu, L. Yang, et al., “miR-185 Suppresses Tumor Proliferation by Directly Targeting E2F6 and DNMT1 and Indirectly Upregulating BRCA1 in Triple-Negative Breast Cancer,” Molecular Cancer Therapeutics 13, no. 12 (2014): 3185-3197.

[284]

M. S. Waitkus, B. H. Diplas, and H. Yan, “Biological Role and Therapeutic Potential of IDH Mutations in Cancer,” Cancer Cell 34, no. 2 (2018): 186-195.

[285]

L. Dang and S. S. M. Su, “Isocitrate Dehydrogenase Mutation and (R)-2-Hydroxyglutarate: From Basic Discovery to Therapeutics Development,” Annual Review of Biochemistry 86 (2017): 305-331.

[286]

V. Deretic, T. Saitoh, and S. Akira, “Autophagy in Infection, Inflammation and Immunity,” Nature Reviews Immunology 13, no. 10 (2013): 722-737.

[287]

M. N. Sharifi, E. E. Mowers, L. E. Drake, et al., “Autophagy Promotes Focal Adhesion Disassembly and Cell Motility of Metastatic Tumor Cells Through the Direct Interaction of Paxillin With LC3,” Cell Reports 15, no. 8 (2016): 1660-1672.

[288]

J. L. Stern, D. Theodorescu, B. Vogelstein, N. Papadopoulos, and T. R. Cech, “Mutation of the TERT Promoter, Switch to Active Chromatin, and Monoallelic TERT Expression in Multiple Cancers,” Genes & Development 29, no. 21 (2015): 2219-2224.

[289]

M. Baljevic, B. Dumitriu, J. W. Lee, et al., “Telomere Length Recovery: A Strong Predictor of Overall Survival in Acute Promyelocytic Leukemia,” Acta Haematologica 136, no. 4 (2016): 210-218.

[290]

I. Acerbi, L. Cassereau, I. Dean, et al., “Human Breast Cancer Invasion and Aggression Correlates With ECM Stiffening and Immune Cell Infiltration,” Integrative Biology 7, no. 10 (2015): 1120-1134.

[291]

S. F. Josephs, T. E. Ichim, S. M. Prince, et al., “Unleashing Endogenous TNF-Alpha as a Cancer Immunotherapeutic,” Journal of Translational Medicine 16, no. 1 (2018): 242.

[292]

Z. Castaño, B. P. San Juan, A. Spiegel, et al., “IL-1β Inflammatory Response Driven by Primary Breast Cancer Prevents Metastasis-Initiating Cell Colonization,” Nature Cell Biology 20, no. 9 (2018): 1084-1097.

[293]

Y. Li, L. Wang, L. Pappan, A. Galliher-Beckley, and J. Shi, “IL-1β Promotes Stemness and Invasiveness of Colon Cancer Cells Through Zeb1 Activation,” Molecular Cancer 11, no. 1 (2012): 87.

[294]

I. Kryczek, R. Liu, G. Wang, et al., “FOXP3 Defines Regulatory T Cells in Human Tumor and Autoimmune Disease,” Cancer Research 69, no. 9 (2009): 3995-4000.

[295]

S. Sharma, A. L. Dominguez, and J. Lustgarten, “High Accumulation of T Regulatory Cells Prevents the Activation of Immune Responses in Aged Animals,” Journal of Immunology 177, no. 12 (2006): 8348-8355.

[296]

M. K. Ruhland, A. J. Loza, A. H. Capietto, et al., “Stromal Senescence Establishes an Immunosuppressive Microenvironment That Drives Tumorigenesis,” Nature Communications 7, no. 1 (2016): 11762.

[297]

C. P. Verschoor, J. Johnstone, J. Millar, et al., “Blood CD33(+)HLA-DR(-) Myeloid-Derived Suppressor Cells Are Increased With Age and a History of Cancer,” Journal of Leukocyte Biology 93, no. 4 (2013): 633-637.

[298]

Y. Elyahu, I. Hekselman, I. Eizenberg-Magar, et al., “Aging Promotes Reorganization of the CD4 T Cell Landscape Toward Extreme Regulatory and Effector Phenotypes,” Science Advances 5, no. 8 (2019): eaaw8330.

[299]

R. K. Junnila, E. O. List, D. E. Berryman, J. W. Murrey, and J. J. Kopchick, “The GH/IGF-1 Axis in Ageing and Longevity,” Nature Reviews Endocrinology 9, no. 6 (2013): 366-376.

[300]

A. Podlutsky, M. N. Valcarcel-Ares, K. Yancey, et al., “The GH/IGF-1 Axis in a Critical Period Early in Life Determines Cellular DNA Repair Capacity by Altering Transcriptional Regulation of DNA Repair-Related Genes: Implications for the Developmental Origins of Cancer,” GeroScience 39, no. 2 (2017): 147-160.

[301]

J. Park, R. Hu, Y. Qian, et al., “Estrogen Counteracts Age-Related Decline in Beige Adipogenesis Through the NAMPT-Regulated ER Stress Response,” Nature Aging 4, no. 6 (2024): 839-853.

[302]

M. R. Lloyd, K. Jhaveri, K. Kalinsky, A. Bardia, and S. A. Wander, “Precision Therapeutics and Emerging Strategies for HR-Positive Metastatic Breast Cancer,” Nature Reviews Clinical Oncology 21, no. 10 (2024): 743-761.

[303]

S. E. Nunnery and I. A. Mayer, “Targeting the PI3K/AKT/mTOR Pathway in Hormone-Positive Breast Cancer,” Drugs 80, no. 16 (2020): 1685-1697.

[304]

M. Perez-Lanzon, V. Carbonnier, P. Cordier, et al., “New Hormone Receptor-Positive Breast Cancer Mouse Cell Line Mimicking the Immune Microenvironment of Anti-PD-1 Resistant Mammary Carcinoma,” Journal for Immunotherapy of Cancer 11, no. 6 (2023): e007117.

[305]

Y. Xu, Y. Yang, Z. Wang, et al., “ZNF397 Deficiency Triggers TET2-Driven Lineage Plasticity and AR-Targeted Therapy Resistance in Prostate Cancer,” Cancer Discovery 14, no. 8 (2024): 1496-1521.

[306]

M. I. Stamou, C. Colling, and L. E. Dichtel, “Adrenal Aging and Its Effects on the Stress Response and Immunosenescence,” Maturitas 168 (2023): 13-19.

[307]

R. A. Lobo, “Hormone-Replacement Therapy: Current Thinking,” Nature Reviews Endocrinology 13, no. 4 (2017): 220-231.

[308]

J. Kim and P. N. Munster, “Estrogens and Breast Cancer,” Annals of Oncology 36, no. 2 (2025): 134-148.

[309]

F. Khosrow-Khavar and L. Azoulay, “Hormonal Therapy and Cardiovascular Health,” JACC: CardioOncology 6, no. 6 (2024): 919-921.

[310]

L. Montégut, A. Joseph, H. Chen, et al., “DBI/ACBP Is a Targetable Autophagy Checkpoint Involved in Aging and Cardiovascular Disease,” Autophagy 19, no. 7 (2023): 2166-2169.

[311]

C. Sharma, I. Deutsch, D. P. Horowitz, et al., “Patterns of Care and Treatment Outcomes for Elderly Women With Cervical Cancer,” Cancer 118, no. 14 (2012): 3618-3626.

[312]

R. J. Mayer, R. B. Davis, C. A. Schiffer, et al., “Intensive Postremission Chemotherapy in Adults With Acute Myeloid Leukemia,” New England Journal of Medicine 331, no. 14 (1994): 896-903.

[313]

J. Rees, “Principal Results of the Medical Research Council's 8th Acute Myeloid Leukaemia Trial,” Lancet 328, no. 8518 (1986): 1236-1241.

[314]

F. Freudenberger, A. Ohler, M. Theobald, and G. Hess, “Cure Rate in the Elderly Patients With Diffuse Large B Cell Lymphoma Deteriorates After the Age of 80-Results From a Single-Center Survey,” Annals of Hematology 100, no. 4 (2021): 1013-1021.

[315]

D. G. Haller, M. J. O'Connell, T. H. Cartwright, et al., “Impact of Age and Medical Comorbidity on Adjuvant Treatment Outcomes for Stage III Colon Cancer: A Pooled Analysis of Individual Patient Data From Four Randomized, Controlled Trials,” Annals of Oncology 26, no. 4 (2015): 715-724.

[316]

A. Ferrero, L. Fuso, E. Tripodi, et al., “Ovarian Cancer in Elderly Patients,” International Journal of Gynecological Cancer 27, no. 9 (2017): 1863-1871.

[317]

J. Manjelievskaia, D. Brown, K. A. McGlynn, W. Anderson, C. D. Shriver, and K. Zhu, “Chemotherapy Use and Survival Among Young and Middle-Aged Patients With Colon Cancer,” JAMA Surgery 152, no. 5 (2017): 452-459.

[318]

V. Jain, W. T. Hwang, S. Venigalla, et al., “Association of Age With Efficacy of Immunotherapy in Metastatic Melanoma,” Oncologist 25, no. 2 (2020): e381-e385.

[319]

B. M. Syed, A. R. Green, E. A. Rakha, D. A. L. Morgan, I. O. Ellis, and K. L. Cheung, “Age-Related Biology of Early-Stage Operable Breast Cancer and Its Impact on Clinical Outcome,” Cancers 13, no. 6 (2021): 1417.

[320]

L. Falzone, R. Bordonaro, and M. Libra, “SnapShot: Cancer Chemotherapy,” Cell 186, no. 8 (2023): 1816-1816.e1.

[321]

S. Rostoft, A. O'Donovan, P. Soubeyran, S. M. H. Alibhai, and M. E. Hamaker, “Geriatric Assessment and Management in Cancer,” Journal of Clinical Oncology 39, no. 19 (2021): 2058-2067.

[322]

T. F. Nishijima, M. Shimokawa, T. Esaki, M. Morita, Y. Toh, and H. B. Muss, “Comprehensive Geriatric Assessment: Valuation and Patient Preferences in Older Japanese Adults With Cancer,” Journal of the American Geriatrics Society 71, no. 1 (2023): 259-267.

[323]

M. Puts, N. Alqurini, F. Strohschein, et al., “Impact of Geriatric Assessment and Management on Quality of Life, Unplanned Hospitalizations, Toxicity, and Survival for Older Adults With Cancer: The Randomized 5C Trial,” Journal of Clinical Oncology 41, no. 4 (2023): 847-858.

[324]

K. P. Loh, G. Liposits, S. P. Arora, et al., “Adequate Assessment Yields Appropriate Care-The Role of Geriatric Assessment and Management in Older Adults With Cancer: A Position Paper From the ESMO/SIOG Cancer in the Elderly Working Group,” ESMO Open 9, no. 8 (2024): 103657.

[325]

X. Bian, Y. T. Xiao, T. Wu, et al., “Microvesicles and Chemokines in Tumor Microenvironment: Mediators of Intercellular Communications in Tumor Progression,” Molecular Cancer 18, no. 1 (2019): 50.

[326]

P. G. Prasanna, D. E. Citrin, J. Hildesheim, et al., “Therapy-Induced Senescence: Opportunities to Improve Anticancer Therapy,” JNCI: Journal of the National Cancer Institute 113, no. 10 (2021): 1285-1298.

[327]

M. P. Mongiardi, M. Pellegrini, R. Pallini, A. Levi, and M. L. Falchetti, “Cancer Response to Therapy-Induced Senescence: A Matter of Dose and Timing,” Cancers 13, no. 3 (2021): 484.

[328]

M. Colucci, S. Zumerle, S. Bressan, et al., “Retinoic Acid Receptor Activation Reprograms Senescence Response and Enhances Anti-Tumor Activity of Natural Killer Cells,” Cancer Cell 42, no. 4 (2024): 646-661.e9.

[329]

L. Chibaya, K. C. Murphy, K. D. DeMarco, et al., “EZH2 Inhibition Remodels the Inflammatory Senescence-Associated Secretory Phenotype to Potentiate Pancreatic Cancer Immune Surveillance,” Nature Cancer 4, no. 6 (2023): 872-892.

[330]

S. Xiao, D. Qin, X. Hou, et al., “Cellular Senescence: A Double-Edged Sword in Cancer Therapy,” Frontiers in Oncology 13 (2023): 1189015.

[331]

L. Zhou, J. Zhu, Y. Liu, P. K. Zhou, and Y. Gu, “Mechanisms of Radiation-Induced Tissue Damage and Response,” MedComm 5, no. 10 (2024): e725.

[332]

Z. Yue, L. Nie, P. Zhao, N. Ji, G. Liao, and Q. Wang, “Senescence-Associated Secretory Phenotype and Its Impact on Oral Immune Homeostasis,” Frontiers in Immunology 13 (2022): 1019313.

[333]

K. Rubio, E. Y. Hernández-Cruz, D. G. Rogel-Ayala, et al., “Nutriepigenomics in Environmental-Associated Oxidative Stress,” Antioxidants 12, no. 3 (2023): 771.

[334]

S. Horvath, “DNA Methylation Age of Human Tissues and Cell Types,” Genome Biology 14, no. 10 (2013): 3156.

[335]

T. Misawa, Y. Tanaka, R. Okada, and A. Takahashi, “Biology of Extracellular Vesicles Secreted From Senescent Cells as Senescence-Associated Secretory Phenotype Factors,” Geriatrics & Gerontology International 20, no. 6 (2020): 539-546.

[336]

B. Pang, X. Qiao, L. Janssen, et al., “Drug-Induced Histone Eviction From Open Chromatin Contributes to the Chemotherapeutic Effects of Doxorubicin,” Nature Communications 4 (2013): 1908.

[337]

M. Milanovic, D. N. Y. Fan, D. Belenki, et al., “Senescence-Associated Reprogramming Promotes Cancer Stemness,” Nature 553, no. 7686 (2018): 96-100.

[338]

R. Duan, Q. Fu, Y. Sun, and Q. Li, “Epigenetic Clock: A Promising Biomarker and Practical Tool in Aging,” Ageing Research Reviews 81 (2022): 101743.

[339]

J. K. Kresovich, Z. Xu, K. M. O'Brien, C. R. Weinberg, D. P. Sandler, and J. A. Taylor, “Methylation-Based Biological Age and Breast Cancer Risk,” JNCI: Journal of the National Cancer Institute 111, no. 10 (2019): 1051-1058.

[340]

L. Shen, L. Zhou, M. Xia, et al., “PGC1alpha Regulates Mitochondrial Oxidative Phosphorylation Involved in Cisplatin Resistance in Ovarian Cancer Cells via Nucleo-Mitochondrial Transcriptional Feedback,” Experimental Cell Research 398, no. 1 (2021): 112369.

[341]

M. K. Graham and A. Meeker, “Telomeres and Telomerase in Prostate Cancer Development and Therapy,” Nature Reviews Urology 14, no. 10 (2017): 607-619.

[342]

J. Pan, H. Zhang, H. Lin, et al., “Irisin Ameliorates Doxorubicin-Induced Cardiac Perivascular Fibrosis Through Inhibiting Endothelial-to-Mesenchymal Transition by Regulating ROS Accumulation and Autophagy Disorder in Endothelial Cells,” Redox Biology 46 (2021): 102120.

[343]

D. Li, Y. Yang, S. Wang, et al., “Role of Acetylation in Doxorubicin-Induced Cardiotoxicity,” Redox Biology 46 (2021): 102089.

[344]

R. X. Huang and P. K. Zhou, “DNA Damage Response Signaling Pathways and Targets for Radiotherapy Sensitization in Cancer,” Signal Transduction and Targeted Therapy 5, no. 1 (2020): 60.

[345]

X. X. Du, C. He, X. Lu, Y. L. Guo, Z. H. Chen, and L. J. Cai, “YAP/STAT3 Promotes the Immune Escape of Larynx Carcinoma by Activating VEGFR1-TGFbeta Signaling to Facilitate Pd-L1 Expression in M2-Like TAMs,” Experimental Cell Research 405, no. 2 (2021): 112655.

[346]

A. C. Y. Chen, S. Jaiswal, D. Martinez, et al., “The Aged Tumor Microenvironment Limits T Cell Control of Cancer,” Nature Immunology 25, no. 6 (2024): 1033-1045.

[347]

Q. Huang, X. Wu, Z. Wang, et al., “The Primordial Differentiation of Tumor-Specific Memory CD8(+) T Cells as Bona Fide Responders to PD-1/PD-L1 Blockade in Draining Lymph Nodes,” Cell 185, no. 22 (2022): 4049-4066 e25.

[348]

I. Mellman, D. S. Chen, T. Powles, and S. J. Turley, “The Cancer-Immunity Cycle: Indication, Genotype, and Immunotype,” Immunity 56, no. 10 (2023): 2188-2205.

[349]

A. B. Smitherman, W. A. Wood, N. Mitin, et al., “Accelerated Aging Among Childhood, Adolescent, and Young Adult Cancer Survivors Is Evidenced by Increased Expression of p16(INK4a) and Frailty,” Cancer 126, no. 22 (2020): 4975-4983.

[350]

B. Wang, J. Han, J. H. Elisseeff, and M. Demaria, “The Senescence-Associated Secretory Phenotype and Its Physiological and Pathological Implications,” Nature Reviews Molecular Cell Biology 25, no. 12 (2024): 958-978.

[351]

H. Slaets, N. Veeningen, P. L. J. de Keizer, N. Hellings, and S. Hendrix, “Are Immunosenescent T Cells Really Senescent?,” Aging Cell 23, no. 10 (2024): e14300.

[352]

B. Faubert, A. Solmonson, and R. J. DeBerardinis, “Metabolic Reprogramming and Cancer Progression,” Science 368, no. 6487 (2020): eaaw5473.

[353]

W. H. Koppenol, P. L. Bounds, and C. V. Dang, “Otto Warburg's Contributions to Current Concepts of Cancer Metabolism,” Nature Reviews Cancer 11, no. 5 (2011): 325-337.

[354]

P. Vaupel, H. Schmidberger, and A. Mayer, “The Warburg Effect: Essential Part of Metabolic Reprogramming and Central Contributor to Cancer Progression,” International Journal of Radiation Biology 95, no. 7 (2019): 912-919.

[355]

H. Lemos, L. Huang, G. C. Prendergast, and A. L. Mellor, “Immune Control by Amino Acid Catabolism During Tumorigenesis and Therapy,” Nature Reviews Cancer 19, no. 3 (2019): 162-175.

[356]

M. Martin-Perez, U. Urdiroz-Urricelqui, C. Bigas, and S. A. Benitah, “The Role of Lipids in Cancer Progression and Metastasis,” Cell Metabolism 34, no. 11 (2022): 1675-1699.

[357]

T. Sobanski, M. Rose, A. Suraweera, K. O'Byrne, D. J. Richard, and E. Bolderson, “Cell Metabolism and DNA Repair Pathways: Implications for Cancer Therapy,” Frontiers in Cell and Developmental Biology 9 (2021): 633305.

[358]

L. Xia, L. Oyang, J. Lin, et al., “The Cancer Metabolic Reprogramming and Immune Response,” Molecular Cancer 20, no. 1 (2021): 28.

[359]

J. R. Dörr, Y. Yu, M. Milanovic, et al., “Synthetic Lethal Metabolic Targeting of Cellular Senescence in Cancer Therapy,” Nature 501, no. 7467 (2013): 421-425.

[360]

L. Sun, H. Zhang, and P. Gao, “Metabolic Reprogramming and Epigenetic Modifications on the Path to Cancer,” Protein & Cell 13, no. 12 (2022): 877-919.

[361]

J. Xiao, S. Wang, L. Chen, et al., “25-Hydroxycholesterol Regulates Lysosome AMP Kinase Activation and Metabolic Reprogramming to Educate Immunosuppressive Macrophages,” Immunity 57, no. 5 (2024): 1087-1104.e7.

[362]

J. Lin, D. Rao, M. Zhang, and Q. Gao, “Metabolic Reprogramming in the Tumor Microenvironment of Liver Cancer,” Journal of Hematology & Oncology 17, no. 1 (2024): 6.

[363]

Y. Liu, Y. Zhao, H. Song, et al., “Metabolic Reprogramming in Tumor Immune Microenvironment: Impact on Immune Cell Function and Therapeutic Implications,” Cancer Letters 597 (2024): 217076.

[364]

T. Saleh, L. Tyutyunyk-Massey, and D. A. Gewirtz, “Tumor Cell Escape From Therapy-Induced Senescence as a Model of Disease Recurrence After Dormancy,” Cancer Research 79, no. 6 (2019): 1044-1046.

[365]

S. S. Park, Y. W. Choi, J. H. Kim, H. S. Kim, and T. J. Park, “Senescent Tumor Cells: An Overlooked Adversary in the Battle Against Cancer,” Experimental & Molecular Medicine 53, no. 12 (2021): 1834-1841.

[366]

Y. W. Choi, Y. H. Kim, S. Y. Oh, et al., “Senescent Tumor Cells Build a Cytokine Shield in Colorectal Cancer,” Advanced Science 8, no. 4 (2021): 2002497.

[367]

H. Braumüller, B. Mauerer, C. Berlin, et al., “Senescent Tumor Cells in the Peritoneal Carcinomatosis Drive Immunosenescence in the Tumor Microenvironment,” Frontiers in Immunology 13 (2022): 908449.

[368]

K. X. Song, J. X. Wang, and D. Huang, “Therapy-Induced Senescent Tumor Cells in Cancer Relapse,” Journal of the National Cancer Center 3, no. 4 (2023): 273-278.

[369]

I. B. Roninson, “Tumor Cell Senescence in Cancer Treatment,” Cancer Research 63, no. 11 (2003): 2705-2715.

[370]

Y. Meng, E. V. Efimova, K. W. Hamzeh, et al., “Radiation-Inducible Immunotherapy for Cancer: Senescent Tumor Cells as a Cancer Vaccine,” Molecular Therapy 20, no. 5 (2012): 1046-1055.

[371]

Y. Liu, J. Pagacz, D. J. Wolfgeher, K. D. Bromerg, J. V. Gorman, and S. J. Kron, “Senescent Cancer Cell Vaccines Induce Cytotoxic T Cell Responses Targeting Primary Tumors and Disseminated Tumor Cells,” Journal for Immunotherapy of Cancer 11, no. 2 (2023): e005862.

[372]

M. Lee and J. S. Lee, “Exploiting Tumor Cell Senescence in Anticancer Therapy,” BMB Reports 47, no. 2 (2014): 51-59.

[373]

B. D. Lehmann, M. S. Paine, A. M. Brooks, et al., “Senescence-Associated Exosome Release From Human Prostate Cancer Cells,” Cancer Research 68, no. 19 (2008): 7864-7871.

[374]

E. L. Kavanagh, S. Lindsay, M. Halasz, et al., “Protein and Chemotherapy Profiling of Extracellular Vesicles Harvested From Therapeutic Induced Senescent Triple Negative Breast Cancer Cells,” Oncogenesis 6, no. 10 (2017): e388.

[375]

D. Zhang, J. W. Zhang, H. Xu, et al., “Therapy-Induced Senescent Tumor Cell-Derived Extracellular Vesicles Promote Colorectal Cancer Progression Through SERPINE1-Mediated NF-κB p65 Nuclear Translocation,” Molecular Cancer 23, no. 1 (2024): 70.

[376]

Y. Wang, L. Che, X. Chen, et al., “Repurpose Dasatinib and Quercetin: Targeting Senescent Cells Ameliorates Postmenopausal Osteoporosis and Rejuvenates Bone Regeneration,” Bioactive Materials 25 (2023): 13-28.

[377]

S. Maurer, V. Kirsch, L. Ruths, R. E. Brenner, and J. Riegger, “Senolytic Therapy Combining Dasatinib and Quercetin Restores the Chondrogenic Phenotype of Human Osteoarthritic Chondrocytes by the Release of Pro-Anabolic Mediators,” Aging Cell 24, no. 1 (2025): e14361.

[378]

J. L. Kirkland and T. Tchkonia, “Senolytic Drugs: From Discovery to Translation,” Journal of Internal Medicine 288, no. 5 (2020): 518-536.

[379]

A. Chandra, A. B. Lagnado, J. N. Farr, et al., “Targeted Reduction of Senescent Cell Burden Alleviates Focal Radiotherapy-Related Bone Loss,” Journal of Bone and Mineral Research 35, no. 6 (2020): 1119-1131.

[380]

T. Gagliano, E. Kerschbamer, U. Baccarani, et al., “Changes in Chromatin Accessibility and Transcriptional Landscape Induced by HDAC Inhibitors in TP53 Mutated Patient-Derived Colon Cancer Organoids,” Biomedicine & Pharmacotherapy 173 (2024): 116374.

[381]

C. J. Ott and C. J. Wu, “HDAC Inhibitors Finally Open Up: Chromatin Accessibility Signatures of CTCL,” Cancer Cell 32, no. 1 (2017): 1-3.

[382]

A. B. A. Laranjeira, M. G. Hollingshead, D. Nguyen, R. J. Kinders, J. H. Doroshow, and S. X. Yang, “DNA Damage, Demethylation and Anticancer Activity of DNA Methyltransferase (DNMT) Inhibitors,” Scientific Reports 13, no. 1 (2023): 5964.

[383]

S. Huang, C. H. Lau, C. Tin, and R. H. W. Lam, “Extended Replicative Lifespan of Primary Resting T Cells by CRISPR/dCas9-Based Epigenetic Modifiers and Transcriptional Activators,” Cellular and Molecular Life Sciences 81, no. 1 (2024): 407.

[384]

J. K. Nuñez, J. Chen, G. C. Pommier, et al., “Genome-Wide Programmable Transcriptional Memory by CRISPR-Based Epigenome Editing,” Cell 184, no. 9 (2021): 2503-2519.e17.

[385]

G. Veggiani, R. Villaseñor, G. D. Martyn, et al., “Author Correction: High-Affinity Chromodomains Engineered for Improved Detection of Histone Methylation and Enhanced CRISPR-Based Gene Repression,” Nature Communications 13, no. 1 (2022): 7381.

[386]

J. K. Sinha, K. Jorwal, K. K. Singh, S. S. Han, R. Bhaskar, and S. Ghosh, “The Potential of Mitochondrial Therapeutics in the Treatment of Oxidative Stress and Inflammation in Aging,” Molecular Neurobiology 62, no. 6 (2025): 6748-6763.

[387]

W. Chen, S. Dream, P. Y. Leung, P. K. Wu, S. Wong, and J. I. Park, “Selpercatinib Combination With the Mitochondria-Targeted Antioxidant MitoQ Effectively Suppresses RET-Mutant Thyroid Cancer,” npj Precision Oncology 8, no. 1 (2024): 39.

[388]

M. Ulgherait, A. Chen, S. F. McAllister, et al., “Circadian Regulation of Mitochondrial Uncoupling and Lifespan,” Nature Communications 11, no. 1 (2020): 1927.

[389]

S. Rangarajan, M. L. Locy, D. Chanda, et al., “Mitochondrial Uncoupling Protein-2 Reprograms Metabolism to Induce Oxidative Stress and Myofibroblast Senescence in Age-Associated Lung Fibrosis,” Aging Cell 21, no. 9 (2022): e13674.

[390]

Q. Li, Z. Li, T. Luo, and H. Shi, “Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK Pathways for Cancer Therapy,” Molecular Biomedicine 3, no. 1 (2022): 47.

[391]

M. Beltrà, N. Pöllänen, C. Fornelli, et al., “NAD(+) Repletion With Niacin Counteracts Cancer Cachexia,” Nature Communications 14, no. 1 (2023): 1849.

[392]

X. Guo, S. Tan, T. Wang, et al., “NAD + Salvage Governs Mitochondrial Metabolism, Invigorating Natural Killer Cell Antitumor Immunity,” Hepatology 78, no. 2 (2023): 468-485.

[393]

S. Amjad, S. Nisar, A. A. Bhat, et al., “Role of NAD(+) in Regulating Cellular and Metabolic Signaling Pathways,” Molecular Metabolism 49 (2021): 101195.

[394]

H. A. K. Lapatto, M. Kuusela, A. Heikkinen, et al., “Nicotinamide Riboside Improves Muscle Mitochondrial Biogenesis, Satellite Cell Differentiation, and Gut Microbiota in a Twin Study,” Science Advances 9, no. 2 (2023): eadd5163.

[395]

N. Vannini, V. Campos, M. Girotra, et al., “The NAD-Booster Nicotinamide Riboside Potently Stimulates Hematopoiesis Through Increased Mitochondrial Clearance,” Cell Stem Cell 24, no. 3 (2019): 405-418.e7.

[396]

A. K. Murugan, “mTOR: Role in Cancer, Metastasis and Drug Resistance,” Seminars in Cancer Biology 59 (2019): 92-111.

[397]

V. Panwar, A. Singh, M. Bhatt, et al., “Multifaceted Role of mTOR (Mammalian Target of Rapamycin) Signaling Pathway in Human Health and Disease,” Signal Transduction and Targeted Therapy 8, no. 1 (2023): 375.

[398]

M. Yi, Y. Wu, M. Niu, et al., “Anti-TGF-β/PD-L1 Bispecific Antibody Promotes T Cell Infiltration and Exhibits Enhanced Antitumor Activity in Triple-Negative Breast Cancer,” Journal for Immunotherapy of Cancer 10, no. 12 (2022): e005543.

[399]

A. Nusser, A. Sagar, J. B. Swann, et al., “Developmental Dynamics of Two Bipotent Thymic Epithelial Progenitor Types,” Nature 606, no. 7912 (2022): 165-171.

[400]

Z. Liang, X. Dong, Z. Zhang, Q. Zhang, and Y. Zhao, “Age-Related Thymic Involution: Mechanisms and Functional Impact,” Aging Cell 21, no. 8 (2022): e13671.

[401]

M. K. Lagou and G. S. Karagiannis, “Obesity-Induced Thymic Involution and Cancer Risk,” Seminars in Cancer Biology 93 (2023): 3-19.

[402]

A. Guller and A. Igrunkova, “Engineered Microenvironments for 3D Cell Culture and Regenerative Medicine: Challenges, Advances, and Trends,” Bioengineering 10, no. 1 (2022): 17.

[403]

S. A. Yi, Y. Zhang, C. Rathnam, T. Pongkulapa, and K. B. Lee, “Bioengineering Approaches for the Advanced Organoid Research,” Advanced Materials 33, no. 45 (2021): e2007949.

[404]

S. Holtze, E. Gorshkova, S. Braude, et al., “Alternative Animal Models of Aging Research,” Frontiers in Molecular Biosciences 8 (2021): 660959.

[405]

A. Bartolomucci, A. E. Kane, L. Gaydosh, et al., “Animal Models Relevant for Geroscience: Current Trends and Future Perspectives in Biomarkers, and Measures of Biological Aging,” Journals of Gerontology, Series A: Biological Sciences and Medical Sciences 79, no. 9 (2024): glae135.

[406]

P. L. Kuo, J. A. Schrack, M. E. Levine, et al., “Longitudinal Phenotypic Aging Metrics in the Baltimore Longitudinal Study of Aging,” Nature Aging 2, no. 7 (2022): 635-643.

[407]

C. E. Lyons, M. Razzoli, and A. Bartolomucci, “The Impact of Life Stress on Hallmarks of Aging and Accelerated Senescence: Connections in Sickness and in Health,” Neuroscience & Biobehavioral Reviews 153 (2023): 105359.

[408]

N. Snyder-Mackler, J. R. Burger, L. Gaydosh, et al., “Social Determinants of Health and Survival in Humans and Other Animals,” Science 368, no. 6493 (2020): eaax9553.

[409]

A. M. Bronikowski, J. Altmann, D. K. Brockman, et al., “Aging in the Natural World: Comparative Data Reveal Similar Mortality Patterns Across Primates,” Science 331, no. 6022 (2011): 1325-1328.

[410]

J. Oh, A. Magnuson, C. Benoist, M. J. Pittet, and R. Weissleder, “Age-Related Tumor Growth in Mice Is Related to Integrin α 4 in CD8+ T Cells,” JCI Insight 3, no. 21 (2018): e122961.

[411]

Z. Gong, Q. Jia, J. Chen, et al., “Impaired Cytolytic Activity and Loss of Clonal Neoantigens in Elderly Patients With Lung Adenocarcinoma,” Journal of Thoracic Oncology 14, no. 5 (2019): 857-866.

[412]

X. Zhuang, Q. Wang, S. Joost, et al., “Ageing Limits Stemness and Tumorigenesis by Reprogramming Iron Homeostasis,” Nature 637, no. 8044 (2025): 184-194.

[413]

M. E. Fane, Y. Chhabra, G. M. Alicea, et al., “Stromal Changes in the Aged Lung Induce an Emergence From Melanoma Dormancy,” Nature 606, no. 7913 (2022): 396-405.

[414]

K. M. Warde, L. J. Smith, L. Liu, et al., “Senescence-Induced Immune Remodeling Facilitates Metastatic Adrenal Cancer in a Sex-Dimorphic Manner,” Nature Aging 3, no. 7 (2023): 846-865.

[415]

M. D. Park, J. Le Berichel, P. Hamon, et al., “Hematopoietic Aging Promotes Cancer by Fueling IL-1⍺-Driven Emergency Myelopoiesis,” Science 386, no. 6720 (2024): eadn0327.

[416]

F. K. Turrell, R. Orha, N. J. Guppy, et al., “Age-Associated Microenvironmental Changes Highlight the Role of PDGF-C in ER(+) Breast Cancer Metastatic Relapse,” Nature Cancer 4, no. 4 (2023): 468-484.

[417]

Y. H. Kim, Y. W. Choi, J. Lee, E. Y. Soh, J. H. Kim, and T. J. Park, “Senescent Tumor Cells Lead the Collective Invasion in Thyroid Cancer,” Nature Communications 8, no. 1 (2017): 15208.

[418]

L. I. Prieto, I. Sturmlechner, S. I. Graves, et al., “Senescent Alveolar Macrophages Promote Early-Stage Lung Tumorigenesis,” Cancer Cell 41, no. 7 (2023): 1261-1275.e6.

[419]

M. Braig, S. Lee, C. Loddenkemper, et al., “Oncogene-Induced Senescence as an Initial Barrier in Lymphoma Development,” Nature 436, no. 7051 (2005): 660-665.

[420]

D. Di Mitri, A. Toso, J. J. Chen, et al., “Tumour-Infiltrating Gr-1+ Myeloid Cells Antagonize Senescence in Cancer,” Nature 515, no. 7525 (2014): 134-137.

[421]

M. Lesina, S. M. Wörmann, J. Morton, et al., “RelA Regulates CXCL1/CXCR2-Dependent Oncogene-Induced Senescence in Murine Kras-Driven Pancreatic Carcinogenesis,” Journal of Clinical Investigation 126, no. 8 (2016): 2919-2932.

[422]

A. Pribluda, E. Elyada, Z. Wiener, et al., “A Senescence-Inflammatory Switch From Cancer-Inhibitory to Cancer-Promoting Mechanism,” Cancer Cell 24, no. 2 (2013): 242-256.

[423]

H. A. Chen, Y. J. Ho, R. Mezzadra, et al., “Senescence Rewires Microenvironment Sensing to Facilitate Antitumor Immunity,” Cancer Discovery 13, no. 2 (2023): 432-453.

[424]

H. Braumüller, T. Wieder, E. Brenner, et al., “T-Helper-1-Cell Cytokines Drive Cancer Into Senescence,” Nature 494, no. 7437 (2013): 361-365.

[425]

S. Yoshimoto, T. M. Loo, K. Atarashi, et al., “Obesity-Induced Gut Microbial Metabolite Promotes Liver Cancer Through Senescence Secretome,” Nature 499, no. 7456 (2013): 97-101.

[426]

M. Kansara, H. S. Leong, D. M. Lin, et al., “Immune Response to RB1-Regulated Senescence Limits Radiation-Induced Osteosarcoma Formation,” Journal of Clinical Investigation 123, no. 12 (2013): 5351-5360.

[427]

D. McHugh, I. Durán, and J. Gil, “Senescence as a Therapeutic Target in Cancer and Age-Related Diseases,” Nature Reviews Drug Discovery 24, no. 1 (2025): 57-71.

[428]

B. Jiang, W. Zhang, X. Zhang, and Y. Sun, “Targeting Senescent Cells to Reshape the Tumor Microenvironment and Improve Anticancer Efficacy,” Seminars in Cancer Biology 101 (2024): 58-73.

[429]

C. A. Schmitt, B. Wang, and M. Demaria, “Senescence and Cancer - Role and Therapeutic Opportunities,” Nature Reviews Clinical Oncology 19, no. 10 (2022): 619-636.

[430]

S. C. Buisman and G. de Haan, “Epigenetic Changes as a Target in Aging Haematopoietic Stem Cells and Age-Related Malignancies,” Cells 8, no. 8 (2019): 868.

[431]

C. Hieber, S. Grabbe, and M. Bros, “Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising?,” Biomolecules 13, no. 7 (2023): 1085.

[432]

D. Kasakovski, L. Xu, and Y. Li, “T Cell Senescence and CAR-T Cell Exhaustion in Hematological Malignancies,” Journal of Hematology & Oncology 11, no. 1 (2018): 91.

[433]

J. H. Noll, B. L. Levine, C. H. June, and J. A. Fraietta, “Beyond Youth: Understanding CAR T Cell Fitness in the Context of Immunological Aging,” Seminars in Immunology 70 (2023): 101840.

[434]

H. Wang, T. Fu, Y. Du, et al., “Scientific Discovery in the Age of Artificial Intelligence,” Nature 620, no. 7972 (2023): 47-60.

[435]

D. Shirini, L. H. Schwartz, and L. Dercle, “Artificial Intelligence for Aging Research in Cancer Drug Development,” Aging 15, no. 22 (2023): 12699-12701.

[436]

T. Tanaka, N. Basisty, G. Fantoni, et al., “Plasma Proteomic Biomarker Signature of Age Predicts Health and Life Span,” eLife 9 (2020): e61073.

[437]

H. S. H. Oh, J. Rutledge, D. Nachun, et al., “Organ Aging Signatures in the Plasma Proteome Track Health and Disease,” Nature 624, no. 7990 (2023): 164-172.

[438]

S. Ma, S. Sun, J. Li, et al., “Single-Cell Transcriptomic Atlas of Primate Cardiopulmonary Aging,” Cell Research 31, no. 4 (2021): 415-432.

[439]

F. W. Pun, G. H. D. Leung, H. W. Leung, et al., “A Comprehensive AI-Driven Analysis of Large-Scale Omic Datasets Reveals Novel Dual-Purpose Targets for the Treatment of Cancer and Aging,” Aging Cell 22, no. 12 (2023): e14017.

[440]

W. M. Chu, E. Kristiani, Y. C. Wang, et al., “A Model for Predicting Fall Risks of Hospitalized Elderly in Taiwan-A Machine Learning Approach Based on Both Electronic Health Records and Comprehensive Geriatric Assessment,” Frontiers in Medicine 9 (2022): 937216.

[441]

J. Wang, Y. Liang, S. Cao, P. Cai, and Y. Fan, “Application of Artificial Intelligence in Geriatric Care: Bibliometric Analysis,” Journal of Medical Internet Research 25 (2023): e46014.

[442]

L. Wang, L. Lankhorst, and R. Bernards, “Exploiting Senescence for the Treatment of Cancer,” Nature Reviews Cancer 22, no. 6 (2022): 340-355.

[443]

L. Bousset and J. Gil, “Targeting Senescence as an Anticancer Therapy,” Molecular Oncology 16, no. 21 (2022): 3855-3880.

[444]

R. L. Siegel, A. N. Giaquinto, and A. Jemal, “Cancer Statistics, 2024,” CA: A Cancer Journal for Clinicians 74, no. 1 (2024): 12-49.

[445]

M. S. Sedrak, R. A. Freedman, H. J. Cohen, et al., “Older Adult Participation in Cancer Clinical Trials: A Systematic Review of Barriers and Interventions,” CA: A Cancer Journal for Clinicians 71, no. 1 (2021): 78-92.

[446]

V. Goede, “Frailty and Cancer: Current Perspectives on Assessment and Monitoring,” Clinical Interventions in Aging 18, no. null (2023): 505-521.

[447]

S. G. Mohile, M. R. Mohamed, H. Xu, et al., “Evaluation of Geriatric Assessment and Management on the Toxic Effects of Cancer Treatment (GAP70+): A Cluster-Randomised Study,” Lancet 398, no. 10314 (2021): 1894-1904.

[448]

M. Hamaker, C. Lund, M. Te Molder, et al., “Geriatric Assessment in the Management of Older Patients With Cancer—A Systematic Review (Update),” Journal of Geriatric Oncology 13, no. 6 (2022): 761-777.

[449]

G. J. Min, B. S. Cho, S. S. Park, et al., “Geriatric Assessment Predicts Nonfatal Toxicities and Survival for Intensively Treated Older Adults With AML,” Blood 139, no. 11 (2022): 1646-1658.

[450]

Y. W. Ho, W. R. Tang, S. Y. Chen, et al., “Association of Frailty and Chemotherapy-Related Adverse Outcomes in Geriatric Patients With Cancer: A Pilot Observational Study in Taiwan,” Aging 13, no. 21 (2021): 24192-24204.

[451]

M. V. Garcia, M. R. Agar, W. K. Soo, T. To, and J. L. Phillips, “Screening Tools for Identifying Older Adults With Cancer Who May Benefit From a Geriatric Assessment: A Systematic Review,” JAMA Oncology 7, no. 4 (2021): 616-627.

[452]

D. Li, C.-L. Sun, H. Kim, et al., “Geriatric Assessment-Driven Intervention (GAIN) on Chemotherapy-Related Toxic Effects in Older Adults With Cancer: A Randomized Clinical Trial,” JAMA Oncology 7, no. 11 (2021): e214158.

[453]

A. Dohm, R. Diaz, and R. H. Nanda, “The Role of Radiation Therapy in the Older Patient,” Current Oncology Reports 23, no. 1 (2021): 11.

[454]

J. Y. Jang, J. Jung, D. Lee, et al., “Stereotactic Body Radiation Therapy for Elderly Patients With Small Hepatocellular Carcinoma: A Retrospective Observational Study,” Journal of Liver Cancer 22, no. 2 (2022): 136-145.

[455]

Y. Zou, S. Zhu, Y. Kong, et al., “Precision Matters: The Value of PET/CT and PET/MRI in the Clinical Management of Cervical Cancer,” Strahlentherapie und Onkologie 201, no. 5 (2025): 507-518.

[456]

C. H. E. Lau and O. Robinson, “DNA Methylation Age as a Biomarker for Cancer,” International Journal of Cancer 148, no. 11 (2021): 2652-2663.

[457]

J. K. L. Mak, C. E. McMurran, R. Kuja-Halkola, et al., “Clinical Biomarker-Based Biological Aging and Risk of Cancer in the UK Biobank,” British Journal of Cancer 129, no. 1 (2023): 94-103.

[458]

A. Al-Danakh, M. Safi, Y. Jian, et al., “Aging-Related Biomarker Discovery in the Era of Immune Checkpoint Inhibitors for Cancer Patients,” Frontiers in Immunology 15 (2024): 1348189.

[459]

D. Li, F. Ju, H. Wang, et al., “Combination of the Biomarkers for Aging and Cancer? - Challenges and Current Status,” Translational Oncology 38 (2023): 101783.

[460]

M. Foretz, B. Guigas, and B. Viollet, “Metformin: Update on Mechanisms of Action and Repurposing Potential,” Nature Reviews Endocrinology 19, no. 8 (2023): 460-476.

[461]

W. Fu and G. Wu, “Targeting mTOR for Anti-Aging and Anti-Cancer Therapy,” Molecules 28, no. 7 (2023): 3157.

[462]

W. Sadee, D. Wang, K. Hartmann, and A. E. Toland, “Pharmacogenomics: Driving Personalized Medicine,” Pharmacological Reviews 75, no. 4 (2023): 789-814.

[463]

D. F. Hayes and J. M. Rae, “Pharmacogenomics and Endocrine Therapy in Breast Cancer,” Journal of Clinical Oncology 38, no. 6 (2020): 525-528.

[464]

A. Bujarrabal-Dueso, G. A. Garinis, P. D. Robbins, J. Vijg, and B. Schumacher, “Targeting DNA Damage in Ageing: Towards Supercharging DNA Repair,” Nature Reviews Drug Discovery (2025). https://doi.org/10.1038/s41573-025-01212-6.

[465]

G. Kroemer, A. B. Maier, A. M. Cuervo, et al., “From Geroscience to Precision Geromedicine: Understanding and Managing Aging,” Cell 188, no. 8 (2025): 2043-2062.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm - Oncology published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).

AI Summary AI Mindmap
PDF

48

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/