The Epstein-Barr Virus Envelope Glycoprotein BALF4 Promotes the Ubiquitination and Degradation of RNA Acetyltransferase NAT10 Suppressing Gastric Cancer Progression

Tianle Qiu , Chenbin Chen , Xiangwei Sun , Yuanbo Hu , Bujian Pan , Jun Xu , Jian Wen , Xian Shen , Xiangyang Xue , Xiaodong Chen

MEDCOMM - Oncology ›› 2025, Vol. 4 ›› Issue (3) : e70040

PDF
MEDCOMM - Oncology ›› 2025, Vol. 4 ›› Issue (3) : e70040 DOI: 10.1002/mog2.70040
ORIGINAL ARTICLE

The Epstein-Barr Virus Envelope Glycoprotein BALF4 Promotes the Ubiquitination and Degradation of RNA Acetyltransferase NAT10 Suppressing Gastric Cancer Progression

Author information +
History +
PDF

Abstract

Epstein-Barr virus-associated gastric cancer (EBVaGC) is a unique subtype of gastric cancer (GC) with distinct molecular characteristics that generally has a better prognosis. BamHI-A leftward frame 4 (BALF4), an envelope glycoprotein encoded by the Epstein-Barr virus (EBV), plays an important role in EBV infection. However, its biological function and potential molecular mechanisms in EBVaGC remain unclear. This study aimed to investigate the impact of the highly expressed viral gene BALF4 on the progression of EBVaGC. Here, we detected the expression of BALF4 in GC tissue chips and validated that the presence of BALF4 might be associated with a favorable prognosis in EBVaGC. The results showed that BALF4 inhibited the proliferation, migration, and invasion of GC cells in vitro and in vivo. In addition, we discovered that BALF4 interacts with N-acetyltransferase 10 (NAT10). High expression of NAT10 in GC tissues promotes the malignant phenotype of GC cells. We discovered that BALF4 could inhibit the malignant progression of GC by promoting the ubiquitination and degradation of NAT10. In summary, our study revealed a possible mechanism explaining the favorable prognosis of the EBVaGC subtype, which contributes to a better understanding of this special type of GC.

Keywords

Epstein-Barr virus / Epstein-Barr virus-associated gastric cancer / gastric cancer / ubiquitination

Cite this article

Download citation ▾
Tianle Qiu, Chenbin Chen, Xiangwei Sun, Yuanbo Hu, Bujian Pan, Jun Xu, Jian Wen, Xian Shen, Xiangyang Xue, Xiaodong Chen. The Epstein-Barr Virus Envelope Glycoprotein BALF4 Promotes the Ubiquitination and Degradation of RNA Acetyltransferase NAT10 Suppressing Gastric Cancer Progression. MEDCOMM - Oncology, 2025, 4(3): e70040 DOI:10.1002/mog2.70040

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. Bray, M. Laversanne, H. Sung, et al., “Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA: A Cancer Journal for Clinicians 74, no. 3 (2024): 229-263.

[2]

R. E. Sexton, M. N. Al Hallak, M. Diab, and A. S. Azmi, “Gastric Cancer: A Comprehensive Review of Current and Future Treatment Strategies,” Cancer and Metastasis Reviews 39, no. 4 (2020): 1179-1203.

[3]

S. S. Joshi and B. D. Badgwell, “Current Treatment and Recent Progress in Gastric Cancer,” CA: A Cancer Journal for Clinicians 71, no. 3 (2021): 264-279.

[4]

N. Uemura, S. Okamoto, S. Yamamoto, et al., “Helicobacter Pylori Infection and the Development of Gastric Cancer,” New England Journal of Medicine 345, no. 11 (2001): 784-789.

[5]

F. Estaji, S. Zibaee, M. Torabi, and S. Moghim, “Epstein-Barr Virus and Gastric Carcinoma Pathogenesis With Emphasis on Underlying Epigenetic Mechanisms,” Discover Oncology 15, no. 1 (2024): 719.

[6]

The Cancer Genome Atlas Research Network, “Comprehensive Molecular Characterization of Gastric Adenocarcinoma,” Nature 513, no. 7517 (2014): 202-209.

[7]

L. S. Young, L. F. Yap, and P. G. Murray, “Epstein-Barr Virus: More Than 50 Years Old and Still Providing Surprises,” Nature Reviews Cancer 16, no. 12 (2016): 789-802.

[8]

J. Yang, Z. Liu, B. Zeng, G. Hu, and R. Gan, “Epstein-Barr Virus-Associated Gastric Cancer: A Distinct Subtype,” Cancer Letters 495 (2020): 191-199.

[9]

M. C. Camargo, W. H. Kim, A. M. Chiaravalli, et al., “Improved Survival of Gastric Cancer With Tumour Epstein-Barr Virus Positivity: An International Pooled Analysis,” Gut 63, no. 2 (2014): 236-243.

[10]

B. Neuhierl, R. Feederle, W. Hammerschmidt, and H. J. Delecluse, “Glycoprotein gp110 of Epstein-Barr Virus Determines Viral Tropism and Efficiency of Infection,” Proceedings of the National Academy of Sciences 99, no. 23 (2002): 15036-15041.

[11]

S. Corallo, A. Lasagna, B. Filippi, et al., “Unlocking the Potential: Epstein-Barr Virus (EBV) in Gastric Cancer and Future Treatment Prospects, a Literature Review,” Pathogens 13, no. 9 (2024): 728.

[12]

Y. Wong, M. T. Meehan, S. R. Burrows, D. L. Doolan, and J. J. Miles, “Estimating the Global Burden of Epstein-Barr Virus-Related Cancers,” Journal of Cancer Research and Clinical Oncology 148, no. 1 (2022): 31-46.

[13]

M. Hirabayashi, D. Georges, G. M. Clifford, and C. de Martel, “Estimating the Global Burden of Epstein-Barr Virus-Associated Gastric Cancer: A Systematic Review and Meta-Analysis,” Clinical Gastroenterology and Hepatology 21, no. 4 (2023): 922-930.e21.

[14]

J. Lee, P. van Hummelen, C. Go, et al., “High-Throughput Mutation Profiling Identifies Frequent Somatic Mutations in Advanced Gastric Adenocarcinoma,” PLoS One 7, no. 6 (2012): e38892.

[15]

Y. Sukawa, “Alterations in the Human Epidermal Growth Factor Receptor 2-phosphatidylinositol 3-kinase-v-Akt Pathway in Gastric Cancer,” World Journal of Gastroenterology 18, no. 45 (2012): 6577-6586.

[16]

Á. Lima, H. Sousa, R. Medeiros, A. Nobre, and M. Machado, “PD-L1 Expression in EBV Associated Gastric Cancer: A Systematic Review and Meta-Analysis,” Discover Oncology 13, no. 1 (2022): 19.

[17]

K. Matsusaka, S. Funata, M. Fukuyo, et al., “Epstein-Barr Virus Infection Induces Genome-Wide De Novo DNA Methylation in Non-Neoplastic Gastric Epithelial Cells,” Journal of Pathology 242, no. 4 (2017): 391-399.

[18]

A. Okabe, K. K. Huang, K. Matsusaka, et al., “Cross-Species Chromatin Interactions Drive Transcriptional Rewiring in Epstein-Barr Virus-Positive Gastric Adenocarcinoma,” Nature Genetics 52, no. 9 (2020): 919-930.

[19]

B. H. Sohn, J. E. Hwang, H. J. Jang, et al., “Clinical Significance of Four Molecular Subtypes of Gastric Cancer Identified by the Cancer Genome Atlas Project,” Clinical Cancer Research 23, no. 15 (2017): 4441-4449.

[20]

M. S. Chang, D. H. Kim, J. K. Roh, et al., “Epstein-Barr Virus-Encoded BARF1 Promotes Proliferation of Gastric Carcinoma Cells Through Regulation of NF-κB,” Journal of Virology 87, no. 19 (2013): 10515-10523.

[21]

T. B. M. Mohidin and C. C. Ng, “BARF1 Gene Silencing Triggers Caspase-Dependent Mitochondrial Apoptosis in Epstein-Barr Virus-Positive Malignant Cells,” Journal of Biosciences 40, no. 1 (2015): 41-51.

[22]

V. De Re, L. Caggiari, M. De Zorzi, et al., “Epstein-Barr Virus BART microRNAs in EBV- Associated Hodgkin Lymphoma and Gastric Cancer,” Infectious Agents and Cancer 15 (2020): 42.

[23]

H. Kim, H. Choi, and S. K. Lee, “Epstein-Barr Virus MicroRNA miR-BART20-5p Suppresses Lytic Induction by Inhibiting BAD-Mediated Caspase-3-Dependent Apoptosis,” Journal of Virology 90, no. 3 (2016): 1359-1368.

[24]

I. Borozan, M. Zapatka, L. Frappier, and V. Ferretti, “Analysis of Epstein-Barr Virus Genomes and Expression Profiles in Gastric Adenocarcinoma,” Journal of Virology 92, no. 2 (2018): e01239-17.

[25]

M. Backovic, R. Longnecker, and T. S. Jardetzky, “Structure of a Trimeric Variant of the Epstein-Barr Virus Glycoprotein B,” Proceedings of the National Academy of Sciences 106, no. 8 (2009): 2880-2885.

[26]

R. E. Herrold, A. Marchini, S. Fruehling, and R. Longnecker, “Glycoprotein 110, the Epstein-Barr Virus Homolog of Herpes Simplex Virus Glycoprotein B, Is Essential for Epstein-Barr Virus Replication In Vivo,” Journal of Virology 70, no. 3 (1996): 2049-2054.

[27]

M. Gong, T. Ooka, T. Matsuo, and E. Kieff, “Epstein-Barr Virus Glycoprotein Homologous to Herpes Simplex Virus gB,” Journal of Virology 61, no. 2 (1987): 499-508.

[28]

C. Liu, S. Li, M. Qiao, C. Zeng, X. Liu, and Y. Tang, “GB and gH/gL Fusion Machinery: A Promising Target for Vaccines to Prevent Epstein-Barr Virus Infection,” Archives of Virology 169, no. 8 (2024): 167.

[29]

B. Damania, S. C. Kenney, and N. Raab-Traub, “Epstein-Barr Virus: Biology and Clinical Disease,” Cell 185, no. 20 (2022): 3652-3670.

[30]

B. P. Hannah, T. M. Cairns, F. C. Bender, et al., “Herpes Simplex Virus Glycoprotein B Associates With Target Membranes via Its Fusion Loops,” Journal of Virology 83, no. 13 (2009): 6825-6836.

[31]

H. J. Zhang, J. Tian, X. K. Qi, et al., “Epstein-Barr Virus Activates F-Box Protein FBXO2 to Limit Viral Infectivity by Targeting Glycoprotein B for Degradation,” PLoS Pathogens 14, no. 7 (2018): e1007208.

[32]

T. Cai, Y. Lin, and W. Meng, “A Review of Research on the Mechanism of Tumor Regulation by N-Acetyltransferase 10,” Discovery Medicine 36, no. 186 (2024): 1334-1344.

[33]

Q. Shen, X. Zheng, M. A. McNutt, et al., “NAT10, a Nucleolar Protein, Localizes to the Midbody and Regulates Cytokinesis and Acetylation of Microtubules,” Experimental Cell Research 315, no. 10 (2009): 1653-1667.

[34]

X. Zhang, J. Liu, S. Yan, K. Huang, Y. Bai, and S. Zheng, “High Expression of N-Acetyltransferase 10: A Novel Independent Prognostic Marker of Worse Outcome in Patients With Hepatocellular Carcinoma,” International Journal of Clinical and Experimental Pathology 8, no. 11 (2015): 14765-14771.

[35]

Y. Zhang, Y. Jing, Y. Wang, et al., “NAT10 Promotes Gastric Cancer Metastasis via N4-acetylated COL5A1,” Signal Transduction and Targeted Therapy 6, no. 1 (2021): 173.

[36]

S. Liu, C. Lin, X. Lin, et al., “NAT10 Phase Separation Regulates YTHDF1 Splicing to Promote Gastric Cancer Progression,” Cancer Research 84, no. 19 (2024): 3207-3222.

[37]

Y. Guo, L. Pan, L. Wang, et al., “Epstein-Barr Virus Envelope Glycoprotein gp110 Inhibits IKKi-Mediated Activation of NF-κB and Promotes the Degradation of β-Catenin,” Microbiology Spectrum 11, no. 3 (2023): e0032623.

[38]

M. Cai, B. Xiao, Y. Wang, et al., “Epstein-Barr Virus Envelope Glycoprotein 110 Inhibits NF-κB Activation by Interacting With NF-κB Subunit p65,” Journal of Biological Chemistry 299, no. 5 (2023): 104613.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm - Oncology published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).

AI Summary AI Mindmap
PDF

53

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/