Cellular Senescence in Cancer: Mechanisms, Roles in Tumor Progression, and Therapeutic Implications

Jingrui Yan , Yu Zhang , Guohua Mao , Jun Yu , Tianxing Zhou , Jihui Hao

MEDCOMM - Oncology ›› 2025, Vol. 4 ›› Issue (3) : e70029

PDF
MEDCOMM - Oncology ›› 2025, Vol. 4 ›› Issue (3) : e70029 DOI: 10.1002/mog2.70029
REVIEW ARTICLE

Cellular Senescence in Cancer: Mechanisms, Roles in Tumor Progression, and Therapeutic Implications

Author information +
History +
PDF

Abstract

Cellular senescence, a state of irreversible cell cycle arrest accompanied by a senescence-associated secretory phenotype (SASP), plays dual roles in cancer biology. Initially recognized as a tumor-suppressive mechanism by halting the proliferation of damaged cells, senescence paradoxically fosters tumor progression through SASP-mediated immunosuppression and chronic inflammation. Thus, the role of senescent cells in tumors still needs to be further elucidated. Our review comprehensively examines the triggers and molecular pathways of senescence. We also summarized the characteristics and functions of senescent tumor and nontumor cells, delineating the heterogeneous tumor senescence microenvironment. Here, we highlight the functional reprogramming of senescent cells, including enhanced stemness, secretome and metabolome reprogramming, which can sustain tumorigenesis and therapeutic resistance. Furthermore, we discuss emerging therapeutic strategies, notably the “one-two punch” approach to overcome therapy resistance. By integrating recent advances in senescence-targeted therapies, our review underscores the necessity of context-specific strategies to harness senescence's tumor-suppressive effects while mitigating its protumorigenic consequences. These insights provide a roadmap for developing precision therapies and refining biomarker-driven approaches to improve cancer treatment outcomes.

Keywords

immune microenvironment / one-two punch therapy / senescence / tumor

Cite this article

Download citation ▾
Jingrui Yan, Yu Zhang, Guohua Mao, Jun Yu, Tianxing Zhou, Jihui Hao. Cellular Senescence in Cancer: Mechanisms, Roles in Tumor Progression, and Therapeutic Implications. MEDCOMM - Oncology, 2025, 4(3): e70029 DOI:10.1002/mog2.70029

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Xiao, D. Qin, X. Hou, et al., “Cellular Senescence: A Double-Edged Sword in Cancer Therapy,” Frontiers in Oncology 13 (2023): 1189015.

[2]

L. Roger, F. Tomas, and V. Gire, “Mechanisms and Regulation of Cellular Senescence,” International Journal of Molecular Sciences 22, no. 23 (2021): 13173.

[3]

B. Wang, J. Han, J. H. Elisseeff, and M. Demaria, “The Senescence-Associated Secretory Phenotype and Its Physiological and Pathological Implications,” Nature Reviews Molecular Cell Biology 25, no. 12 (2024): 958-978.

[4]

N. Ohtani, “The Roles and Mechanisms of Senescence-Associated Secretory Phenotype (SASP): Can it Be Controlled by Senolysis?,” Inflammation and Regeneration 42, no. 1 (2022): 11.

[5]

J. Xiong, L. Dong, Q. Lv, et al., “Targeting Senescence-Associated Secretory Phenotypes to Remodel the Tumour Microenvironment and Modulate Tumour Outcomes,” Clinical and Translational Medicine 14, no. 9 (2024): e1772.

[6]

C. R. Chambers, S. Ritchie, B. A. Pereira, and P. Timpson, “Overcoming the Senescence-Associated Secretory Phenotype (SASP): A Complex Mechanism of Resistance in the Treatment of Cancer,” Molecular Oncology 15, no. 12 (2021): 3242-3255.

[7]

F. Zhang, J. Guo, S. Yu, et al., “Cellular Senescence and Metabolic Reprogramming: Unraveling the Intricate Crosstalk in the Immunosuppressive Tumor Microenvironment,” Cancer Communications 44, no. 9 (2024): 929-966.

[8]

Y. Liu, I. Lomeli, and S. J. Kron, “Therapy-Induced Cellular Senescence: Potentiating Tumor Elimination or Driving Cancer Resistance and Recurrence?,” Cells 13, no. 15 (2024): 1281.

[9]

X. Liu, J. Ding, and L. Meng, “Oncogene-Induced Senescence: A Double Edged Sword in Cancer,” Acta Pharmacologica Sinica 39, no. 10 (2018): 1553-1558.

[10]

C. A. Schmitt, B. Wang, and M. Demaria, “Senescence and Cancer - Role and Therapeutic Opportunities,” Nature Reviews Clinical Oncology 19, no. 10 (2022): 619-636.

[11]

R. Yosef, N. Pilpel, R. Tokarsky-Amiel, et al., “Directed Elimination of Senescent Cells by Inhibition of BCL-W and BCL-Xl,” Nature Communications 7 (2016): 11190.

[12]

Y. Zhu, T. Tchkonia, T. Pirtskhalava, et al., “The Achilles' Heel of Senescent Cells: From Transcriptome to Senolytic Drugs,” Aging Cell 14, no. 4 (2015): 644-658.

[13]

Z. Liao, H. L. Yeo, S. W. Wong, and Y. Zhao, “Cellular Senescence: Mechanisms and Therapeutic Potential,” Biomedicines 9, no. 12 (2021): 1769.

[14]

C. H. Wu, J. van Riggelen, A. Yetil, A. C. Fan, P. Bachireddy, and D. W. Felsher, “Cellular Senescence Is An Important Mechanism of Tumor Regression Upon C-Myc Inactivation,” Proceedings of the National Academy of Sciences of the United States of America 104, no. 32 (2007): 13028-13033.

[15]

J. P. Coppé, C. K. Patil, F. Rodier, et al., “Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor,” PLoS Biology 6, no. 12 (2008): e301.

[16]

C. Michaloglou, L. C. W. Vredeveld, M. S. Soengas, et al., “BRAFE600-associated Senescence-Like Cell Cycle Arrest of Human Naevi,” Nature 436, no. 7051 (2005): 720-724.

[17]

M. Collado and M. Serrano, “Senescence in Tumours: Evidence From Mice and Humans,” Nature Reviews Cancer 10, no. 1 (2010): 51-57.

[18]

T. W. Kang, T. Yevsa, N. Woller, et al., “Senescence Surveillance of Pre-Malignant Hepatocytes Limits Liver Cancer Development,” Nature 479, no. 7374 (2011): 547-551.

[19]

A. Palazzo, H. Hernandez-Vargas, D. Goehrig, et al., “Transformed Cells After Senescence Give Rise to More Severe Tumor Phenotypes Than Transformed Non-Senescent Cells,” Cancer Letters 546 (2022): 215850.

[20]

M. Milanovic, D. N. Y. Fan, D. Belenki, et al., “Senescence-Associated Reprogramming Promotes Cancer Stemness,” Nature 553, no. 7686 (2018): 96-100.

[21]

J. H. Jang, D. H. Kim, and Y. J. Surh, “Dynamic Roles of Inflammasomes in Inflammatory Tumor Microenvironment,” NPJ Precision Oncology 5, no. 1 (2021): 18.

[22]

J. O. Mori, I. Elhussin, W. N. Brennen, et al., “Prognostic and Therapeutic Potential of Senescent Stromal Fibroblasts in Prostate Cancer,” Nature Reviews Urology 21, no. 5 (2024): 258-273.

[23]

M. Higashiguchi, H. Murakami, H. Hirofumi, et al., “The Impact of Cellular Senescence and Senescence-Associated Secretory Phenotype in Cancer-Associated Fibroblasts on the Malignancy of Pancreatic Cancer,” Oncology Reports 49, no. 5 (2023): 98.

[24]

S. Matsuda, A. Revandkar, T. D. Dubash, et al., “TGF-β in the Microenvironment Induces a Physiologically Occurring Immune-Suppressive Senescent State,” Cell Reports 42, no. 3 (2023): 112129.

[25]

A. A. Widjaja, W. W. Lim, S. Viswanathan, et al., “Inhibition of IL-11 Signalling Extends Mammalian Healthspan and Lifespan,” Nature 632, no. 8023 (2024): 157-165.

[26]

A. Marechal and L. Zou, “DNA Damage Sensing by the ATM and ATR Kinases,” Cold Spring Harbor Perspectives in Biology 5, no. 9 (2013): a012716.

[27]

N. D. Lakin and S. P. Jackson, “Regulation of p53 in Response to DNA Damage,” Oncogene 18, no. 53 (1999): 7644-7655.

[28]

J. L. Nitiss, “Targeting DNA Topoisomerase II in Cancer Chemotherapy,” Nature Reviews Cancer 9, no. 5 (2009): 338-350.

[29]

Y. Pommier, “Topoisomerase I Inhibitors: Camptothecins and Beyond,” Nature Reviews Cancer 6, no. 10 (2006): 789-802.

[30]

R. M. Kortlever, P. J. Higgins, and R. Bernards, “Plasminogen Activator inhibitor-1 Is a Critical Downstream Target of p53 in the Induction of Replicative Senescence,” Nature Cell Biology 8, no. 8 (2006): 877-884.

[31]

E. A. Perez, “Microtubule Inhibitors: Differentiating Tubulin-Inhibiting Agents Based on Mechanisms of Action, Clinical Activity, and Resistance,” Molecular Cancer Therapeutics 8, no. 8 (2009): 2086-2095.

[32]

L. E. Klein, B. S. Freeze, A. B. Smith, III, and S. B. Horwitz, “The Microtubule Stabilizing Agent Discodermolide Is a Potent Inducer of Accelerated Cell Senescence,” Cell Cycle 4, no. 3 (2005): 501-507.

[33]

S. Ceccarelli, G. Gerini, F. Megiorni, et al., “Inhibiting DNA Methylation as a Strategy to Enhance Adipose-Derived Stem Cells Differentiation: Focus on the Role of AKT/mTOR and Wnt/β-catenin Pathways on Adipogenesis,” Frontiers in Cell and Developmental Biology 10 (2022): 926180.

[34]

C. Warnon, K. Bouhjar, N. Ninane, et al., “HDAC2 and 7 Down-Regulation Induces Senescence in Dermal Fibroblasts,” Aging 13, no. 14 (2021): 17978-18005.

[35]

M. S. J. McDermott, N. Conlon, B. C. Browne, et al., “HER2-Targeted Tyrosine Kinase Inhibitors Cause Therapy-Induced-Senescence in Breast Cancer Cells,” Cancers 11, no. 2 (2019): 197.

[36]

I. B. Roninson, “Tumor Cell Senescence in Cancer Treatment,” Cancer Research 63, no. 11 (2003): 2705-2715.

[37]

M. Lee and J. S. Lee, “Exploiting Tumor Cell Senescence in Anticancer Therapy,” BMB Reports 47, no. 2 (2014): 51-59.

[38]

N. V. Petrova, A. K. Velichko, S. V. Razin, and O. L. Kantidze, “Small Molecule Compounds That Induce Cellular Senescence,” Aging Cell 15, no. 6 (2016): 999-1017.

[39]

A. W. Lin, M. Barradas, J. C. Stone, L. van Aelst, M. Serrano, and S. W. Lowe, “Premature Senescence Involving p53 and p16 Is Activated in Response to Constitutive MEK/MAPK Mitogenic Signaling,” Genes & Development 12, no. 19 (1998): 3008-3019.

[40]

J. Zhu, D. Woods, M. McMahon, and J. M. Bishop, “Senescence of Human Fibroblasts Induced by Oncogenic Raf,” Genes & Development 12, no. 19 (1998): 2997-3007.

[41]

M. V. Astle, K. M. Hannan, P. Y. Ng, et al., “AKT Induces Senescence in Human Cells via mTORC1 and p53 in the Absence of DNA Damage: Implications for Targeting mTOR During Malignancy,” Oncogene 31, no. 15 (2012): 1949-1962.

[42]

Y. Sun, W. Z. Liu, T. Liu, X. Feng, N. Yang, and H. F. Zhou, “Signaling Pathway of MAPK/ERK in Cell Proliferation, Differentiation, Migration, Senescence and Apoptosis,” Journal of Receptors and Signal Transduction 35, no. 6 (2015): 600-604.

[43]

H. L. Ou, R. Hoffmann, C. González-López, G. J. Doherty, J. E. Korkola, and D. Muñoz-Espín, “Cellular Senescence in Cancer: From Mechanisms to Detection,” Molecular Oncology 15, no. 10 (2021): 2634-2671.

[44]

X. Deschênes-Simard, M. F. Gaumont-Leclerc, V. Bourdeau, et al., “Tumor Suppressor Activity of the ERK/MAPK Pathway by Promoting Selective Protein Degradation,” Genes & Development 27, no. 8 (2013): 900-915.

[45]

A. Borodkina, A. Shatrova, P. Abushik, N. Nikolsky, and E. Burova, “Interaction Between ROS Dependent DNA Damage, Mitochondria and p38 MAPK Underlies Senescence of Human Adult Stem Cells,” Aging 6, no. 6 (2014): 481-495.

[46]

J. J. Lee, I. H. Park, W. J. Rhee, H. S. Kim, and J. S. Shin, “HMGB1 Modulates the Balance Between Senescence and Apoptosis in Response to Genotoxic Stress,” FASEB Journal 33, no. 10 (2019): 10942-10953.

[47]

M. Hoare, Y. Ito, T. W. Kang, et al., “NOTCH1 Mediates a Switch Between Two Distinct Secretomes During Senescence,” Nature Cell Biology 18, no. 9 (2016): 979-992.

[48]

Y. Chien, C. Scuoppo, X. Wang, et al., “Control of the Senescence-Associated Secretory Phenotype by NF-κB Promotes Senescence and Enhances Chemosensitivity,” Genes & Development 25, no. 20 (2011): 2125-2136.

[49]

T. D. Halazonetis, V. G. Gorgoulis, and J. Bartek, “An Oncogene-Induced DNA Damage Model for Cancer Development,” Science 319, no. 5868 (2008): 1352-1355.

[50]

Y. Shiloh, “ATM and Related Protein Kinases: Safeguarding Genome Integrity,” Nature Reviews Cancer 3, no. 3 (2003): 155-168.

[51]

N. H. Chehab, A. Malikzay, E. S. Stavridi, and T. D. Halazonetis, “Phosphorylation of Ser-20 Mediates Stabilization of Human p53 in Response to DNA Damage,” Proceedings of the National Academy of Sciences of the United States of America 96, no. 24 (1999): 13777-13782.

[52]

G. Sulli, R. Di Micco, and F. A. di Fagagna, “Crosstalk Between Chromatin State and DNA Damage Response in Cellular Senescence and Cancer,” Nature Reviews Cancer 12, no. 10 (2012): 709-720.

[53]

J. Zhang, C. R. Pickering, C. R. Holst, M. L. Gauthier, and T. D. Tlsty, “p16INK4a Modulates p53 in Primary Human Mammary Epithelial Cells,” Cancer Research 66, no. 21 (2006): 10325-10331.

[54]

R. Kumari and P. Jat, “Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype,” Frontiers in Cell and Developmental Biology 9 (2021): 645593.

[55]

E. Rovillain, L. Mansfield, C. J. Lord, A. Ashworth, and P. S. Jat, “An RNA Interference Screen for Identifying Downstream Effectors of the p53 and pRB Tumour Suppressor Pathways Involved in Senescence,” BMC Genomics 12 (2011): 355.

[56]

J. LaBaer, M. D. Garrett, L. F. Stevenson, et al., “New Functional Activities for the p21 Family of CDK Inhibitors,” Genes & Development 11, no. 7 (1997): 847-862.

[57]

V. A. J. Smits, R. Klompmaker, T. Vallenius, G. Rijksen, T. P. Mäkelä, and R. H. Medema, “p21 Inhibits Thr161 Phosphorylation of Cdc2 to Enforce the G2 DNA Damage Checkpoint,” Journal of Biological Chemistry 275, no. 39 (2000): 30638-30643.

[58]

N. Dyson, “The Regulation of E2F by pRB-Family Proteins,” Genes & Development 12, no. 15 (1998): 2245-2262.

[59]

M. Fischer and G. A. Müller, “Cell Cycle Transcription Control: DREAM/MuvB and RB-E2F Complexes,” Critical Reviews in Biochemistry and Molecular Biology 52, no. 6 (2017): 638-662.

[60]

L. Chibaya, K. D. DeMarco, C. F. Lusi, et al., “Nanoparticle Delivery of Innate Immune Agonists Combined With Senescence-Inducing Agents Promotes T Cell Control of Pancreatic Cancer,” Science Translational Medicine 16, no. 762 (2024): eadj9366.

[61]

Z. Wang, Y. Chen, H. Fang, et al., “Reprogramming Cellular Senescence in the Tumor Microenvironment Augments Cancer Immunotherapy Through Multifunctional Nanocrystals,” Science Advances 10, no. 44 (2024): eadp7022.

[62]

S. Magkouta, D. Veroutis, A. Papaspyropoulos, et al., “Generation of a Selective Senolytic Platform Using a Micelle-Encapsulated Sudan Black B Conjugated Analog,” Nature Aging 5, no. 1 (2025): 162-175.

[63]

S. Haston, E. Gonzalez-Gualda, S. Morsli, et al., “Clearance of Senescent Macrophages Ameliorates Tumorigenesis in KRAS-Driven Lung Cancer,” Cancer Cell 41, no. 7 (2023): 1242-1260.e6.

[64]

V. Gorgoulis, P. D. Adams, A. Alimonti, et al., “Cellular Senescence: Defining a Path Forward,” Cell 179, no. 4 (2019): 813-827.

[65]

D. Paramos-de-Carvalho, A. Jacinto, and L. Saúde, “The Right Time for Senescence,” eLife 10 (2021): e72449.

[66]

M. Braig, S. Lee, C. Loddenkemper, et al., “Oncogene-Induced Senescence as an Initial Barrier in Lymphoma Development,” Nature 436, no. 7051 (2005): 660-665.

[67]

Z. Chen, L. C. Trotman, D. Shaffer, et al., “Crucial Role of p53-dependent Cellular Senescence in Suppression of Pten-Deficient Tumorigenesis,” Nature 436, no. 7051 (2005): 725-730.

[68]

H. A. Chen, Y. J. Ho, R. Mezzadra, et al., “Senescence Rewires Microenvironment Sensing to Facilitate Antitumor Immunity,” Cancer Discovery 13, no. 2 (2023): 432-453.

[69]

E. Fitsiou, A. Soto-Gamez, and M. Demaria, “Biological Functions of Therapy-Induced Senescence in Cancer,” Seminars in Cancer Biology 81 (2022): 5-13.

[70]

W. Xue, L. Zender, C. Miething, et al., “Senescence and Tumour Clearance Is Triggered by p53 Restoration in Murine Liver Carcinomas,” Nature 445, no. 7128 (2007): 656-660.

[71]

G. Favaretto, M. N. Rossi, L. Cuollo, et al., “Neutrophil-Activating Secretome Characterizes Palbociclib-Induced Senescence of Breast Cancer Cells,” Cancer Immunology, Immunotherapy 73, no. 6 (2024): 113.

[72]

I. Marin, M. Serrano, and F. Pietrocola, “Cellular Senescence Enhances Adaptive Anticancer Immunosurveillance,” Oncoimmunology 12, no. 1 (2022): 2154115.

[73]

I. Marin, O. Boix, A. Garcia-Garijo, et al., “Cellular Senescence Is Immunogenic and Promotes Antitumor Immunity,” Cancer Discovery 13, no. 2 (2023): 410-431.

[74]

M. Ruscetti, J. P. Morris, R. Mezzadra, et al., “Senescence-Induced Vascular Remodeling Creates Therapeutic Vulnerabilities in Pancreas Cancer,” Cell 181, no. 2 (2020): 424-441.e21.

[75]

Y. Wang, H. Zhu, H. Xu, Y. Qiu, Y. Zhu, and X. Wang, “Senescence-Related Gene C-Myc Affects Bladder Cancer Cell Senescence by Interacting With HSP90B1 to Regulate Cisplatin Sensitivity,” Aging 15, no. 15 (2023): 7408-7423.

[76]

Z. Dong, Y. Luo, Z. Yuan, Y. Tian, T. Jin, and F. Xu, “Cellular Senescence and Sasp in Tumor Progression and Therapeutic Opportunities,” Molecular Cancer 23, no. 1 (2024): 181.

[77]

S. G. Rao and J. G. Jackson, “SASP: Tumor Suppressor or Promoter? Yes!,” Trends in Cancer 2, no. 11 (2016): 676-687.

[78]

S. S. Park, Y. W. Choi, J. H. Kim, H. S. Kim, and T. J. Park, “Senescent Tumor Cells: An Overlooked Adversary in the Battle Against Cancer,” Experimental & Molecular Medicine 53, no. 12 (2021): 1834-1841.

[79]

D. J. Baker, T. Wijshake, T. Tchkonia, et al., “Clearance of p16Ink4a-positive Senescent Cells Delays Ageing-Associated Disorders,” Nature 479, no. 7372 (2011): 232-236.

[80]

S. Benítez, A. Cordero, P. G. Santamaría, et al., “Rank Links Senescence to Stemness in the Mammary Epithelia, Delaying Tumor Onset but Increasing Tumor Aggressiveness,” Developmental Cell 56, no. 12 (2021): 1727-1741.e7.

[81]

H. G. Lee, J. H. Kim, W. Sun, S. G. Chi, W. Choi, and K. J. Lee, “Senescent Tumor Cells Building Three-Dimensional Tumor Clusters,” Scientific Reports 8, no. 1 (2018): 10503.

[82]

M. Reimann, S. Lee, and C. A. Schmitt, “Cellular Senescence: Neither Irreversible nor Reversible,” Journal of Experimental Medicine 221, no. 4 (2024): e20232136.

[83]

L. Han, Q. Long, S. Li, et al., “Senescent Stromal Cells Promote Cancer Resistance Through SIRT1 Loss-Potentiated Overproduction of Small Extracellular Vesicles,” Cancer Research 80, no. 16 (2020): 3383-3398.

[84]

T. Eggert, K. Wolter, J. Ji, et al., “Distinct Functions of Senescence-Associated Immune Responses in Liver Tumor Surveillance and Tumor Progression,” Cancer Cell 30, no. 4 (2016): 533-547.

[85]

D. Di Mitri, A. Toso, J. J. Chen, et al., “Tumour-Infiltrating Gr-1+ Myeloid Cells Antagonize Senescence in Cancer,” Nature 515, no. 7525 (2014): 134-137.

[86]

M. K. Ruhland, A. J. Loza, A. H. Capietto, et al., “Stromal Senescence Establishes an Immunosuppressive Microenvironment That Drives Tumorigenesis,” Nature Communications 7 (2016): 11762.

[87]

Y. W. Choi, Y. H. Kim, S. Y. Oh, et al., “Senescent Tumor Cells Build a Cytokine Shield in Colorectal Cancer,” Advanced Science 8, no. 4 (2021): 2002497.

[88]

M. Wu, J. Han, H. Wu, and Z. Liu, “Proteasome-Dependent Senescent Tumor Cells Mediate Immunosuppression Through CCL20 Secretion and M2 Polarization in Pancreatic Ductal Adenocarcinoma,” Frontiers in Immunology 14 (2023): 1216376.

[89]

I. Datta and E. Bangi, “Senescent Cells and Macrophages Cooperate Through a Multi-Kinase Signaling Network to Promote Intestinal Transformation in Drosophila,” Developmental Cell 59, no. 5 (2024): 566-578.e3.

[90]

Y. H. Kim, Y. W. Choi, J. Lee, E. Y. Soh, J. H. Kim, and T. J. Park, “Senescent Tumor Cells Lead the Collective Invasion in Thyroid Cancer,” Nature Communications 8 (2017): 15208.

[91]

X. Luo, Y. Fu, A. J. Loza, et al., “Stromal-Initiated Changes in the Bone Promote Metastatic Niche Development,” Cell Reports 14, no. 1 (2016): 82-92.

[92]

E. Fletcher-Sananikone, S. Kanji, N. Tomimatsu, et al., “Elimination of Radiation-Induced Senescence in the Brain Tumor Microenvironment Attenuates Glioblastoma Recurrence,” Cancer Research 81, no. 23 (2021): 5935-5947.

[93]

F. Alimirah, T. Pulido, A. Valdovinos, et al., “Cellular Senescence Promotes Skin Carcinogenesis Through p38MAPK and p44/42MAPK Signaling,” Cancer Research 80, no. 17 (2020): 3606-3619.

[94]

D. Zhang, J. W. Zhang, H. Xu, et al., “Therapy-Induced Senescent Tumor Cell-Derived Extracellular Vesicles Promote Colorectal Cancer Progression Through SERPINE1-Mediated NF-κB p65 Nuclear Translocation,” Molecular Cancer 23, no. 1 (2024): 70.

[95]

L. Chibaya, K. C. Murphy, K. D. DeMarco, et al., “EZH2 Inhibition Remodels the Inflammatory Senescence-Associated Secretory Phenotype to Potentiate Pancreatic Cancer Immune Surveillance,” Nature Cancer 4, no. 6 (2023): 872-892.

[96]

A. Shahbandi, F. Y. Chiu, N. A. Ungerleider, et al., “Breast Cancer Cells Survive Chemotherapy by Activating Targetable Immune-Modulatory Programs Characterized by PD-L1 or CD80,” Nature Cancer 3, no. 12 (2022): 1513-1533.

[97]

F. Pacifico, S. Mellone, M. D'Incalci, M. Stornaiuolo, A. Leonardi, and E. Crescenzi, “Trabectedin Suppresses Escape From Therapy-Induced Senescence in Tumor Cells by Interfering With Glutamine Metabolism,” Biochemical Pharmacology 202 (2022): 115159.

[98]

D. Miller, K. Kerkhofs, F. Abbas-Aghababazadeh, et al., “Heterogeneity in Leukemia Cells That Escape Drug-Induced Senescence-Like State,” Cell Death & Disease 14, no. 8 (2023): 503.

[99]

D. Maggiorani, O. Le, V. Lisi, et al., “Senescence Drives Immunotherapy Resistance by Inducing an Immunosuppressive Tumor Microenvironment,” Nature Communications 15, no. 1 (2024): 2435.

[100]

G. Fan, B. Yu, L. Tang, et al., “TSPAN8+ Myofibroblastic Cancer-Associated Fibroblasts Promote Chemoresistance in Patients With Breast Cancer,” Science Translational Medicine 16, no. 741 (2024): eadj5705.

[101]

Q. Xu, Q. Long, D. Zhu, et al., “Targeting Amphiregulin (AREG) Derived From Senescent Stromal Cells Diminishes Cancer Resistance and Averts Programmed Cell Death 1 Ligand (PD-L1)-mediated Immunosuppression,” Aging Cell 18, no. 6 (2019): e13027.

[102]

L. I. Prieto, I. Sturmlechner, J. J. Goronzy, and D. J. Baker, “Senescent Cells as Thermostats of Antitumor Immunity,” Science Translational Medicine 15, no. 699 (2023): eadg7291.

[103]

H. A. Chen, Y. J. Ho, R. Mezzadra, et al., “Senescence Rewires Microenvironment Sensing to Facilitate Antitumor Immunity,” Cancer Discovery 13, no. 2 (2023): 432-453.

[104]

I. Marin, O. Boix, A. Garcia-Garijo, et al., “Cellular Senescence Is Immunogenic and Promotes Antitumor Immunity,” Cancer Discovery 13, no. 2 (2023): 410-431.

[105]

A. Shahbandi, F. Y. Chiu, N. A. Ungerleider, et al., “Breast Cancer Cells Survive Chemotherapy by Activating Targetable Immune-Modulatory Programs Characterized by PD-L1 or CD80,” Nature Cancer 3, no. 12 (2022): 1513-1533.

[106]

B. Wang, J. Han, J. H. Elisseeff, and M. Demaria, “The Senescence-Associated Secretory Phenotype and Its Physiological and Pathological Implications,” Nature Reviews Molecular Cell Biology 25, no. 12 (2024): 958-978.

[107]

I. Sturmlechner, C. Zhang, C. C. Sine, et al., “p21 Produces a Bioactive Secretome That Places Stressed Cells under Immunosurveillance,” Science 374, no. 6567 (2021): eabb3420.

[108]

J. P. Coppé, F. Rodier, C. K. Patil, A. Freund, P. Y. Desprez, and J. Campisi, “Tumor Suppressor and Aging Biomarker p16(INK4a) Induces Cellular Senescence Without the Associated Inflammatory Secretory Phenotype,” Journal of Biological Chemistry 286, no. 42 (2011): 36396-36403.

[109]

W. Xia and P. Jiang, “p53 Promotes Antiviral Innate Immunity by Driving Hexosamine Metabolism,” Cell Reports 43, no. 2 (2024): 113724.

[110]

J. K. Minami, D. Morrow, N. A. Bayley, et al., “CDKN2A Deletion Remodels Lipid Metabolism to Prime Glioblastoma for Ferroptosis,” Cancer Cell 41, no. 6 (2023): 1048-1060.e9.

[111]

M. Kolesnichenko, N. Mikuda, U. E. Höpken, et al., “Transcriptional Repression of NFKBIA Triggers Constitutive IKK- and Proteasome-Independent p65/RelA Activation In Senescence,” EMBO Journal 40, no. 6 (2021): e104296.

[112]

S. Glück, B. Guey, M. F. Gulen, et al., “Innate Immune Sensing of Cytosolic Chromatin Fragments Through cGAS Promotes Senescence,” Nature Cell Biology 19, no. 9 (2017): 1061-1070.

[113]

H. Yang, H. Wang, J. Ren, Q. Chen, and Z. J. Chen, “cGAS Is Essential for Cellular Senescence,” Proceedings of the National Academy of Sciences of the United States of America 114, no. 23 (2017): E4612-E4620.

[114]

M. De Cecco, T. Ito, A. P. Petrashen, et al., “L1 Drives IFN in Senescent Cells and Promotes Age-Associated Inflammation,” Nature 566, no. 7742 (2019): 73-78.

[115]

Q. Xu, X. Hua, B. Li, et al., “Intrinsic STING of CD8 + T Cells Regulates Self-Metabolic Reprogramming and Memory to Exert Anti-Tumor Effects,” Cell Communication and Signaling 23, no. 1 (2025): 99.

[116]

A. Freund, C. K. Patil, and J. Campisi, “p38MAPK Is a Novel DNA Damage Response-Independent Regulator of the Senescence-Associated Secretory Phenotype,” EMBO Journal 30, no. 8 (2011): 1536-1548.

[117]

R. M. Laberge, Y. Sun, A. V. Orjalo, et al., “MTOR Regulates the Pro-Tumorigenic Senescence-Associated Secretory Phenotype by Promoting IL1A Translation,” Nature Cell Biology 17, no. 8 (2015): 1049-1061.

[118]

M. Reimann, S. Lee, and C. A. Schmitt, “Cellular Senescence: Neither Irreversible nor Reversible,” Journal of Experimental Medicine 221, no. 4 (2024): e20232136.

[119]

S. Song, T. Tchkonia, J. Jiang, J. L. Kirkland, and Y. Sun, “Targeting Senescent Cells for a Healthier Aging: Challenges and Opportunities,” Advanced Science 7, no. 23 (2020): 2002611.

[120]

C. López-Otín, M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer, “Hallmarks of Aging: An Expanding Universe,” Cell 186, no. 2 (2023): 243-278.

[121]

S. Song, E. W. F. Lam, T. Tchkonia, J. L. Kirkland, and Y. Sun, “Senescent Cells: Emerging Targets for Human Aging and Age-Related Diseases,” Trends in Biochemical Sciences 45, no. 7 (2020): 578-592.

[122]

Y. Sun, Q. Li, and J. L. Kirkland, “Targeting Senescent Cells for a Healthier Longevity: The Roadmap for an Era of Global Aging,” Life Medicine 1, no. 2 (2022): 103-119.

[123]

S. Chaib, T. Tchkonia, and J. L. Kirkland, “Cellular Senescence and Senolytics: The Path to the Clinic,” Nature Medicine 28, no. 8 (2022): 1556-1568.

[124]

J. P. Coppé, P. Y. Desprez, A. Krtolica, and J. Campisi, “The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression,” Annual Review of Pathology: Mechanisms of Disease 5 (2010): 99-118.

[125]

V. Suryadevara, A. D. Hudgins, A. Rajesh, et al., “Sennet Recommendations for Detecting Senescent Cells in Different Tissues,” Nature Reviews Molecular Cell Biology 25, no. 12 (2024): 1001-1023.

[126]

A. Salminen, K. Kaarniranta, and A. Kauppinen, “Exosomal Vesicles Enhance Immunosuppression in Chronic Inflammation: Impact in Cellular Senescence and the Aging Process,” Cellular Signalling 75 (2020): 109771.

[127]

Y. Tanaka and A. Takahashi, “Senescence-Associated Extracellular Vesicle Release Plays a Role in Senescence-Associated Secretory Phenotype (SASP) in Age-Associated Diseases,” Journal of Biochemistry 169, no. 2 (2021): 147-153.

[128]

J. Xu, K. Liao, and W. Zhou, “Exosomes Regulate the Transformation of Cancer Cells in Cancer Stem Cell Homeostasis,” Stem Cells International 2018 (2018): 4837370.

[129]

W. E. Naugler, T. Sakurai, S. Kim, et al., “Gender Disparity in Liver Cancer Due to Sex Differences in MyD88-dependent IL-6 Production,” Science 317, no. 5834 (2007): 121-124.

[130]

D. Daley, V. R. Mani, N. Mohan, et al., “Dectin 1 Activation on Macrophages by Galectin 9 Promotes Pancreatic Carcinoma and Peritumoral Immune Tolerance,” Nature Medicine 23, no. 5 (2017): 556-567.

[131]

A. Nobumoto, K. Nagahara, S. Oomizu, et al., “Galectin-9 Suppresses Tumor Metastasis by Blocking Adhesion to Endothelium and Extracellular Matrices,” Glycobiology 18, no. 9 (2008): 735-744.

[132]

M. Ogrodnik, “Cellular Aging Beyond Cellular Senescence: Markers of Senescence Prior to Cell Cycle Arrest In Vitro and In Vivo,” Aging Cell 20, no. 4 (2021): e13338.

[133]

K. Yin, D. Patten, S. Gough, et al., “Senescence-Induced Endothelial Phenotypes Underpin Immune-Mediated Senescence Surveillance,” Genes & Development 36, no. 9-10 (2022): 533-549.

[134]

A. Iannello, T. W. Thompson, M. Ardolino, S. W. Lowe, and D. H. Raulet, “p53-dependent Chemokine Production by Senescent Tumor Cells Supports NKG2D-dependent Tumor Elimination by Natural Killer Cells,” Journal of Experimental Medicine 210, no. 10 (2013): 2057-2069.

[135]

Y. Guo, J. L. Ayers, K. T. Carter, et al., “Senescence-Associated Tissue Microenvironment Promotes Colon Cancer Formation Through the Secretory Factor GDF15,” Aging Cell 18, no. 6 (2019): e13013.

[136]

Y. Ma, Y. Liang, N. Liang, Y. Zhang, and F. Xiao, “Identification and Functional Analysis of Senescence-Associated Secretory Phenotype of Premature Senescent Hepatocytes Induced by Hexavalent Chromium,” Ecotoxicology and Environmental Safety 211 (2021): 111908.

[137]

C. A. Valenzuela, R. Quintanilla, A. Olate-Briones, et al., “SASP-Dependent Interactions Between Senescent Cells and Platelets Modulate Migration and Invasion of Cancer Cells,” International Journal of Molecular Sciences 20, no. 21 (2019): 5292.

[138]

G. Di, Y. Liu, Y. Lu, J. Liu, C. Wu, and H. F. Duan, “IL-6 Secreted From Senescent Mesenchymal Stem Cells Promotes Proliferation and Migration of Breast Cancer Cells,” PLoS One 9, no. 11 (2014): e113572.

[139]

D. Liu and P. J. Hornsby, “Senescent Human Fibroblasts Increase the Early Growth of Xenograft Tumors via Matrix Metalloproteinase Secretion,” Cancer Research 67, no. 7 (2007): 3117-3126.

[140]

Y. C. Cheng, H. Y. Chiang, S. J. Cheng, H. W. Chang, Y. J. Li, and S. Y. Shieh, “Loss of the Tumor Suppressor BTG3 Drives a Pro-Angiogenic Tumor Microenvironment Through HIF-1 Activation,” Cell Death & Disease 11, no. 12 (2020): 1046.

[141]

A. Krtolica, C. Ortiz de Solorzano, S. Lockett, and J. Campisi, “Quantification of Epithelial Cells in Coculture With Fibroblasts by Fluorescence Image Analysis,” Cytometry 49, no. 2 (2002): 73-82.

[142]

C. D. Wiley and J. Campisi, “From Ancient Pathways to Aging Cells-Connecting Metabolism and Cellular Senescence,” Cell Metabolism 23, no. 6 (2016): 1013-1021.

[143]

B. Liu, Q. Meng, X. Gao, et al., “Lipid and Glucose Metabolism in Senescence,” Frontiers in Nutrition 10 (2023): 1157352.

[144]

M. E. Mycielska, E. N. James, and E. K. Parkinson, “Metabolic Alterations in Cellular Senescence: The Role of Citrate in Ageing and Age-Related Disease,” International Journal of Molecular Sciences 23, no. 7 (2022): 3652.

[145]

X. Dou, Q. Fu, Q. Long, et al., “PDK4-dependent Hypercatabolism and Lactate Production of Senescent Cells Promotes Cancer Malignancy,” Nature Metabolism 5, no. 11 (2023): 1887-1910.

[146]

Y. Kim, Y. Jang, M. S. Kim, and C. Kang, “Metabolic Remodeling in Cancer and Senescence and Its Therapeutic Implications,” Trends in Endocrinology & Metabolism 35, no. 8 (2024): 732-744.

[147]

J. Zhu and C. B. Thompson, “Metabolic Regulation of Cell Growth and Proliferation,” Nature Reviews Molecular Cell Biology 20, no. 7 (2019): 436-450.

[148]

C. H. Yao, R. Wang, Y. Wang, C. P. Kung, J. D. Weber, and G. J. Patti, “Mitochondrial Fusion Supports Increased Oxidative Phosphorylation During Cell Proliferation,” eLife 8 (2019): e41351.

[149]

H. A. Hirsch, D. Iliopoulos, and K. Struhl, “Metformin Inhibits the Inflammatory Response Associated With Cellular Transformation and Cancer Stem Cell Growth,” Proceedings of the National Academy of Sciences of the United States of America 110, no. 3 (2013): 972-977.

[150]

R. Sênos Demarco, M. Clémot, and D. L. Jones, “The Impact of Ageing on Lipid-Mediated Regulation of Adult Stem Cell Behavior and Tissue Homeostasis,” Mechanisms of Ageing and Development 189 (2020): 111278.

[151]

Y. M. Kim, H. T. Shin, Y. H. Seo, et al., “Sterol Regulatory Element-Binding Protein (SREBP)-1-mediated Lipogenesis Is Involved in Cell Senescence,” Journal of Biological Chemistry 285, no. 38 (2010): 29069-29077.

[152]

Y. Lee, J. Kim, M. S. Kim, et al., “Coordinate Regulation of the Senescent State by Selective Autophagy,” Developmental Cell 56, no. 10 (2021): 1512-1525.e7.

[153]

K. Roh, J. Noh, Y. Kim, et al., “Lysosomal Control of Senescence and Inflammation Through Cholesterol Partitioning,” Nature Metabolism 5, no. 3 (2023): 398-413.

[154]

Y. A. Hannun and L. M. Obeid, “Sphingolipids and Their Metabolism in Physiology and Disease,” Nature Reviews Molecular Cell Biology 19, no. 3 (2018): 175-191.

[155]

M. Trayssac, Y. A. Hannun, and L. M. Obeid, “Role of Sphingolipids in Senescence: Implication in Aging and Age-Related Diseases,” Journal of Clinical Investigation 128, no. 7 (2018): 2702-2712.

[156]

Y. Wang, Y. Chen, L. Guan, et al., “Carnitine Palmitoyltransferase 1C Regulates Cancer Cell Senescence Through Mitochondria-Associated Metabolic Reprograming,” Cell Death & Differentiation 25, no. 4 (2018): 735-748.

[157]

M. V. Chakravarthy, Z. Pan, Y. Zhu, et al., “New' Hepatic Fat Activates PPARα to Maintain Glucose, Lipid, and Cholesterol Homeostasis,” Cell Metabolism 1, no. 5 (2005): 309-322.

[158]

A. Bateman, M. J. Martin, S. Orchard, et al., UniProt Consortium, “UniProt: The Universal Protein Knowledgebase in 2021,” Nucleic Acids Research 49, no. D1 (2021): D480-D489.

[159]

U. Nogueira-Recalde, I. Lorenzo-Gómez, F. J. Blanco, et al., “Fibrates as Drugs With Senolytic and Autophagic Activity for Osteoarthritis Therapy,” EBioMedicine 45 (2019): 588-605.

[160]

J. Lee, J. M. Ellis, and M. J. Wolfgang, “Adipose Fatty Acid Oxidation Is Required for Thermogenesis and Potentiates Oxidative Stress-Induced Inflammation,” Cell Reports 10, no. 2 (2015): 266-279.

[161]

S. Hamsanathan and A. U. Gurkar, “Lipids as Regulators of Cellular Senescence,” Frontiers in Physiology 13 (2022): 796850.

[162]

X. Han, Q. Lei, J. Xie, et al., “Potential Regulators of the Senescence-Associated Secretory Phenotype During Senescence and Aging,” Journals of Gerontology: Series A 77, no. 11 (2022): 2207-2218.

[163]

Y. Johmura, T. Yamanaka, S. Omori, et al., “Senolysis by Glutaminolysis Inhibition Ameliorates Various Age-Associated Disorders,” Science 371, no. 6526 (2021): 265-270.

[164]

F. Pacifico, N. Badolati, S. Mellone, M. Stornaiuolo, A. Leonardi, and E. Crescenzi, “Glutamine Promotes Escape From Therapy-Induced Senescence in Tumor Cells,” Aging 13, no. 17 (2021): 20962-20991.

[165]

À. Llop-Hernández, S. Verdura, E. Cuyàs, and J. A. Menendez, “Nutritional Niches of Cancer Therapy-Induced Senescent Cells,” Nutrients 14, no. 17 (2022): 3636.

[166]

D. H. Munn and V. Bronte, “Immune Suppressive Mechanisms in the Tumor Microenvironment,” Current Opinion in Immunology 39 (2016): 1-6.

[167]

R. Kalluri, “The Biology and Function of Fibroblasts in Cancer,” Nature Reviews Cancer 16, no. 9 (2016): 582-598.

[168]

K. Hida, N. Maishi, C. Torii, and Y. Hida, “Tumor Angiogenesis--Characteristics of Tumor Endothelial Cells,” International Journal of Clinical Oncology 21, no. 2 (2016): 206-212.

[169]

D. F. Quail and J. A. Joyce, “Microenvironmental Regulation of Tumor Progression and Metastasis,” Nature Medicine 19, no. 11 (2013): 1423-1437.

[170]

C. D. Camell, M. J. Yousefzadeh, Y. Zhu, et al., “Senolytics Reduce Coronavirus-Related Mortality in Old Mice,” Science 373, no. 6552 (2021): eabe4832.

[171]

M. Vernier, V. Bourdeau, M. F. Gaumont-Leclerc, et al., “Regulation of E2Fs and Senescence by PML Nuclear Bodies,” Genes & Development 25, no. 1 (2011): 41-50.

[172]

S. Courtois-Cox, S. M. Genther Williams, E. E. Reczek, et al., “A Negative Feedback Signaling Network Underlies Oncogene-Induced Senescence,” Cancer Cell 10, no. 6 (2006): 459-472.

[173]

J. Bartkova, N. Rezaei, M. Liontos, et al., “Oncogene-Induced Senescence Is Part of the Tumorigenesis Barrier Imposed by DNA Damage Checkpoints,” Nature 444, no. 7119 (2006): 633-637.

[174]

A. M. Haugstetter, C. Loddenkemper, D. Lenze, et al., “Cellular Senescence Predicts Treatment Outcome in Metastasised Colorectal Cancer,” British Journal of Cancer 103, no. 4 (2010): 505-509.

[175]

J. Liu, J. Liu, G. Qin, et al., “Mdscs-Derived GPR84 Induces CD8+ T-Cell Senescence via p53 Activation to Suppress the Antitumor Response,” Journal for Immunotherapy of Cancer 11, no. 11 (2023): e007802.

[176]

X. Liu, W. Mo, J. Ye, et al., “Regulatory T Cells Trigger Effector T Cell DNA Damage and Senescence Caused by Metabolic Competition,” Nature Communications 9, no. 1 (2018): 249.

[177]

X. Liu, F. Si, D. Bagley, et al., “Blockades of Effector T Cell Senescence and Exhaustion Synergistically Enhance Antitumor Immunity and Immunotherapy,” Journal for Immunotherapy of Cancer 10, no. 10 (2022): e005020.

[178]

W. X. Huff, J. H. Kwon, M. Henriquez, K. Fetcko, and M. Dey, “The Evolving Role of CD8+CD28- Immunosenescent T Cells in Cancer Immunology,” International Journal of Molecular Sciences 20, no. 11 (2019): 2810.

[179]

J. Lian, Y. Yue, W. Yu, and Y. Zhang, “Immunosenescence: A Key Player in Cancer Development,” Journal of Hematology & Oncology 13, no. 1 (2020): 151.

[180]

C. L. Montes, A. I. Chapoval, J. Nelson, et al., “Tumor-Induced Senescent T Cells With Suppressor Function: A Potential Form of Tumor Immune Evasion,” Cancer Research 68, no. 3 (2008): 870-879.

[181]

J. Ye and G. Peng, “Controlling T Cell Senescence in the Tumor Microenvironment for Tumor Immunotherapy,” Oncoimmunology 4, no. 3 (2015): e994398.

[182]

M. C. Ramello, J. Tosello Boari, F. P. Canale, et al., “Tumor-Induced Senescent T Cells Promote the Secretion of Pro-Inflammatory Cytokines and Angiogenic Factors by Human Monocytes/Macrophages Through a Mechanism That Involves Tim-3 and CD40L,” Cell Death & Disease 5, no. 11 (2014): e1507.

[183]

W. Huang, L. J. Hickson, A. Eirin, J. L. Kirkland, and L. O. Lerman, “Cellular Senescence: The Good, the Bad and the Unknown,” Nature Reviews Nephrology 18, no. 10 (2022): 611-627.

[184]

L. Qin, X. Jing, Z. Qiu, et al., “Aging of Immune System: Immune Signature From Peripheral Blood Lymphocyte Subsets in 1068 Healthy Adults,” Aging 8, no. 5 (2016): 848-859.

[185]

L. Wang, L. Lankhorst, and R. Bernards, “Exploiting Senescence for the Treatment of Cancer,” Nature Reviews Cancer 22, no. 6 (2022): 340-355.

[186]

J. C. Yam-Puc, Z. Hosseini, E. C. Horner, et al., “Age-Associated B Cells Predict Impaired Humoral Immunity After COVID-19 Vaccination in Patients Receiving Immune Checkpoint Blockade,” Nature Communications 14, no. 1 (2023): 3292.

[187]

A. J. Stranks, A. L. Hansen, I. Panse, et al., “Autophagy Controls Acquisition of Aging Features in Macrophages,” Journal of Innate Immunity 7, no. 4 (2015): 375-391.

[188]

E. Gibon, F. Loi, L. A. Córdova, et al., “Aging Affects Bone Marrow Macrophage Polarization: Relevance to Bone Healing,” Regenerative Engineering and Translational Medicine 2, no. 2 (2016): 98-104.

[189]

X. Zhang, W. Zhang, X. Yuan, M. Fu, H. Qian, and W. Xu, “Neutrophils in Cancer Development and Progression: Roles, Mechanisms, and Implications (Review),” International Journal of Oncology 49, no. 3 (2016): 857-867.

[190]

D. Zhivaki, S. N. Kennedy, J. Park, et al., “Correction of Age-Associated Defects in Dendritic Cells Enables CD4+ T Cells to Eradicate Tumors,” Cell 187, no. 15 (2024): 3888-3903.e18.

[191]

T. W. Wang, Y. Johmura, N. Suzuki, et al., “Blocking PD-L1-PD-1 Improves Senescence Surveillance and Ageing Phenotypes,” Nature 611, no. 7935 (2022): 358-364.

[192]

J. I. Belle, D. Sen, J. M. Baer, et al., “Senescence Defines a Distinct Subset of Myofibroblasts That Orchestrates Immunosuppression in Pancreatic Cancer,” Cancer Discovery 14, no. 7 (2024): 1324-1355.

[193]

M. K. Ruhland, A. J. Loza, A. H. Capietto, et al., “Stromal Senescence Establishes an Immunosuppressive Microenvironment That Drives Tumorigenesis,” Nature Communications 7 (2016): 11762.

[194]

H. Geng, C. Huang, L. Xu, et al., “Targeting Cellular Senescence as a Therapeutic Vulnerability in Gastric Cancer,” Life Sciences 346 (2024): 122631.

[195]

E. Bientinesi, M. Lulli, M. Becatti, S. Ristori, F. Margheri, and D. Monti, “Doxorubicin-Induced Senescence in Normal Fibroblasts Promotes In Vitro Tumour Cell Growth and Invasiveness: The Role of Quercetin in Modulating These Processes,” Mechanisms of Ageing and Development 206 (2022): 111689.

[196]

L. Ma, X. He, Y. Fu, S. Ge, and Z. Yang, “Senescent Endothelial Cells Promote Liver Metastasis of Uveal Melanoma in Single-Cell Resolution,” Journal of Translational Medicine 22, no. 1 (2024): 605.

[197]

H. J. Hwang, Y. R. Lee, D. Kang, et al., “Endothelial Cells Under Therapy-Induced Senescence Secrete CXCL11, Which Increases Aggressiveness of Breast Cancer Cells,” Cancer Letters 490 (2020): 100-110.

[198]

Z. Wu, B. Uhl, O. Gires, and C. A. Reichel, “A Transcriptomic Pan-Cancer Signature for Survival Prognostication and Prediction of Immunotherapy Response Based on Endothelial Senescence,” Journal of Biomedical Science 30, no. 1 (2023): 21.

[199]

E. Wieland, J. Rodriguez-Vita, S. S. Liebler, et al., “Endothelial Notch1 Activity Facilitates Metastasis,” Cancer Cell 31, no. 3 (2017): 355-367.

[200]

J. I. Belle, D. Sen, J. M. Baer, et al., “Senescence Defines a Distinct Subset of Myofibroblasts That Orchestrates Immunosuppression in Pancreatic Cancer,” Cancer Discovery 14, no. 7 (2024): 1324-1355.

[201]

J. Ye, J. M. Baer, D. V. Faget, et al., “Senescent CAFs Mediate Immunosuppression and Drive Breast Cancer Progression,” Cancer Discovery 14, no. 7 (2024): 1302-1323.

[202]

H. Li, L. Qiu, Q. Liu, et al., “Senescent Fibroblasts Generate a CAF Phenotype Through the Stat3 Pathway,” Genes 13, no. 9 (2022): 1579.

[203]

M. Higashiguchi, H. Murakami, H. Hirofumi, et al., “The Impact of Cellular Senescence and Senescence-Associated Secretory Phenotype in Cancer-Associated Fibroblasts on the Malignancy of Pancreatic Cancer,” Oncology Reports 49, no. 5 (2023): 98.

[204]

R. M. Balliet, C. Capparelli, C. Guido, et al., “Mitochondrial Oxidative Stress in Cancer-Associated Fibroblasts Drives Lactate Production, Promoting Breast Cancer Tumor Growth: Understanding the Aging and Cancer Connection,” Cell Cycle 10, no. 23 (2011): 4065-4073.

[205]

G. M. Alicea, V. W. Rebecca, A. R. Goldman, et al., “Changes in Aged Fibroblast Lipid Metabolism Induce Age-Dependent Melanoma Cell Resistance to Targeted Therapy via the Fatty Acid Transporter FATP2,” Cancer Discovery 10, no. 9 (2020): 1282-1295.

[206]

J. Hazeldine and J. M. Lord, “Innate Immunesenescence: Underlying Mechanisms and Clinical Relevance,” Biogerontology 16, no. 2 (2015): 187-201.

[207]

P. J. Linton and K. Dorshkind, “Age-Related Changes in Lymphocyte Development and Function,” Nature Immunology 5, no. 2 (2004): 133-139.

[208]

B. Sanchez-Correa, C. Campos, A. Pera, et al., “Natural Killer Cell Immunosenescence in Acute Myeloid Leukaemia Patients: New Targets for Immunotherapeutic Strategies?,” Cancer Immunology, Immunotherapy 65, no. 4 (2016): 453-463.

[209]

S. M. Henson, A. Lanna, N. E. Riddell, et al., “p38 Signaling Inhibits mTORC1-independent Autophagy in Senescent Human CD8⁺ T Cells,” Journal of Clinical Investigation 124, no. 9 (2014): 4004-4016.

[210]

X. Liu, C. L. Hartman, L. Li, et al., “Reprogramming Lipid Metabolism Prevents Effector T Cell Senescence and Enhances Tumor Immunotherapy,” Science Translational Medicine 13, no. 587 (2021): eaaz6314.

[211]

A. Gao, X. Liu, W. Lin, et al., “Tumor-Derived ILT4 Induces T Cell Senescence and Suppresses Tumor Immunity,” Journal for Immunotherapy of Cancer 9, no. 3 (2021): e001536.

[212]

J. Kwong, L. Hong, R. Liao, Q. Deng, J. Han, and P. Sun, “p38α and p38γ Mediate Oncogenic Ras-Induced Senescence Through Differential Mechanisms,” Journal of Biological Chemistry 284, no. 17 (2009): 11237-11246.

[213]

W. Wang, J. X. Chen, R. Liao, et al., “Sequential Activation of the MEK-Extracellular Signal-Regulated Kinase and MKK3/6-p38 Mitogen-Activated Protein Kinase Pathways Mediates Oncogenic Ras-Induced Premature Senescence,” Molecular and Cellular Biology 22, no. 10 (2002): 3389-3403.

[214]

X. Liu, W. Mo, J. Ye, et al., “Regulatory T Cells Trigger Effector T Cell DNA Damage and Senescence Caused by Metabolic Competition,” Nature Communications 9, no. 1 (2018): 249.

[215]

A. Lanna, S. M. Henson, D. Escors, and A. N. Akbar, “The Kinase p38 Activated by the Metabolic Regulator AMPK and Scaffold TAB1 Drives the Senescence of Human T Cells,” Nature Immunology 15, no. 10 (2014): 965-972.

[216]

A. Lanna, S. M. Henson, D. Escors, and A. N. Akbar, “The Kinase p38 Activated by the Metabolic Regulator AMPK and Scaffold TAB1 Drives the Senescence of Human T Cells,” Nature Immunology 15, no. 10 (2014): 965-972.

[217]

J. Ye, C. Ma, E. C. Hsueh, et al., “TLR8 Signaling Enhances Tumor Immunity by Preventing Tumor-Induced T-Cell Senescence,” EMBO Molecular Medicine 6, no. 10 (2014): 1294-1311.

[218]

T. Kakuda, J. Suzuki, Y. Matsuoka, T. Kikugawa, T. Saika, and M. Yamashita, “Senescent CD8+ T Cells Acquire NK Cell-Like Innate Functions to Promote Antitumor Immunity,” Cancer Science 114, no. 7 (2023): 2810-2820.

[219]

B. I. Pereira, R. P. H. De Maeyer, L. P. Covre, et al., “Sestrins Induce Natural Killer Function in Senescent-Like CD8+ T Cells,” Nature Immunology 21, no. 6 (2020): 684-694.

[220]

X. Liu, L. Li, F. Si, et al., “NK and NKT Cells Have Distinct Properties and Functions in Cancer,” Oncogene 40, no. 27 (2021): 4521-4537.

[221]

A. R. Manser and M. Uhrberg, “Age-Related Changes in Natural Killer Cell Repertoires: Impact on NK Cell Function and Immune Surveillance,” Cancer Immunology, Immunotherapy 65, no. 4 (2016): 417-426.

[222]

H. M. Shehata, K. Hoebe, and C. A. Chougnet, “The Aged Nonhematopoietic Environment Impairs Natural Killer Cell Maturation and Function,” Aging Cell 14, no. 2 (2015): 191-199.

[223]

D. Allman and J. P. Miller, “The Aging of Early B-Cell Precursors,” Immunological Reviews 205 (2005): 18-29.

[224]

S. W. Du, T. Arkatkar, F. Al Qureshah, et al., “Functional Characterization of CD11c+ Age-Associated B Cells as Memory B Cells,” Journal of Immunology 203, no. 11 (2019): 2817-2826.

[225]

D. A. Mogilenko, I. Shchukina, and M. N. Artyomov, “Immune Ageing at Single-Cell Resolution,” Nature Reviews Immunology 22, no. 8 (2022): 484-498.

[226]

E. Ricker, M. Manni, D. Flores-Castro, et al., “Altered Function and Differentiation of Age-Associated B Cells Contribute to the Female Bias in Lupus Mice,” Nature Communications 12, no. 1 (2021): 4813.

[227]

L. Wang, W. Hong, H. Zhu, et al., “Macrophage Senescence in Health and Diseases,” Acta Pharmaceutica Sinica B 14, no. 4 (2024): 1508-1524.

[228]

R. P. H. De Maeyer and E. S. Chambers, “The Impact of Ageing on Monocytes and Macrophages,” Immunology Letters 230 (2021): 1-10.

[229]

S. Yu, M. Chen, L. Xu, E. Mao, and S. Sun, “A Senescence-Based Prognostic Gene Signature for Colorectal Cancer and Identification of the Role of SPP1-Positive Macrophages in Tumor Senescence,” Frontiers in immunology 14 (2023): 1175490.

[230]

H. Wada, R. Otsuka, W. T. V. Germeraad, T. Murata, T. Kondo, and K. Seino, “Tumor Cell-Induced Macrophage Senescence Plays a Pivotal Role in Tumor Initiation Followed by Stable Growth in Immunocompetent Condition,” Journal for Immunotherapy of Cancer 11, no. 11 (2023): e006677.

[231]

L. I. Prieto, I. Sturmlechner, S. I. Graves, et al., “Senescent Alveolar Macrophages Promote Early-Stage Lung Tumorigenesis,” Cancer Cell 41, no. 7 (2023): 1261-1275.e6.

[232]

S. Haston, E. Gonzalez-Gualda, S. Morsli, et al., “Clearance of Senescent Macrophages Ameliorates Tumorigenesis in KRAS-Driven Lung Cancer,” Cancer Cell 41, no. 7 (2023): 1242-1260.e6.

[233]

D. Maggiorani, O. Le, V. Lisi, et al., “Senescence Drives Immunotherapy Resistance by Inducing an Immunosuppressive Tumor Microenvironment,” Nature Communications 15, no. 1 (2024): 2435.

[234]

J. Y. Sagiv, J. Michaeli, S. Assi, et al., “Phenotypic Diversity and Plasticity in Circulating Neutrophil Subpopulations in Cancer,” Cell Reports 10, no. 4 (2015): 562-573.

[235]

L. Wu, S. Saxena, and R. K. Singh, “Neutrophils in the Tumor Microenvironment,” Advances in Experimental Medicine and Biology 1224 (2020): 1-20.

[236]

N. Bancaro, B. Calì, M. Troiani, et al., “Apolipoprotein E Induces Pathogenic Senescent-Like Myeloid Cells in Prostate Cancer,” Cancer Cell 41, no. 3 (2023): 602-619.e11.

[237]

C. Yang, Z. Wang, L. Li, et al., “Aged Neutrophils Form Mitochondria-Dependent Vital NETs to Promote Breast Cancer Lung Metastasis,” Journal for Immunotherapy of Cancer 9, no. 10 (2021): e002875.

[238]

L. A. Mittmann, F. Haring, J. B. Schaubächer, et al., “Uncoupled Biological and Chronological Aging of Neutrophils in Cancer Promotes Tumor Progression,” Journal for Immunotherapy of Cancer 9, no. 12 (2021): e003495.

[239]

B. Ou, Y. Liu, Z. Gao, et al., “Senescent Neutrophils-Derived Exosomal piRNA-17560 Promotes Chemoresistance and EMT of Breast Cancer via FTO-Mediated m6A Demethylation,” Cell Death & Disease 13, no. 10 (2022): 905.

[240]

A. Agrawal and S. Gupta, “Impact of Aging on Dendritic Cell Functions In Humans,” Ageing Research Reviews 10, no. 3 (2011): 336-345.

[241]

J. K. Gardner, C. D. S. Mamotte, C. Jackaman, and D. J. Nelson, “Modulation of Dendritic Cell and T Cell Cross-Talk During Aging: The Potential Role of Checkpoint Inhibitory Molecules,” Ageing Research Reviews 38 (2017): 40-51.

[242]

J. Bollard, V. Miguela, M. Ruiz de Galarreta, et al., “Palbociclib (PD-0332991), a Selective CDK4/6 Inhibitor, Restricts Tumour Growth in Preclinical Models of Hepatocellular Carcinoma,” Gut 66, no. 7 (2017): 1286-1296.

[243]

R. Fu, Z. Dou, N. Li, J. Zhang, Z. Li, and P. Yang, “Avenanthramide C Induces Cellular Senescence in Colorectal Cancer Cells via Suppressing β-catenin-mediated the Transcription of miR-183/96/182 Cluster,” Biochemical Pharmacology 199 (2022): 115021.

[244]

D. Yang, Q. Guo, Y. Liang, et al., “Wogonin Induces Cellular Senescence in Breast Cancer via Suppressing TXNRD2 Expression,” Archives of Toxicology 94, no. 10 (2020): 3433-3447.

[245]

M. Colucci, S. Zumerle, S. Bressan, et al., “Retinoic Acid Receptor Activation Reprograms Senescence Response and Enhances Anti-Tumor Activity of Natural Killer Cells,” Cancer Cell 42, no. 4 (2024): 646-661.e9.

[246]

J. L. Kirkland and T. Tchkonia, “Senolytic Drugs: From Discovery to Translation,” Journal of Internal Medicine 288, no. 5 (2020): 518-536.

[247]

Y. Zhu, T. Tchkonia, T. Pirtskhalava, et al., “The Achilles' Heel of Senescent Cells: From Transcriptome to Senolytic Drugs,” Aging Cell 14, no. 4 (2015): 644-658.

[248]

A. Rodríguez-Agustín, V. Casanova, J. Grau-Expósito, S. Sánchez-Palomino, J. Alcamí, and N. Climent, “Immunomodulatory Activity of the Tyrosine Kinase Inhibitor Dasatinib to Elicit NK Cytotoxicity Against Cancer, HIV Infection and Aging,” Pharmaceutics 15, no. 3 (2023): 917.

[249]

E. Zoico, N. Nori, E. Darra, et al., “Senolytic Effects of Quercetin in an In Vitro Model of Pre-Adipocytes and Adipocytes Induced Senescence,” Scientific Reports 11, no. 1 (2021): 23237.

[250]

K. Takaya and K. Kishi, “Combined Dasatinib and Quercetin Treatment Contributes to Skin Rejuvenation Through Selective Elimination of Senescent Cells In Vitro and In Vivo,” Biogerontology 25, no. 4 (2024): 691-704.

[251]

L. Wang, B. Xiong, W. Lu, et al., “Senolytic Drugs Dasatinib and Quercetin Combined With Carboplatin or Olaparib Reduced the Peritoneal and Adipose Tissue Metastasis of Ovarian Cancer,” Biomedicine & Pharmacotherapy 174 (2024): 116474.

[252]

L. J. Hickson, L. G. P. Langhi Prata, S. A. Bobart, et al., “Senolytics Decrease Senescent Cells in Humans: Preliminary Report From a Clinical Trial of Dasatinib Plus Quercetin in Individuals With Diabetic Kidney Disease,” EBioMedicine 2019, no. 47: 446-456.

[253]

A. Nambiar, D. Kellogg, J. Justice, et al., “Senolytics Dasatinib and Quercetin in Idiopathic Pulmonary Fibrosis: Results of a Phase I, Single-Blind, Single-Center, Randomized, Placebo-Controlled Pilot Trial on Feasibility and Tolerability,” EBioMedicine 90 (2023): 104481.

[254]

M. M. Gonzales, V. R. Garbarino, T. F. Kautz, et al., “Senolytic Therapy in Mild Alzheimer's Disease: A Phase 1 Feasibility Trial,” Nature Medicine 29, no. 10 (2023): 2481-2488.

[255]

T. Saleh, V. J. Carpenter, L. Tyutyunyk-Massey, et al., “Clearance of Therapy-Induced Senescent Tumor Cells by the Senolytic ABT-263 via Interference With BCL-XL -BAX Interaction,” Molecular Oncology 14, no. 10 (2020): 2504-2519.

[256]

X. Xia, Y. Yang, P. Liu, et al., “The Senolytic Drug ABT-263 Accelerates Ovarian Aging in Older Female Mice,” Scientific Reports 14, no. 1 (2024): 23178.

[257]

R. Yosef, N. Pilpel, R. Tokarsky-Amiel, et al., “Directed Elimination of Senescent Cells by Inhibition of BCL-W and BCL-XL,” Nature Communications 7 (2016): 11190.

[258]

D. J. Baker, B. G. Childs, M. Durik, et al., “Naturally Occurring p16(Ink4a)-Positive Cells Shorten Healthy Lifespan,” Nature 530, no. 7589 (2016): 184-189.

[259]

M. Troiani, M. Colucci, M. D'Ambrosio, et al., “Single-Cell Transcriptomics Identifies Mcl-1 as a Target for Senolytic Therapy in Cancer,” Nature Communications 13, no. 1 (2022): 2177.

[260]

J. Yang, M. Liu, D. Hong, M. Zeng, and X. Zhang, “The Paradoxical Role of Cellular Senescence in Cancer,” Frontiers in Cell and Developmental Biology 9 (2021): 722205.

[261]

C. Wang, S. Vegna, H. Jin, et al., “Inducing and Exploiting Vulnerabilities for the Treatment of Liver Cancer,” Nature 574, no. 7777 (2019): 268-272.

[262]

J. Zhang, H. Yu, M. Q. Man, and L. Hu, “Aging in the Dermis: Fibroblast Senescence and Its Significance,” Aging Cell 23, no. 2 (2024): e14054.

[263]

H. Liu, Q. Xu, H. Wufuer, et al., “Rutin Is a Potent Senomorphic Agent to Target Senescent Cells and Can Improve Chemotherapeutic Efficacy,” Aging Cell 23, no. 1 (2024): e13921.

[264]

T. Saleh, V. J. Carpenter, L. Tyutyunyk-Massey, et al., “Clearance of Therapy-Induced Senescent Tumor Cells by the Senolytic ABT-263 via Interference With BCL-XL -BAX Interaction,” Molecular Oncology 14, no. 10 (2020): 2504-2519.

[265]

H. Wu, D. S. Schiff, Y. Lin, et al., “Ionizing Radiation Sensitizes Breast Cancer Cells to Bcl-2 Inhibitor, ABT-737, Through Regulating Mcl-1,” Radiation Research 182, no. 6 (2014): 618-625.

[266]

C. L. Hann, V. C. Daniel, E. A. Sugar, et al., “Therapeutic Efficacy of ABT-737, a Selective Inhibitor of BCL-2, in Small Cell Lung Cancer,” Cancer Research 68, no. 7 (2008): 2321-2328.

[267]

D. J. Baker, B. G. Childs, M. Durik, et al., “Naturally Occurring p16(Ink4a)-Positive Cells Shorten Healthy Lifespan,” Nature 530, no. 7589 (2016): 184-189.

[268]

A. Kotschy, Z. Szlavik, J. Murray, et al., “The MCL1 Inhibitor S63845 Is Tolerable and Effective in Diverse Cancer Models,” Nature 538, no. 7626 (2016): 477-482.

[269]

P. G. Prasanna, D. E. Citrin, J. Hildesheim, et al., “Therapy-Induced Senescence: Opportunities to Improve Anticancer Therapy,” JNCI: Journal of the National Cancer Institute 113, no. 10 (2021): 1285-1298.

[270]

K. Wang, Z. Gong, Y. Chen, et al., “KDM4C-mediated Senescence Defense Is a Targetable Vulnerability in Gastric Cancer Harboring TP53 Mutations,” Clinical Epigenetics 15, no. 1 (2023): 163.

[271]

F. Li, P. Liu, W. Mi, et al., “Blocking Methionine Catabolism Induces Senescence and Confers Vulnerability to GSK3 Inhibition in Liver Cancer,” Nature Cancer 5, no. 1 (2024): 131-146.

[272]

D. McHugh, I. Durán, and J. Gil, “Senescence as a Therapeutic Target in Cancer and Age-Related Diseases,” Nature Reviews Drug Discovery 24, no. 1 (2025): 57-71.

[273]

K. Gong, J. Jiao, Z. Wu, et al., “Nanosystem Delivers Senescence Activators and Immunomodulators to Combat Liver Cancer,” Advanced Science 11, no. 20 (2024): e2308310.

[274]

Z. Hao, S. Guo, W. Tu, et al., “Piezoelectric Catalysis Induces Tumor Cell Senescence to Boost Chemo-Immunotherapy,” Small 20, no. 25 (2024): e2309487.

[275]

H. Wang, S. Yuan, Q. Zheng, et al., “Dual Inhibition of CDK4/6 and XPO1 Induces Senescence With Acquired Vulnerability to CRBN-Based PROTAC Drugs,” Gastroenterology 166, no. 6 (2024): 1130-1144.e8.

[276]

C. Amor, J. Feucht, J. Leibold, et al., “Senolytic CAR T Cells Reverse Senescence-Associated Pathologies,” Nature 583, no. 7814 (2020): 127-132.

[277]

D. Yang, B. Sun, S. Li, et al., “NKG2D-CAR T Cells Eliminate Senescent Cells in Aged Mice and Nonhuman Primates,” Science Translational Medicine 15, no. 709 (2023): eadd1951.

[278]

L. Jerby-Arnon, P. Shah, M. S. Cuoco, et al., “A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade,” Cell 175, no. 4 (2018): 984-997.e24.

[279]

D. Ding, R. Liang, T. Li, et al., “Nanodrug Modified With Engineered Cell Membrane Targets CDKs to Activate a PD-L1 Immunotherapy Against Liver Metastasis of Immune-Desert Colon Cancer,” Journal of Controlled Release 369 (2024): 309-324.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm - Oncology published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).

AI Summary AI Mindmap
PDF

22

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/