Ephrin A1 ligand-based CAR-T cells for immunotherapy of EphA2-positive cancer

Nan Liu , Wenwen Wei , Kexing Ren , Dandan Liang , Dong Yang , Weishan Zhang , Beibei Yang , Bin Sun , Jincheng Zhao , Dan Cao , Liqun Zou , Xudong Zhao

MEDCOMM - Oncology ›› 2025, Vol. 4 ›› Issue (1) : e70010

PDF
MEDCOMM - Oncology ›› 2025, Vol. 4 ›› Issue (1) : e70010 DOI: 10.1002/mog2.70010
ORIGINAL ARTICLE

Ephrin A1 ligand-based CAR-T cells for immunotherapy of EphA2-positive cancer

Author information +
History +
PDF

Abstract

Chimeric antigen receptor (CAR) T cells have demonstrated promising results in hematological malignancies; however, challenges remain in treating solid tumors. New CARs with more effectiveness and lower side effects are needed. Ephrin type-A receptor 2 (EphA2) belongs to the Ephrin family of receptor tyrosine kinases, which is overexpressed in several solid malignancies. Compared with some single-chain variable fragment (ScFv) CARs that exhibit excessively high affinity for their targets, natural receptor/ligand-based CARs maintain inherent affinity for their binding partners, potentially balancing cytotoxicity and side effects to better meet clinical needs. Here, we designed a CAR targeting EphA2-positive cancer cells by exploiting the extracellular domain of its natural ligand Ephrin A1 (EFNA1). EFNA1 CAR-T cells exhibited specific cytotoxicity against various cancer cells and cancer stem-like cells in vitro, and significantly suppressed tumor growth in a pancreatic cancer xenograft mouse model. Moreover, although these CAR-T cells specifically targeted mouse EphA2 and killed mouse tumor cell lines in vitro, they did not induce obvious side effects in mice. Additionally, it also showed good safety in rhesus macaques. Collectively, these results validate the therapeutic effectiveness and safety of EFNA1 CAR-T cells for treating solid tumors.

Keywords

chimeric antigen receptor / EphA2 / Ephrin A1 / solid cancer

Cite this article

Download citation ▾
Nan Liu, Wenwen Wei, Kexing Ren, Dandan Liang, Dong Yang, Weishan Zhang, Beibei Yang, Bin Sun, Jincheng Zhao, Dan Cao, Liqun Zou, Xudong Zhao. Ephrin A1 ligand-based CAR-T cells for immunotherapy of EphA2-positive cancer. MEDCOMM - Oncology, 2025, 4(1): e70010 DOI:10.1002/mog2.70010

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Couzin-FrankelJ. Breakthrough of the year 2013. Cancer immunotherapy. Science. 2013; 342(6165):1432-1433.

[2]

JuneCH, O’Connor RS, KawalekarOU, GhassemiS, MiloneMC. CAR T cell immunotherapy for human cancer. Science. 2018; 359(6382):1361-1365.

[3]

GruppSA, KalosM, BarrettD, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013; 368(16):1509-1518.

[4]

AliS, KjekenR, NiederlaenderC, et al. The European Medicines Agency review of Kymriah (Tisagenlecleucel) for the treatment of acute lymphoblastic leukemia and diffuse large B-cell lymphoma. Oncologist. 2020; 25(2):e321-e327.

[5]

HeymanB, YangY. Chimeric antigen receptor T cell therapy for solid tumors: current status, obstacles and future strategies. Cancers. 2019; 11(2):191.

[6]

BagleySJ, O’Rourke DM. Clinical investigation of CAR T cells for solid tumors: lessons learned and future directions. Pharmacol Ther. 2020; 205:107419.

[7]

Rojas-QuinteroJ, Díaz MP, PalmarJ, et al. Car T cells in solid tumors: overcoming obstacles. Int J Mol Sci. 2024; 25(8):4170.

[8]

KeenanBP, LieuCH, FakihM, et al. Abstract CT129: a phase 1 dose escalation study of a novel coupled CAR T cell therapy, GCC19CART, for patients with metastatic colorectal cancer. Cancer Res. 2024; 84(7_suppl):CT129.

[9]

BamdadCC, Mortimer JE, YuanY, et al. Abstract CT096: phase I first-in-human MUC1* targeted autologous CAR T cells for the treatment of metastatic breast cancers. Cancer Res. 2024;84(7_suppl):CT096.

[10]

LuoT, LuZ, WuZ, et al. Abstract CT069: targeting EpCAM via CAR T-cells is an effective treatment for gastric cancer patients and subsequent toll-like receptor signaling activation in CD36+ monocyte underlies the resulting cytokine release syndrome. Cancer Res. 2024;84(7_suppl):CT069.

[11]

ChenS, van den Brink MRM. Allogeneic “Off-the-Shelf” CAR-T cells: challenges and advances. Best Pract Res Clin Haematol. 2024; 37(3):101566.

[12]

XiaoT, XiaoY, WangW, Tang YY, XiaoZ, SuM. Targeting EphA2 in cancer. J Hematol Oncol. 2020; 13(1):114.

[13]

ZhaoP, JiangD, HuangY, Chen C. EphA2: a promising therapeutic target in breast cancer. J Genet Genomics. 2021; 48(4):261-267.

[14]

ShiH, YuF, MaoY, et al. EphA2 chimeric antigen receptor-modified T cells for the immunotherapy of esophageal squamous cell carcinoma. J Thorac Dis. 2018; 10(5):2779-2788.

[15]

ChowKK, NaikS, KakarlaS, et al. T cells redirected to EphA2 for the immunotherapy of glioblastoma. Mol Ther. 2013; 21(3):629-637.

[16]

MudaliSV, FuB, LakkurSS, Luo M, EmbuscadoEE, Iacobuzio-DonahueCA. Patterns of EphA2 protein expression in primary and metastatic pancreatic carcinoma and correlation with genetic status. Clin Exp Metastasis. 2006; 23(7-8):357-365.

[17]

QuinnBA, WangS, BarileE, et al. Therapy of pancreatic cancer via an EphA2 receptor-targeted delivery of gemcitabine. Oncotarget. 2016; 7(13):17103-17110.

[18]

CoffmanKT, HuM, Carles-KinchK, et al. Differential EphA2 epitope display on normal versus malignant cells. Cancer Res. 2003; 63(22):7907-7912.

[19]

WilsonK, ShiuanE, Brantley-SiedersDM. Oncogenic functions and therapeutic targeting of EphA2 in cancer. Oncogene. 2021; 40(14):2483-2495.

[20]

ChenP, HuangY, ZhangB, Wang Q, BaiP. EphA2 enhances the proliferation and invasion ability of LNCaP prostate cancer cells. Oncol Lett. 2014; 8(1):41-46.

[21]

MiyazakiT, KatoH, FukuchiM, Nakajima M, KuwanoH. EphA2 overexpression correlates with poor prognosis in esophageal squamous cell carcinoma. Int J Cancer. 2003; 103(5):657-663.

[22]

LiN, LiuS, SunM, et al. Chimeric antigen receptor-modified T cells redirected to EphA2 for the immunotherapy of non-small cell lung cancer. Transl Oncol. 2018; 11(1):11-17.

[23]

YiZ, Prinzing BL, CaoF, GottschalkS, Krenciute G. Optimizing EphA2-CAR T cells for the adoptive immunotherapy of glioma. Mol Ther Methods Clin Dev. 2018; 9:70-80.

[24]

LinQ, BaT, HoJ, et al. First-in-Human trial of EphA2-redirected CAR T-cells in patients with recurrent glioblastoma: a preliminary report of three cases at the starting dose. Front Oncol. 2021; 11:694941.

[25]

DuanY, ChenR, HuangY, et al. Tuning the ignition of CAR: optimizing the affinity of scFv to improve CAR-T therapy. Cell Mol Life Sci. 2021; 79(1):14.

[26]

RafiqS, Hackett CS, BrentjensRJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol. 2020; 17(3):147-167.

[27]

BranellaGM, Spencer HT. Natural receptor-and ligand-based chimeric antigen receptors: strategies using natural ligands and receptors for targeted cell killing. Cells. 2021; 11(1):21.

[28]

Ramirez-ChaconA, Betriu-Mendez S, Bartolo-IbarsA, et al. Ligand-based CAR-T cell: different strategies to drive T cells in future new treatments. Front Immunol. 2022; 13:932559.

[29]

Safarzadeh KozaniP, Naseri A, MirarefinSMJ, et al. Nanobody-based CAR-T cells for cancer immunotherapy. Biomark Res. 2022; 10(1):24.

[30]

LongJ, WangY, JiangX, et al. Nanomaterials boost CAR-T therapy for solid tumors. Adv Healthcare Mater. 2024; 13(20):e2304615.

[31]

SternLA, Gholamin S, MoragaI, et al. Engineered IL13 variants direct specificity of IL13Rα2-targeted CAR T cell therapy. Proc Natl Acad Sci USA. 2022; 119(33):e2112006119.

[32]

WangY, XuY, LiS, et al. Targeting FLT3 in acute myeloid leukemia using ligand-based chimeric antigen receptor-engineered T cells. J Hematol Oncol. 2018; 11(1):60.

[33]

ZhangT, WuMR, SentmanCL. An NKp30-based chimeric antigen receptor promotes T cell effector functions and antitumor efficacy in vivo. J Immunol. 2012; 189(5):2290-2299.

[34]

BartleyTD, HuntRW, WelcherAA, et al. B61 is a ligand for the Eck receptor protein-tyrosine kinase. Nature. 1994; 368(6471):558-560.

[35]

TandonM, VemulaSV, MittalSK. Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opin Ther Targets. 2011; 15(1):31-51.

[36]

XuanSH, HuaML, XiangZ, et al. Roles of cancer stem cells in gastrointestinal cancers. World J Stem Cells. 2023; 15(4):209-220.

[37]

BubinR, Uljanovs R, StrumfaI. Cancer stem cells in pancreatic ductal adenocarcinoma. Int J Mol Sci. 2023; 24(8):7030.

[38]

IshiwataT, Matsuda Y, YoshimuraH, et al. Pancreatic cancer stem cells: features and detection methods. Pathol Oncol Res. 2018; 24(4):797-805.

[39]

LiC, HeidtDG, DalerbaP, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007; 67(3):1030-1037.

[40]

MorganRA, YangJC, KitanoM, Dudley ME, LaurencotCM, RosenbergSA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010; 18(4):843-851.

[41]

LiJ, LiW, HuangK, Zhang Y, KupferG, ZhaoQ. Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward. J Hematol Oncol. 2018; 11(1):22.

[42]

GoldgurY, SusiP, KarelehtoE, et al. Generation and characterization of a single-chain anti-EphA2 antibody. Growth Factors. 2014; 32(6):214-222.

[43]

GibbsRA, RogersJ, KatzeMG, et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science. 2007; 316(5822):222-234.

[44]

ShiX, Lingerak R, HertingCJ, et al. Time-resolved live-cell spectroscopy reveals EphA2 multimeric assembly. Science. 2023; 382(6674):1042-1050.

[45]

PasqualeEB. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer. 2010; 10(3):165-180.

[46]

WykoskyJ, Debinski W. The EphA2 receptor and ephrinA1 ligand in solid tumors: function and therapeutic targeting. Mol Cancer Res. 2008; 6(12):1795-1806.

[47]

KuroseH, UedaK, KondoR, et al. Elevated expression of EPHA2 is associated with poor prognosis after radical prostatectomy in prostate cancer. Anticancer Res. 2019; 39(11):6249-6257.

[48]

KinchMS, MooreMB, Harpole JrDH. Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clin Cancer Res. 2003; 9(2):613-618.

[49]

AmatoKR, WangS, HastingsAK, et al. Genetic and pharmacologic inhibition of EPHA2 promotes apoptosis in NSCLC. J Clin Invest. 2014; 124(5):2037-2049.

[50]

ZhangT, LiJ, MaX, et al. Inhibition of HDACs-EphA2 signaling axis with WW437 demonstrates promising preclinical antitumor activity in breast cancer. EBioMedicine. 2018; 31:276-286.

[51]

Landen Jr.CN, Chavez-Reyes A, BucanaC, et al. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res. 2005; 65(15):6910-6918.

[52]

ChangQ, Jorgensen C, PawsonT, HedleyDW. Effects of dasatinib on EphA2 receptor tyrosine kinase activity and downstream signalling in pancreatic cancer. Br J Cancer. 2008; 99(7):1074-1082.

[53]

YamaguchiS, Tatsumi T, TakeharaT, et al. Immunotherapy of murine colon cancer using receptor tyrosine kinase EphA2-derived peptide-pulsed dendritic cell vaccines. Cancer. 2007; 110(7):1469-1477.

[54]

FlugelCL, Majzner RG, KrenciuteG, et al. Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nat Rev Clin Oncol. 2023; 20(1):49-62.

[55]

HeymanB, YangY. Chimeric antigen receptor T cell therapy for solid tumors: current status, obstacles and future strategies. Cancers. 2019; 11(2):191.

[56]

Vander MauseER, Atanackovic D, LimCS, LuetkensT. Roadmap to affinity-tuned antibodies for enhanced chimeric antigen receptor T cell function and selectivity. Trends Biotechnol. 2022; 40(7):875-890.

[57]

VazAP, Ponnusamy MP, SeshacharyuluP, BatraSK. A concise review on the current understanding of pancreatic cancer stem cells. J Cancer Stem Cell Res. 2014; 2:e1004.

[58]

BiserovaK, Jakovlevs A, UljanovsR, StrumfaI. Cancer stem cells: significance in origin, pathogenesis and treatment of glioblastoma. Cells. 2021; 10(3):621.

[59]

CuiX, LiuR, DuanL, Cao D, ZhangQ, ZhangA. CAR-T therapy: prospects in targeting cancer stem cells. J Cell Mol Med. 2021; 25(21):9891-9904.

[60]

BindaE, Visioli A, GianiF, et al. The EphA2 receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas. Cancer Cell. 2012; 22(6):765-780.

[61]

SongW, MaY, WangJ, Brantley-Sieders D, ChenJ. JNK signaling mediates EPHA2-dependent tumor cell proliferation, motility, and cancer stem cell-like properties in non-small cell lung cancer. Cancer Res. 2014; 74(9):2444-2454.

[62]

Abou-El-EneinM. The fate(s) of CAR T-cell therapy: navigating the risks of CAR+ T-cell malignancy. Blood Cancer Discov. 2024; 5(4):249-257.

[63]

HamiltonMP, MiklosDB, AlizadehAA. Risk of second tumors and T-cell lymphoma after CAR T-cell therapy. Reply. N Engl J Med. 2024; 391(9):870-871.

[64]

FanJ, YuY, YanL, et al. GAS6-based CAR-T cells exhibit potent antitumor activity against pancreatic cancer. J Hematol Oncol. 2023; 16(1):77.

[65]

SunB, YangD, DaiH, et al. Eradication of hepatocellular carcinoma by NKG2D-based CAR-T cells. Cancer Immunol Res. 2019; 7(11):1813-1823.

[66]

YangD, SunB, ZhangX, et al. Huwe1 sustains normal ovarian epithelial cell transformation and tumor growth through the histone H1.3-H19 cascade. Cancer Res. 2017; 77(18):4773-4784.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm - Oncology published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).

AI Summary AI Mindmap
PDF

337

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/