Oxidative stress and cellular senescence: Roles in tumor progression and therapeutic opportunities

Ping Jin , Xu-Dong Feng , Cheng-Shuang Huang , Jia Li , Hui Wang , Xian-Mei Wang , Lei Li , Lan-Qing Ma

MEDCOMM - Oncology ›› 2024, Vol. 3 ›› Issue (4) : e70007

PDF
MEDCOMM - Oncology ›› 2024, Vol. 3 ›› Issue (4) : e70007 DOI: 10.1002/mog2.70007
REVIEW ARTICLE

Oxidative stress and cellular senescence: Roles in tumor progression and therapeutic opportunities

Author information +
History +
PDF

Abstract

Oxidative stress results from an imbalance between the production and neutralization of reactive oxygen species. It induces oxidative damage to cellular components including proteins, lipids, nucleic acids, and membranes, therefore intrinsically linking to aging-related diseases such as cancer, cardiovascular disease, and neurological disorders. Emerging evidence suggests that oxidative stress may promote tumor development by influencing various aspects of cellular senescence, such as its onset, pro-inflammatory secretion, and alteration of cellular function and structure. Modulating oxidative stress to target cellular senescence offers a novel strategy for cancer prevention and treatment. However, a thorough grasp of the specific mechanisms at play is lacking. This review will present the association between oxidative stress and cellular senescence and their regulatory role in tumor progression and treatment, with emphasis on senescence-associated secretory phenotype, immunosenescence and therapy-induced senescence. Current agents and strategies that remove side effects of cellular senescence via killing senescent cancer cells or modulating oxidative stress to improve antitumor efficacy will be summarized. This review will help readers better understand the complex relationship between oxidative stress and senescence in cancer, and will also provide a basis for further research in this area.

Keywords

cancer therapy / cellular senescence / oxidative stress / senescence-associated secretory phenotype / tumor

Cite this article

Download citation ▾
Ping Jin, Xu-Dong Feng, Cheng-Shuang Huang, Jia Li, Hui Wang, Xian-Mei Wang, Lei Li, Lan-Qing Ma. Oxidative stress and cellular senescence: Roles in tumor progression and therapeutic opportunities. MEDCOMM - Oncology, 2024, 3(4): e70007 DOI:10.1002/mog2.70007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SiesH, Belousov VV, ChandelNS, et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol. 2022;23(7):499-515.

[2]

LennickeC, Cochemé HM. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell. 2021;81(18):3691-3707.

[3]

PisoschiAM, PopA, IordacheF, Stanca L, PredoiG, SerbanAI. Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status. Eur J Med Chem. 2021;209:112891.

[4]

YuW, TuY, LongZ, et al. Reactive oxygen species bridge the gap between chronic inflammation and tumor development. Oxid Med Cell Longevity. 2022;2022:2606928.

[5]

KrukJ, Aboul-Enein HY, KładnaA, BowserJE. Oxidative stress in biological systems and its relation with pathophysiological functions: the effect of physical activity on cellular redox homeostasis. Free Radic Res. 2019;53(5):497-521.

[6]

SealeK, Horvath S, TeschendorffA, EynonN, VoisinS. Making sense of the ageing methylome. Nat Rev Genet. 2022;23(10):585-605.

[7]

MazharM, DinAU, AliH, et al. Implication of ferroptosis in aging. Cell Death Discov. 2021;7(1):149.

[8]

WarraichUA, Hussain F, KayaniHUR. Aging-oxidative stress, antioxidants and computational modeling. Heliyon. 2020;6(5):e04107.

[9]

SmithU, LiQ, RydénM, SpaldingKL. Cellular senescence and its role in white adipose tissue. Int J Obes. 2021;45(5):934-943.

[10]

LeeKS, LinS, CoplandDA, Dick AD, LiuJ. Cellular senescence in the aging retina and developments of senotherapies for age-related macular degeneration. J Neuroinflammation. 2021;18:32.

[11]

BakerDJ, Wijshake T, TchkoniaT, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479(7372):232-236.

[12]

ArfinS, JhaNK, JhaSK, et al. Oxidative stress in cancer cell metabolism. Antioxidants. 2021;10(5):642.

[13]

KuoC-L, Ponneri Babuharisankar A, LinY-C, et al. Mitochondrial oxidative stress in the tumor microenvironment and cancer immunoescape: foe or friend? J Biomed Sci. 2022;29(1):74.

[14]

YangE, WangX, GongZ, Yu M, WuH, ZhangD. Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5(1):242.

[15]

MaldonadoE, Morales-Pison S, UrbinaF, SolariA. Aging hallmarks and the role of oxidative stress. Antioxidants. 2023;12(3):651.

[16]

BeckJ, Turnquist C, HorikawaI, HarrisC. Targeting cellular senescence in cancer and aging: roles of p53 and its isoforms. Carcinogenesis. 2020;41(8):1017-1029.

[17]

ChenHA, HoYJ, MezzadraR, et al. Senescence rewires microenvironment sensing to facilitate antitumor immunity. Cancer Discov. 2023;13(2):432-453.

[18]

HuangZ, GanS, ZhuangX, et al. Artesunate inhibits the cell growth in colorectal cancer by promoting ROS-dependent cell senescence and autophagy. Cells. 2022;11(16):2472.

[19]

KlaunigJE. Oxidative stress and cancer. Curr Pharm Des. 2019;24(40):4771-4778.

[20]

BhatiyaM, PathakS, BanerjeeA. Oxidative stress and cellular senescence: the key tumor-promoting factors in colon cancer and beneficial effects of polyphenols in colon cancer prevention. Curr Cancer Ther Rev. 2021;17(4):292-303.

[21]

ShafabakhshR, ReiterRJ, MirzaeiH, Teymoordash SN, AsemiZ. Melatonin: a new inhibitor agent for cervical cancer treatment. J Cell Physiol. 2019;234(12):21670-21682.

[22]

MandalM, SarkarM, KhanA, et al. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) in plants-maintenance of structural individuality and functional blend. Adv Redox Res. 2022;5:100039.

[23]

JomovaK, Raptova R, AlomarSY, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol. 2023;97(10):2499-2574.

[24]

AugsburgerF, Filippova A, RastiD, et al. Pharmacological characterization of the seven human NOX isoforms and their inhibitors. Redox Biol. 2019;26:101272.

[25]

PircalabioruG, Aviello G, KubicaM, et al. Defensive mutualism rescues NADPH oxidase inactivation in gut infection. Cell Host Microbe. 2016;19(5):651-663.

[26]

KuaiL, HuangF, MaoL, et al. Single-atom catalysts with isolated Cu(1)-N(4) sites for atopic dermatitis cascade catalytic therapy via activating PPAR signaling. Small. 2024;e2407365.

[27]

ZhuB, WuJ, LiT, et al. A glutathione Peroxidase-mimicking nanozyme precisely alleviates reactive oxygen species and promotes periodontal bone regeneration. Adv Healthcare Mater. 2024;13(4):e2302485.

[28]

LenzenS, Lushchak VI, ScholzF. The pro-radical hydrogen peroxide as a stable hydroxyl radical distributor: lessons from pancreatic beta cells. Arch Toxicol. 2022;96(7):1915-1920.

[29]

CaoX, GuoH, DaiY, et al. Excessive linoleic acid induces muscle oxidative stress through 5-lipoxygenase-dependent peroxidation. Redox Biol. 2024;71:103096.

[30]

Mariyam, ShafiqM, SadiqS, et al. Identification and characterization of glycolate oxidase gene family in garden lettuce (Lactuca sativa cv. ‘Salinas’) and its response under various biotic, abiotic, and developmental stresses. Sci Rep. 2023;13(1):19686.

[31]

LeX, MuJ, PengW, et al. DNA methylation downregulated ZDHHC1 suppresses tumor growth by altering cellular metabolism and inducing oxidative/ER stress-mediated apoptosis and pyroptosis. Theranostics. 2020;10(21):9495-9511.

[32]

FanY, YuanY, XiongM, et al. Tet1 deficiency exacerbates oxidative stress in acute kidney injury by regulating superoxide dismutase. Theranostics. 2023;13(15):5348-5364.

[33]

RogerL, TomasF, GireV. Mechanisms and regulation of cellular senescence. Int J Mol Sci. 2021;22(23):13173.

[34]

LiangY, YangY, LuC, et al. Polystyrene nanoplastics exposure triggers spermatogenic cell senescence via the Sirt1/ROS axis. Ecotoxicol Environ Safety. 2024;279:116461.

[35]

PengY, DuJ, GüntherS, et al. Mechano-signaling via Piezo1 prevents activation and p53-mediated senescence of muscle stem cells. Redox Biol. 2022;52:102309.

[36]

FujitaK. P53 isoforms in cellular senescence-and ageing-associated biological and physiological functions. Int J Mol Sci. 2019;20(23):6023.

[37]

GhoshS, NguyenMT, ChoiHE, et al. RIOK2 transcriptionally regulates TRiC and dyskerin complexes to prevent telomere shortening. Nat Commun. 2024;15(1):7138.

[38]

ChanASL, ZhuH, NaritaM, et al. Titration of RAS alters senescent state and influences tumour initiation. Nature. 2024;633(8030):678-685.

[39]

WangL, LuZ, ZhaoJ, et al. Selective oxidative stress induces dual damage to telomeres and mitochondria in human T cells. Aging cell. 2021;20(12):e13513.

[40]

WangC, LiuX, ZhaiJ, et al. Effect of oxidative stress induced by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin on DNA damage. J Hazard Mater. 2024;472:134485.

[41]

JorgensenA, Brandslund I, EllervikC, et al. Oxidative stress-induced damage to RNA and DNA and mortality in individuals with psychiatric illness. JAMA Psychiatry. 2024;81(5):516-520.

[42]

RemiganteA, Morabito R. Cellular and molecular mechanisms in oxidative stress-related diseases. Int J Mol Sci. 2022;23(14):8017.

[43]

SasK, Szabó E, VécseiL. Mitochondria, oxidative stress and the kynurenine system, with a focus on ageing and neuroprotection. Molecules. 2018;23(1):191.

[44]

QianY, GuoY, LiY, et al. The antihypertensive effect of Alizarin is achieved by activating VEGFR2/eNOS pathway, attenuating oxidative stress-induced mitochondrial damage and premature senescence. Life Sci. 2024;351:122862.

[45]

ZhuX, LiW, LuM, et al. M(6)A demethylase FTO-stabilized exosomal circBRCA1 alleviates oxidative stress-induced granulosa cell damage via the miR-642a-5p/FOXO1 axis. J Nanobiotechnol. 2024;22(1):367.

[46]

SharmaV, MehdiMM. Oxidative stress, inflammation and hormesis: the role of dietary and lifestyle modifications on aging. Neurochem Int. 2023;164:105490.

[47]

Kandhaya-PillaiR, Miro-Mur F, Alijotas-ReigJ, et al. Key elements of cellular senescence involve transcriptional repression of mitotic and DNA repair genes through the p53-p16/RB-E2F-DREAM complex. Aging. 2023;15(10):4012-4034.

[48]

AmaniJ, Gorjizadeh N, YounesiS, et al. Cyclin-dependent kinase inhibitors (CDKIs) and the DNA damage response: the link between signaling pathways and cancer. DNA Repair. 2021;102:103103.

[49]

Lopes-PacienciaS, Saint-Germain E, RowellM-C, RuizAF, Kalegari P, FerbeyreG. The senescence-associated secretory phenotype and its regulation. Cytokine. 2019;117:15-22.

[50]

WuG, SongL, ZhuJ, et al. An ATM/TRIM37/NEMO axis counteracts genotoxicity by activating nuclear-to-cytoplasmic NF-κB signaling. Cancer Res. 2018;78(22):6399-6412.

[51]

WeiS, WuX, ChenM, et al. Exosomal-miR-129-2-3p derived from Fusobacterium nucleatum-infected intestinal epithelial cells promotes experimental colitis through regulating TIMELESS-mediated cellular senescence pathway. Gut Microbes. 2023;15(1):2240035.

[52]

NetterfieldTS, Ostheimer GJ, TentnerAR, et al. Biphasic JNK-Erk signaling separates the induction and maintenance of cell senescence after DNA damage induced by topoisomerase II inhibition. Cell Systems. 2023;14(7):582-604.e10.

[53]

SayeghS, Fantecelle CH, LaphanuwatP, et al. Vitamin D(3) inhibits p38 MAPK and senescence-associated inflammatory mediator secretion by senescent fibroblasts that impacts immune responses during ageing. Aging cell. 2024;23(4):e14093.

[54]

LooTM, MiyataK, TanakaY, Takahashi A. Cellular senescence and senescence-associated secretory phenotype via the cGAS-STING signaling pathway in cancer. Cancer Sci. 2020;111(2):304-311.

[55]

JiangGJ, YouXG, FanTJ. Carteolol triggers senescence via activation of β-arrestin-ERK-NOX4-ROS pathway in human corneal endothelial cells in vitro. Chemico-Biol Interact. 2023;380:110511.

[56]

ChibayaL, KarimB, ZhangH, Jones SN. Mdm2 phosphorylation by Akt regulates the p53 response to oxidative stress to promote cell proliferation and tumorigenesis. Proc Natl Acad Sci. 2021;118(4):e2003193118.

[57]

KhanD, ZhouH, YouJ, KaiserVA, KhajuriaRK, Muhammad S. Tobacco smoke condensate-induced senescence in endothelial cells was ameliorated by colchicine treatment via suppression of NF-κB and MAPKs P38 and ERK pathways activation. Cell Commun Signaling. 2024;22(1):214.

[58]

WuD, ZhangM, BaoTT, Lan H. Long-term exposure to polystyrene microplastics triggers premature testicular aging. Part Fibre Toxicol. 2023;20(1):35.

[59]

LachkeSA. RNA-binding proteins and post-transcriptional regulation in lens biology and cataract: mediating spatiotemporal expression of key factors that control the cell cycle, transcription, cytoskeleton and transparency. Exp Eye Res. 2022;214:108889.

[60]

KimJY, LeeJ, KangMH, et al. Dynamic landscape of long noncoding RNAs during leaf aging in Arabidopsis. Front Plant Sci. 2022;13:1068163.

[61]

XuB, MengY, JinY. RNA structures in alternative splicing and back-splicing. Wiley Interdiscip Rev: RNA. 2021;12(1):e1626.

[62]

LiH, WangZ, MaT, WeiG, NiT. Alternative splicing in aging and age-related diseases. Transl Med Aging. 2017;1:32-40.

[63]

WangH, YangL, LiuM, LuoJ. Protein post-translational modifications in the regulation of cancer hallmarks. Cancer Gene Ther. 2023;30(4):529-547.

[64]

HeL, LiaoJ, LiuZ, et al. Multi-omic analysis of mandibuloacral dysplasia type a patient iPSC-derived MSC senescence reveals miR-311 as a novel biomarker for MSC senescence. Hum Mol Genet. 2023;32:ddad111.

[65]

BelhadjJ, SurinaS, HengstschlägerM, LomakinAJ. Form follows function: nuclear morphology as a quantifiable predictor of cellular senescence. Aging cell. 2023;22(12):e14012.

[66]

QiZ, YangW, XueB, et al. ROS-mediated lysosomal membrane permeabilization and autophagy inhibition regulate bleomycin-induced cellular senescence. Autophagy. 2024;20(9):2000-2016.

[67]

TranM, ReddyPH. Defective autophagy and mitophagy in aging and Alzheimer’s disease. Front Neurosci. 2021;14:612757.

[68]

YaoR-Q, RenC, XiaZ-F, Yao Y-M. Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles. Autophagy. 2021;17(2):385-401.

[69]

de Mera-RodríguezJA, Álvarez-HernánG, GañánY, Martín-Partido G, Rodríguez-León J, Francisco-MorcilloJ. Senescence-associated β-galactosidase activity in the developing avian retina. Dev Dyn: Off Publ Am Assoc Anatomists. 2019;248(9):850-865.

[70]

HöhnA, WeberD, JungT, et al. Happily (n) ever after: aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol. 2017;11:482-501.

[71]

PathakSJ, BaarK. Ketogenic diets and mitochondrial function: benefits for aging but not for athletes. Exerc Spotr Sci Rev. 2023;51(1):27-33.

[72]

YuB, MaJ, LiJ, WangD, WangZ, Wang S. Mitochondrial phosphatase PGAM5 modulates cellular senescence by regulating mitochondrial dynamics. Nat Commun. 2020;11(1):2549.

[73]

LeeYT, SaviniM, ChenT, et al. Mitochondrial GTP metabolism controls reproductive aging in C. elegans. Dev Cell. 2023;58(23):2718-2731.e7.

[74]

Correia-MeloC, Marques FD, AndersonR, et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016;35(7):724-742.

[75]

HanX, ZhangT, LiuH, MiY, GouX. Astrocyte senescence and Alzheimer’s disease: a review. Front Aging Neurosci. 2020;12:148.

[76]

HuangJ, MengP, WangC, Zhang Y, ZhouL. The relevance of organelle interactions in cellular senescence. Theranostics. 2022;12(5):2445-2464.

[77]

LeeJH, LeeJ. Endoplasmic reticulum (ER) stress and its role in pancreatic β-cell dysfunction and senescence in type 2 diabetes. Int J Mol Sci. 2022;23(9):4843.

[78]

AnerillasC, Mazan-Mamczarz K, HermanAB, et al. The YAP-TEAD complex promotes senescent cell survival by lowering endoplasmic reticulum stress. Nat Aging. 2023;3(10):1237-1250.

[79]

ZhangCY, ZhongWJ, LiuYB, et al. EETs alleviate alveolar epithelial cell senescence by inhibiting endoplasmic reticulum stress through the Trim25/Keap1/Nrf2 axis. Redox Biol. 2023;63:102765.

[80]

MaoX, BhartiP, ThaivalappilA, CaoK. Peroxisomal abnormalities and catalase deficiency in Hutchinson-Gilford progeria syndrome. Aging. 2020;12(6):5195-5208.

[81]

KimJ, BaiH. Peroxisomal stress response and inter-organelle communication in cellular homeostasis and aging. Antioxidants. 2022;11(2):192.

[82]

LiN, LiuF, YangP, et al. Aging and stress induced βcell senescence and its implication in diabetes development. Aging. 2019;11(21):9947-9959.

[83]

AmorimJA, Coppotelli G, RoloAP, PalmeiraCM, RossJM, SinclairDA. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev Endocrinol. 2022;18(4):243-258.

[84]

StabenowLK, Zibrova D, EnderC, et al. Oxidative glucose metabolism promotes senescence in vascular endothelial cells. Cells. 2022;11(14):2213.

[85]

ZhouW, YangX, WangH, Yao W, ChuD, WuF. Neuronal aerobic glycolysis exacerbates synapse loss in aging mice. Exp Neurol. 2024;371:114590.

[86]

ChenL, ZhangW, ChenD, et al. RBM4 dictates ESCC cell fate switch from cellular senescence to glutamine-addiction survival through inhibiting LKB1-AMPK-axis. Signal Transduct Target Ther. 2023;8(1):159.

[87]

van VlietT, Varela-Eirin M, WangB, et al. Physiological hypoxia restrains the senescence-associated secretory phenotype via AMPK-mediated mTOR suppression. Mol Cell. 2021;81(9):2041-2052.e6.

[88]

ShimuraT. Mitochondrial signaling pathways associated with DNA damage responses. Int J Mol Sci. 2023;24(7):6128.

[89]

SaginiK, Urbanelli L, CostanziE, et al. Oncogenic H-Ras expression induces fatty acid profile changes in human fibroblasts and extracellular vesicles. Int J Mol Sci. 2018;19(11):3515.

[90]

TsantilasKA, Cleghorn WM, BisbachCM, et al. An analysis of metabolic changes in the retina and retinal pigment epithelium of aging mice. Invest Opthalmol Visual Sci. 2021;62(14):20.

[91]

MölzerC, Wallner M, KernC, et al. Features of an altered AMPK metabolic pathway in Gilbert’s Syndrome, and its role in metabolic health. Sci Rep. 2016;6:30051.

[92]

LiuS, JiangX, CuiX, et al. Smooth muscle-specific HuR knockout induces defective autophagy and atherosclerosis. Cell Death Dis. 2021;12(4):385.

[93]

YangJ, LiuM, HongD, Zeng M, ZhangX. Corrigendum: the paradoxical role of cellular senescence in cancer. Front Cell Dev Biol. 2021;9:722205.

[94]

HuangW, Hickson LJ, EirinA, KirklandJL, LermanLO. Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol. 2022;18(10):611-627.

[95]

SalminenA. Immunosuppressive network promotes immunosenescence associated with aging and chronic inflammatory conditions. J Mol Med. 2021;99(11):1553-1569.

[96]

HaoX, WangC, ZhangR. Chromatin basis of the senescence-associated secretory phenotype. Trends Cell Biol. 2022;32(6):513-526.

[97]

TeoYV, Rattanavirotkul N, OlovaN, et al. Notch signaling mediates secondary senescence. Cell Rep. 2019;27(4):997-1007.e5.

[98]

KaleA, SharmaA, StolzingA, Desprez PY, CampisiJ. Role of immune cells in the removal of deleterious senescent cells. Immunity Ageing. 2020;17:16.

[99]

Kandhaya-PillaiR, Yang X, TchkoniaT, MartinGM, Kirkland JL, OshimaJ. TNF-α/IFN-γsynergy amplifies senescence-associated inflammation and SARS-CoV-2 receptor expression via hyper-activated JAK/STAT1. Aging Cell. 2022;21(6):e13646.

[100]

BairdL, Taguchi K, ZhangA, et al. A NRF2-induced secretory phenotype activates immune surveillance to remove irreparably damaged cells. Redox Biol. 2023;66:102845.

[101]

LaoY, CuiX, XuZ, et al. Glutaryl-CoA dehydrogenase suppresses tumor progression and shapes an anti-tumor microenvironment in hepatocellular carcinoma. J Hepatol. 2024;81:847-861.

[102]

Quintero-FabiánS, ArreolaR, Becerril-Villanueva E, et al. Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol. 2019;9:1370.

[103]

Martinez-ZubiaurreI, Hellevik T. Cancer-associated fibroblasts in radiotherapy: bystanders or protagonists? Cell Commun Signaling. 2023;21(1):108.

[104]

KaurJ, Adhikari M, SabolHM, et al. Single-cell transcriptomic analysis identifies senescent osteocytes that trigger bone destruction in breast cancer metastasis. Cancer Res. 2024;84:3936-3952.

[105]

RodriguesLP, Teixeira VR, Alencar-SilvaT, et al. Hallmarks of aging and immunosenescence: connecting the dots. Cytokine Growth Factor Rev. 2021;59:9-21.

[106]

SunM, McDonald SJ, BradyRD, O’BrienTJ, ShultzSR. The influence of immunological stressors on traumatic brain injury. Brain Behav Immun. 2018;69:618-628.

[107]

LianJ, YueY, YuW, ZhangY. Immunosenescence: a key player in cancer development. J Hematol Oncol. 2020;13(1):151.

[108]

NguyenV, Mendelsohn A, LarrickJW. Interleukin-7 and immunosenescence. J Immunol Res. 2017;2017:4807853.

[109]

SaeidiA, ChongYK, YongYK, et al. Concurrent loss of co-stimulatory molecules and functional cytokine secretion attributes leads to proliferative senescence of CD8(+) T cells in HIV/TB co-infection. Cell Immunol. 2015;297(1):19-32.

[110]

YildizO, Schroth J, TreeT, et al. Senescent-like blood lymphocytes and disease progression in amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflamm. 2023;10(1):e200042.

[111]

ChungDJ, Pronschinske KB, ShyerJA, et al. T-cell exhaustion in multiple myeloma relapse after autotransplant: optimal timing of immunotherapy. Cancer Immunol Res. 2016;4(1):61-71.

[112]

Garcia de MouraR, Covre LP, FantecelleCH, et al. PD-1 blockade modulates functional activities of exhausted-like T cell in patients with cutaneous leishmaniasis. Front Immunol. 2021;12:632667.

[113]

YawataN, Shirane M, WoonK, et al. Molecular signatures of natural killer cells in CMV-associated anterior uveitis, a new type of CMV-induced disease in immunocompetent individuals. Int J Mol Sci. 2021;22(7):3623.

[114]

Sanchez-CorreaB, CamposC, PeraA, et al. Natural killer cell immunosenescence in acute myeloid leukaemia patients: new targets for immunotherapeutic strategies? Cancer Immunol Immunother. 2016;65(4):453-463.

[115]

ReidyPT, Edvalson LT, McKenzieAI, PetrocelliJJ, Mahmassani ZS, DrummondMJ. Neuromuscular electrical stimulation and protein during bed rest increases CD11b(+) skeletal muscle macrophages but does not correspond to muscle size or insulin sensitivity. Appl Physiol, Nutr, Metab. 2020;45(11):1261-1269.

[116]

WadaH, Shibata Y, AbeY, et al. Flow cytometric identification and cell-line establishment of macrophages in naked mole-rats. Sci Rep. 2019;9(1):17981.

[117]

EgashiraM, HirotaY, Shimizu-HirotaR, et al. F4/80+macrophages contribute to clearance of senescent cells in the mouse postpartum uterus. Endocrinology. 2017;158(7):2344-2353.

[118]

ChenYC, ChouWY, FuTC, WangJS. Effects of normoxic and hypoxic exercise training on the bactericidal capacity and subsequent apoptosis of neutrophils in sedentary men. Eur J Appl Physiol. 2018;118(9):1985-1995.

[119]

WangK, LuoL, FuS, et al. PHGDH arginine methylation by PRMT1 promotes serine synthesis and represents a therapeutic vulnerability in hepatocellular carcinoma. Nat Commun. 2023;14(1):1011.

[120]

BulutO, KilicG, Domínguez-AndrésJ. Immune memory in aging: a wide perspective covering microbiota, brain, metabolism, and epigenetics. Clin Rev in Allergy Immunol. 2022;63(3):499-529.

[121]

BorgoniS, Kudryashova KS, BurkaK, de MagalhãesJP. Targeting immune dysfunction in aging. Ageing Res Rev. 2021;70:101410.

[122]

ZhuangH, ZhouZ, ZhangZ, et al. B3GNT3 overexpression promotes tumor progression and inhibits infiltration of CD8(+) T cells in pancreatic cancer. Aging. 2020;13(2):2310-2329.

[123]

BoieriM, Marchese E, PhamQM, et al. Thymic stromal lymphopoietin-stimulated CD4(+) T cells induce senescence in advanced breast cancer. Front Cell Dev Biol. 2022;10:1002692.

[124]

AhnMY, KimBJ, KimHJ, et al. Anti-cancer effect of dung beetle glycosaminoglycans on melanoma. BMC Cancer. 2019;19(1):9.

[125]

ZhuX, WangX, LiB, et al. A Three-in-one assembled nanoparticle containing peptide-radio-sensitizer conjugate and TLR7/8 agonist can initiate the cancer-immunity cycle to trigger antitumor immune response. Small. 2022;18(20):e2107001.

[126]

TomiharaK, ShinT, HurezVJ, et al. Aging-associated B7-DC+B cells enhance anti-tumor immunity via Th1 and Th17 induction. Aging Cell. 2012;11(1):128-138.

[127]

XiaA, ZhangY, XuJ, YinT, LuXJ. T cell dysfunction in cancer immunity and immunotherapy. Front Immunol. 2019;10:1719.

[128]

WangY, DongC, HanY, GuZ, SunC. Immunosenescence, aging and successful aging. Front Immunol. 2022;13:942796.

[129]

BleveA, MottaF, DuranteB, Pandolfo C, SelmiC, SicaA. Immunosenescence, inflammaging, and frailty: role of myeloid cells in age-related diseases. Clinical Reviews in Allergy &Immunology. 2023;64(2):123-144.

[130]

PrasannaPG, CitrinDE, HildesheimJ, et al. Therapy-Induced senescence: opportunities to improve anticancer therapy. JNCI: J Natl Cancer Inst. 2021;113(10):1285-1298.

[131]

RobertM, Kennedy BK, CrastaKC. Therapy-induced senescence through the redox lens. Redox Biol. 2024;74:103228.

[132]

BjelicaS, Diklić M, ĐikićD, et al. Hydroxyurea-induced senescent peripheral blood mesenchymal stromal cells inhibit bystander cell proliferation of JAK2V617F-positive human erythroleukemia cells. FEBS J. 2019;286(18):3647-3663.

[133]

SunY, WangX, LiuT, ZhuX, PanX. The multifaceted role of the SASP in atherosclerosis: from mechanisms to therapeutic opportunities. Cell Biosci. 2022;12(1):74.

[134]

YaoZ, MuraliB, RenQ, et al. Therapy-induced senescence drives bone loss. Cancer Res. 2020;80(5):1171-1182.

[135]

MuraliB, RenQ, LuoX, et al. Inhibition of the stromal p38MAPK/MK2 pathway limits breast cancer metastases and chemotherapy-induced bone loss. Cancer Res. 2018;78(19):5618-5630.

[136]

SchmittCA, WangB, DemariaM. Senescence and cancer -role and therapeutic opportunities. Nat Rev Clin Oncol. 2022;19(10):619-636.

[137]

RobersonRS, Kussick SJ, VallieresE, ChenSYJ, WuDY. Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Res. 2005;65(7):2795-2803.

[138]

GorgoulisV, AdamsPD, AlimontiA, et al. Cellular senescence: defining a path forward. Cell. 2019;179(4):813-827.

[139]

SalehT, Tyutyunyk-Massey L, GewirtzDA. Tumor cell escape from therapy-induced senescence as a model of disease recurrence after dormancy. Cancer Res. 2019;79(6):1044-1046.

[140]

BattramAM, Bachiller M, Martín-AntonioB. Senescence in the development and response to cancer with immunotherapy: a double-edged sword. Int J Mol Sci. 2020;21(12):4346.

[141]

ReimannM, LeeS, SchmittCA. Cellular senescence: neither irreversible nor reversible. J Exp Med. 2024;221(4):e20232136.

[142]

YardBD, GopalP, BannikK, Siemeister G, HagemannUB, AbazeedME. Cellular and genetic determinants of the sensitivity of cancer to α-particle irradiation. Cancer Res. 2019;79(21):5640-5651.

[143]

MilanovicM, FanDNY, BelenkiD, et al. Senescence-associated reprogramming promotes cancer stemness. Nature. 2018;553(7686):96-100.

[144]

AchuthanS, Santhoshkumar TR, PrabhakarJ, NairSA, PillaiMR. Drug-induced senescence generates chemoresistant stemlike cells with low reactive oxygen species. J Biol Chem. 2011;286(43):37813-37829.

[145]

KarabiciciM, Alptekin S, Fırtına Karagonlar Z, ErdalE. Doxorubicin-induced senescence promotes stemness and tumorigenicity in EpCAM-/CD133-nonstem cell population in hepatocellular carcinoma cell line, HuH-7. Mol Oncol. 2021;15(8):2185-2202.

[146]

MaramponF, Megiorni F, CameroS, et al. HDAC4 and HDAC6 sustain DNA double strand break repair and stem-like phenotype by promoting radioresistance in glioblastoma cells. Cancer Lett. 2017;397:1-11.

[147]

TakasugiM, Yoshida Y, HaraE, OhtaniN. The role of cellular senescence and SASP in tumour microenvironment. FEBS J. 2023;290(5):1348-1361.

[148]

ZhaoJ, OuB, HanD, et al. Tumor-derived CXCL5 promotes human colorectal cancer metastasis through activation of the ERK/Elk-1/Snail and AKT/GSK3β/β-catenin pathways. Mol Cancer. 2017;16(1):70.

[149]

ChenC, XuZQ, ZongYP, et al. CXCL5 induces tumor angiogenesis via enhancing the expression of FOXD1 mediated by the AKT/NF-κB pathway in colorectal cancer. Cell Death Dis. 2019;10(3):178.

[150]

ZhangD, ZhangJW, XuH, et al. Therapy-induced senescent tumor cell-derived extracellular vesicles promote colorectal cancer progression through SERPINE1-mediated NF-κB p65 nuclear translocation. Mol Cancer. 2024;23(1):70.

[151]

Morales-ValenciaJ, Lau L, Martí-NinT, OzerdemU, DavidG. Therapy-induced senescence promotes breast cancer cells plasticity by inducing Lipocalin-2 expression. Oncogene. 2022;41(38):4361-4370.

[152]

WangB, KohliJ, DemariaM. Senescent cells in cancer therapy: friends or foes? Trends Cancer. 2020;6(10):838-857.

[153]

WangS, Prizment A, ThyagarajanB, BlaesA. Cancer treatment-induced accelerated aging in cancer survivors: biology and assessment. Cancers. 2021;13(3):427.

[154]

BhatiaR, HoltanS, JurdiNE, Prizment A, BlaesA. Do cancer and cancer treatments accelerate aging? Curr Oncol Rep. 2022;24(11):1401-1412.

[155]

PiskorzWM, Cechowska-Pasko M. Senescence of tumor cells in anticancer therapy-beneficial and detrimental effects. Int J Mol Sci. 2022;23(19):11082.

[156]

BoussetL, GilJ. Targeting senescence as an anticancer therapy. Mol Oncol. 2022;16(21):3855-3880.

[157]

MarinI, BoixO, Garcia-GarijoA, et al. Cellular senescence is immunogenic and promotes antitumor immunity. Cancer Discov. 2023;13(2):410-431.

[158]

XueW, ZenderL, MiethingC, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007;445(7128):656-660.

[159]

VilgelmAE, Pawlikowski JS, LiuY, et al. Mdm2 and aurora kinase a inhibitors synergize to block melanoma growth by driving apoptosis and immune clearance of tumor cells. Cancer Res. 2015;75(1):181-193.

[160]

RuscettiM, MorrisJP, MezzadraR, et al. Senescence-induced vascular remodeling creates therapeutic vulnerabilities in pancreas cancer. Cell. 2021;184(18):4838-4839.

[161]

RuscettiM, MorrisJP, MezzadraR, et al. Senescence-induced vascular remodeling creates therapeutic vulnerabilities in pancreas cancer. Cell. 2020;181(2):424-441.e21.

[162]

LucasV, Cavadas C, AveleiraCA. Cellular senescence: from mechanisms to current biomarkers and senotherapies. Pharmacol Rev. 2023;75(4):675-713.

[163]

YousefzadehMJ, ZhuY, McGowanSJ, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18-28.

[164]

MyrianthopoulosV, Evangelou K, VasileiouPVS, et al. Senescence and senotherapeutics: a new field in cancer therapy. Pharmacol Ther. 2019;193:31-49.

[165]

JinP, DuanX, LiL, ZhouP, ZouCG, Xie K. Cellular senescence in cancer: molecular mechanisms and therapeutic targets. MedComm. 2024;5(5):e542.

[166]

AdmasuTD, RaeMJ, StolzingA. Dissecting primary and secondary senescence to enable new senotherapeutic strategies. Ageing Res Rev. 2021;70:101412.

[167]

RaffaeleM, Vinciguerra M. The costs and benefits of senotherapeutics for human health. Lancet Healthy Longevity. 2022;3(1):e67-e77.

[168]

RitterV, Krautter F, KleinD, JendrossekV, RudnerJ. Correction to: Bcl-2/Bcl-xL inhibitor ABT-263 overcomes hypoxia-driven radioresistence and improves radiotherapy. Cell Death Dis. 2022;13(4):367.

[169]

ChaibS, Tchkonia T, KirklandJL. Cellular senescence and senolytics: the path to the clinic. Nat Med. 2022;28(8):1556-1568.

[170]

ZhangH, XuX, ShouX, et al. Senolytic therapy enabled by senescent cell-sensitive biomimetic melanin nano-senolytics. Adv Healthc Mater. 2024;13(23):e2401085.

[171]

RibierreT, BacqA, DonnegerF, et al. Targeting pathological cells with senolytic drugs reduces seizures in neurodevelopmental mTOR-related epilepsy. Nature Neurosci. 2024;27(6):1125-1136.

[172]

WangL, XiongB, LuW, et al. Senolytic drugs dasatinib and quercetin combined with Carboplatin or Olaparib reduced the peritoneal and adipose tissue metastasis of ovarian cancer. Biomed Pharmacother. 2024;174:116474.

[173]

ImawariY, Nakanishi M. Senescence and senolysis in cancer: the latest findings. Cancer Sci. 2024;115(7):2107-2116.

[174]

JaberS, Warnier M, LeersC, et al. Targeting chemoresistant senescent pancreatic cancer cells improves conventional treatment efficacy. Mol Biomed. 2023;4(1):4.

[175]

ShahbandiA, RaoSG, AndersonAY, et al. BH3 mimetics selectively eliminate chemotherapy-induced senescent cells and improve response in TP53 wild-type breast cancer. Cell Death Differ. 2020;27(11):3097-3116.

[176]

ClearyJM, LimaCMSR, HurwitzHI, et al. A phase I clinical trial of navitoclax, a targeted high-affinity Bcl-2 family inhibitor, in combination with gemcitabine in patients with solid tumors. Invest New Drugs. 2014;32(5):937-945.

[177]

MuralidharanA, Sotocinal SG, YousefpourN, et al. Long-term male-specific chronic pain via telomere-and p53 mediated spinal cord cellular senescence. J Clin Invest. 2022;132(8):e151817.

[178]

WangC, VegnaS, JinH, et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature. 2019;574(7777):268-272.

[179]

LoisonI, PiogerA, PagetS, et al. O-GlcNAcylation inhibition redirects the response of colon cancer cells to chemotherapy from senescence to apoptosis. Cell Death Dis. 2024;15(10):762.

[180]

OyamaK, Iwagami Y, KobayashiS, et al. Removal of gemcitabine-induced senescent cancer cells by targeting glutaminase1 improves the therapeutic effect in pancreatic ductal adenocarcinoma. Int J Cancer. 2024;154(5):912-925.

[181]

GuerreroA, Herranz N, SunB, et al. Cardiac glycosides are broad-spectrum senolytics. Nat Metab. 2019;1(11):1074-1088.

[182]

MartinN, Soriani O, BernardD. Cardiac glycosides as senolytic compounds. Trends Mol Med. 2020;26(3):243-245.

[183]

ImranM, Aslam Gondal T, AtifM, et al. Apigenin as an anticancer agent. Phytother Res. 2020;34(8):1812-1828.

[184]

SasakiN, Itakura Y, ToyodaM. Rapamycin promotes endothelial-mesenchymal transition during stress-induced premature senescence through the activation of autophagy. Cell Commun Signaling. 2020;18(1):43.

[185]

LiuX, JiangD, HuangW, et al. Sirtuin 6 attenuates angiotensin II-induced vascular adventitial aging in rat aortae by suppressing the NF-κB pathway. Hypertension Res. 2021;44(7):770-780.

[186]

MaduroAT, Luís C, SoaresR. Ageing, cellular senescence and the impact of diet: an overview. Porto Biomed J. 2021;6(1):e120.

[187]

AnS, ChoSY, KangJ, et al. Inhibition of 3-phosphoinositide-dependent protein kinase 1 (PDK1) can revert cellular senescence in human dermal fibroblasts. Proc Natl Acad Sci. 2020;117(49):31535-31546.

[188]

PerrottKM, WileyCD, DesprezPY, Campisi J. Apigenin suppresses the senescence-associated secretory phenotype and paracrine effects on breast cancer cells. GeroScience. 2017;39(2):161-173.

[189]

LiuH, XuQ, WufuerH, et al. Rutin is a potent senomorphic agent to target senescent cells and can improve chemotherapeutic efficacy. Aging cell. 2024;23(1):e13921.

[190]

HuQ, PengJ, JiangL, et al. Metformin as a senostatic drug enhances the anticancer efficacy of CDK4/6 inhibitor in head and neck squamous cell carcinoma. Cell Death Dis. 2020;11(10):925.

[191]

NacarelliT, Fukumoto T, ZundellJA, et al. NAMPT inhibition suppresses cancer stem-like cells associated with therapy-induced senescence in ovarian cancer. Cancer Res. 2020;80(4):890-900.

[192]

LiD, FengD, WangX, et al. M7G-related molecular subtypes can predict the prognosis and correlate with immunotherapy and chemotherapy responses in bladder cancer patients. Eur J Med Res. 2023;28(1):55.

[193]

ZhongG, QinS, TownsendD, Schulte BA, TewKD, WangGY. Oxidative stress induces senescence in breast cancer stem cells. Biochem Biophys Res Commun. 2019;514(4):1204-1209.

[194]

LiX, LinF, WuY, et al. Resveratrol attenuates inflammation environment-induced nucleus pulposus cell senescence in vitro. Biosci Rep. 2019;39(5):BSR20190126.

[195]

JiS, ZhengZ, LiuS, et al. Resveratrol promotes oxidative stress to drive DLC1 mediated cellular senescence in cancer cells. Exp Cell Res. 2018;370(2):292-302.

[196]

BianY, WangX, ZhengZ, et al. Resveratrol drives cancer cell senescence via enhancing p38MAPK and DLC1 expressions. Food Funct. 2022;13(6):3283-3293.

[197]

MaF, MaY, LiuK, et al. Resveratrol induces DNA damage-mediated cancer cell senescence through the DLC1-DYRK1A-EGFR axis. Food Funct. 2023;14(3):1484-1497.

[198]

OstwalV, Ramaswamy A, BhargavaP, et al. A pro-oxidant combination of resveratrol and copper reduces chemotherapy-related non-haematological toxicities in advanced gastric cancer: results of a prospective open label phase II single-arm study (RESCU III study). Med Oncol. 2022;40(1):17.

[199]

HouJ, YunY, XueJ, JeonB, KimS. Doxorubicin-induced normal breast epithelial cellular aging and its related breast cancer growth through mitochondrial autophagy and oxidative stress mitigated by ginsenoside Rh2. Phytother Res. 2020;34(7):1659-1669.

[200]

MamunAA, SufianMA, UddinMS, et al. Exploring the role of senescence inducers and senotherapeutics as targets for anticancer natural products. Eur J Pharmacol. 2022;928:174991.

[201]

LestariB, Nakamae I, Yoneda-KatoN, et al. Pentagamavunon-1 (PGV-1) inhibits ROS metabolic enzymes and suppresses tumor cell growth by inducing M phase (prometaphase) arrest and cell senescence. Sci Rep. 2019;9(1):14867.

[202]

WangT, WuX, Al RudaisatM, SongY, ChengH. Curcumin induces G2/M arrest and triggers autophagy, ROS generation and cell senescence in cervical cancer cells. J Cancer. 2020;11(22):6704-6715.

[203]

SongN, KimAJ, KimHJ, et al. Melatonin suppresses doxorubicin-induced premature senescence of A549 lung cancer cells by ameliorating mitochondrial dysfunction. J Pineal Res. 2012;53(4):335-343.

[204]

LiangC, YiK, ZhouX, et al. Destruction of the cellular antioxidant pool contributes to resveratrol-induced senescence and apoptosis in lung cancer. Phytother Res. 2023;37(7):2995-3008.

[205]

BanerjeeK, MandalM. Oxidative stress triggered by naturally occurring flavone apigenin results in senescence and chemotherapeutic effect in human colorectal cancer cells. Redox Biol. 2015;5:153-162.

[206]

ZhengK, MaJ, WangY, He Z, DengK. Sulforaphane inhibits autophagy and induces exosome-mediated paracrine senescence via regulating mTOR/TFE3. Mol Nutr Food Res. 2020;64(14):e1901231.

[207]

ChenSY, LiuGH, ChaoWY, et al. Piperlongumine suppresses proliferation of human oral squamous cell carcinoma through cell cycle arrest, apoptosis and senescence. Int J Mol Sci. 2016;17(4):616.

[208]

ChenL, YangR, QiaoW, et al. 1, 25-Dihydroxy vitamin D prevents tumorigenesis by inhibiting oxidative stress and inducing tumor cellular senescence in mice. Int J Cancer. 2018;143(2):368-382.

[209]

RussoM, MocciaS, SpagnuoloC, Tedesco I, RussoGL. Carotenoid-enriched nanoemulsions and γ-rays synergistically induce cell death in a novel radioresistant osteosarcoma cell line. Int J Mol Sci. 2022;23(24):15959.

[210]

GaoFH, LiuF, WeiW, et al. Oridonin induces apoptosis and senescence by increasing hydrogen peroxide and glutathione depletion in colorectal cancer cells. Int J Mol Med. 2012;29(4):649-655.

[211]

RzeszutekI, Cybularczyk-Cecotka M, DeręgowskaA, et al. New mitochondria-targeted fisetin derivative compromises mitophagy and limits survival of Drug-Induced senescent breast cancer cells. J Med Chem. 2024;67(19):17676-17689.

[212]

AmorC, FeuchtJ, LeiboldJ, et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature. 2020;583(7814):127-132.

[213]

YangD, SunB, LiS, et al. NKG2D-CAR T cells eliminate senescent cells in aged mice and nonhuman primates. Sci Transl Med. 2023;15(709):eadd1951.

[214]

LiuS, LiK, HeY, et al. PGC1α-inducing senomorphic nanotherapeutics functionalized with NKG2D-overexpressing cell membranes for intervertebral disc degeneration. Adv Sci. 2024;11(22):e2400749.

[215]

MajewskaJ, Agrawal A, MayoA, et al. p16-dependent increase of PD-L1 stability regulates immunosurveillance of senescent cells. Nat Cell Biol. 2024;26(8):1336-1345.

[216]

WangTW, Johmura Y, SuzukiN, et al. Blocking PD-L1-PD-1 improves senescence surveillance and ageing phenotypes. Nature. 2022;611(7935):358-364.

[217]

ChibayaL, MurphyKC, DeMarcoKD, et al. EZH2 inhibition remodels the inflammatory senescence-associated secretory phenotype to potentiate pancreatic cancer immune surveillance. Nat Cancer. 2023;4(6):872-892.

[218]

KubiatowiczLJ, Mohapatra A, KrishnanN, FangRH, ZhangL. mRNA nanomedicine: design and recent applications. Exploration. 2022;2(6):20210217.

[219]

WakitaM, Takahashi A, SanoO, et al. A BET family protein degrader provokes senolysis by targeting NHEJ and autophagy in senescent cells. Nat Commun. 2020;11(1):1935.

[220]

HeY, ZhangX, ChangJ, et al. Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. Nat Commun. 2020;11(1):1996.

[221]

Estepa-FernándezA, García-FernándezA, Lérida-VisoA, et al. Combination of palbociclib with navitoclax based-therapies enhances in vivo antitumoral activity in triple-negative breast cancer. Pharmacol Res. 2023;187:106628.

[222]

GuoL, ChenH, DingJ, Rong P, SunM, ZhouW. Surface engineering salmonella with pH-responsive polyserotonin and self-activated DNAzyme for better microbial therapy of tumor. Exploration. 2023;3(6):20230017.

[223]

ChibayaL, DeMarco KD, LusiCF, et al. Nanoparticle delivery of innate immune agonists combined with senescence-inducing agents promotes T cell control of pancreatic cancer. Sci Transl Med. 2024;16(762):eadj9366.

[224]

GongK, JiaoJ, WuZ, et al. Nanosystem delivers senescence activators and immunomodulators to combat liver cancer. Adv Sci. 2024;11(20):e2308310.

[225]

ZhangJW, ZhangD, YinHS, et al. Fusobacterium nucleatum promotes esophageal squamous cell carcinoma progression and chemoresistance by enhancing the secretion of chemotherapy-induced senescence-associated secretory phenotype via activation of DNA damage response pathway. Gut Microbes. 2023;15(1):2197836.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm – Oncology published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).

AI Summary AI Mindmap
PDF

211

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/