Epigenetic remodeling under oxidative stress: Mechanisms driving tumor metastasis

Peilan Peng , Siyuan Qin , Lei Li , Zhijun He , Bowen Li , Edouard C. Nice , Li Zhou , Yunlong Lei

MEDCOMM - Oncology ›› 2024, Vol. 3 ›› Issue (4) : e70000

PDF
MEDCOMM - Oncology ›› 2024, Vol. 3 ›› Issue (4) : e70000 DOI: 10.1002/mog2.70000
REVIEW ARTICLE

Epigenetic remodeling under oxidative stress: Mechanisms driving tumor metastasis

Author information +
History +
PDF

Abstract

Tumor metastasis is a multistep, inefficient process orchestrated by diverse signaling pathways. Compared to primary tumor cells, disseminated tumor cells inevitably encounter higher oxidative stress in foreign environments. The levels of reactive oxygen species (ROS) fluctuate dynamically during different metastatic stages, adding complexity to the regulation of metastatic progression. Numerous studies suggest that epigenetic remodeling, a key reversible mechanism of gene regulation, plays a critical role in responding to oxidative stress and controlling gene expression profiles that drive metastasis. Despite extensive research, a comprehensive understanding of how oxidative stress impacts metastasis through epigenetic modifications remains elusive, such as DNA methylation, histone modification, ncRNAs, and m6A modification. Epigenetic therapeutic strategies, such as DNMT inhibitors, HDAC inhibitors (HDACis), and miRNA mimics, have shown promise, yet challenges related to immunogenicity, specificity, and delivery also exist. Furthermore, due to limited understanding, some drugs targeting m6A modification have yet to be explored. In this review, we provided an overview of how oxidative stress influences tumor metastatic behavior, summarized the epigenetic mechanisms involved in these processes, and reviewed the latest advancements in epigenetic-targeted therapies, which may pave the way to develop novel strategy for preventing or treating tumor metastasis.

Keywords

cancer therapy / epigenetic remodeling / metastasis / oxidative stress

Cite this article

Download citation ▾
Peilan Peng, Siyuan Qin, Lei Li, Zhijun He, Bowen Li, Edouard C. Nice, Li Zhou, Yunlong Lei. Epigenetic remodeling under oxidative stress: Mechanisms driving tumor metastasis. MEDCOMM - Oncology, 2024, 3(4): e70000 DOI:10.1002/mog2.70000

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BrayF, Laversanne M, SungH, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263.

[2]

Puente-CobachoB, Varela-López A, QuilesJL, Vera-RamirezL. Involvement of redox signalling in tumour cell dormancy and metastasis. Cancer Metastasis Rev. 2023;42(1):49-85.

[3]

MittalV. Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol: Mech Dis. 2018;13:395-412.

[4]

LiB, MingH, QinS, et al. HSPA8 activates Wnt/β-catenin signaling to facilitate BRAF V600E colorectal cancer progression by CMA-Mediated CAV1 degradation. Adv Sci. 2024;11(3):e2306535.

[5]

WanL, PantelK, KangY. Tumor metastasis: moving new biological insights into the clinic. Nature Med. 2013;19(11):1450-1464.

[6]

GerstbergerS, JiangQ, GaneshK. Metastasis. Cell. 2023;186(8):1564-1579.

[7]

GorriniC, HarrisIS, MakTW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discovery. 2013;12(12):931-947.

[8]

JiangT, SunQ, ChenS. Oxidative stress: a major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog Neurobiol. 2016;147:1-19.

[9]

LeBleuVS, O’Connell JT, GonzalezHerrera, KN, et al. PGC-1αmediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nature Cell Biol. 2014;16(10):992-10031-15.

[10]

ChioIIC, Tuveson DA. ROS in cancer: the burning question. Trends Mol Med. 2017;23(5):411-429.

[11]

Cubillos-RuizJR, Bettigole SE, GlimcherLH. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell. 2017;168(4):692-706.

[12]

BasnetH, TianL, GaneshK, et al. Flura-seq identifies organ-specific metabolic adaptations during early metastatic colonization. eLife. 2019;8:e43627.

[13]

Peiris-PagèsM, Martinez-Outschoorn UE, SotgiaF, LisantiMP. Metastasis and oxidative stress: are antioxidants a metabolic driver of progression? Cell Metab. 2015;22(6):956-958.

[14]

CristSB, NemkovT, DumpitRF, et al. Unchecked oxidative stress in skeletal muscle prevents outgrowth of disseminated tumour cells. Nature Cell Biol. 2022;24(4):538-553.

[15]

DongS, LiangS, ChengZ, et al. ROS/PI3K/Akt and Wnt/β-catenin signalings activate HIF-1α-induced metabolic reprogramming to impart 5-fluorouracil resistance in colorectal cancer. J Exp Clin Cancer Res. 2022;41(1):15.

[16]

AkhtarM, HaiderA, RashidS, Al-Nabet ADMH. Paget’s “seed and soil”theory of cancer metastasis: an idea whose time has come. Adv Anat Pathol. 2019;26(1):69-74.

[17]

GaladariS, RahmanA, PallichankandyS, ThayyullathilF. Reactive oxygen species and cancer paradox: to promote or to suppress? Free Radic Biol Med. 2017;104:144-164.

[18]

HayesJD, Dinkova-Kostova AT, TewKD. Oxidative stress in cancer. Cancer Cell. 2020;38(2):167-197.

[19]

WangY, QiH, LiuY, et al. The double-edged roles of ROS in cancer prevention and therapy. Theranostics. 2021;11(10):4839-4857.

[20]

AfrinS, Giampieri F, Forbes-HernándezTY, et al. Manuka honey synergistically enhances the chemopreventive effect of 5-fluorouracil on human colon cancer cells by inducing oxidative stress and apoptosis, altering metabolic phenotypes and suppressing metastasis ability. Free Radic Biol Med. 2018;126:41-54.

[21]

CheungEC, DeNicola GM, NixonC, et al. Dynamic ROS control by TIGAR regulates the initiation and progression of pancreatic cancer. Cancer Cell. 2020;37(2):168-182.e4.

[22]

BhatAV, HoraS, PalA, JhaS, TanejaR. Stressing the (Epi)Genome: dealing with reactive oxygen species in cancer. Antioxid Redox Signaling. 2018;29(13):1273-1292.

[23]

Afanas’evI. New nucleophilic mechanisms of ros-dependent epigenetic modifications: comparison of aging and cancer. Aging Dis. 2014;5(1):52-62.

[24]

ZiechD, FrancoR, PappaA, Panayiotidis MI. Reactive oxygen species (ROS)-induced genetic and epigenetic alterations in human carcinogenesis. Mutat Res/Fundam Mol. Mech. Mutagenesis. 2011;711(1-2):167-173.

[25]

ZhangR, KangKA, KimKC, et al. Oxidative stress causes epigenetic alteration of CDX1 expression in colorectal cancer cells. Gene. 2013;524(2):214-219.

[26]

MustafaS, PawarJS, GhoshI. Fucoidan induces ROS-dependent epigenetic modulation in cervical cancer HeLa cell. Int J Biiol Macromol. 2021;181:180-192.

[27]

LeeAV, Nestler KA, ChiappinelliKB. Therapeutic targeting of DNA methylation alterations in cancer. Pharmacol Ther. 2024;258:108640.

[28]

Van TongelenA, LoriotA, De SmetC. Oncogenic roles of DNA hypomethylation through the activation of cancer-germline genes. Cancer Lett. 2017;396:130-137.

[29]

AuerkariEI. Methylation of tumor suppressor genes p16(INK4a), p27(Kip1) and E-cadherin in carcinogenesis. Oral Oncol. 2006;42(1):4-12.

[30]

MonksTJ, XieR, TikooK, Lau SS. Ros-induced histone modifications and their role in cell survival and cell death. Drug Metab Rev. 2006;38(4):755-767.

[31]

McGintyRK, TanS. Nucleosome structure and function. Chem Rev. 2015;115(6):2255-2273.

[32]

WangJ, ZhuS, MengN, He Y, LuR, YanGR. ncRNA-Encoded peptides or proteins and cancer. Mol Ther. 2019;27(10):1718-1725.

[33]

ZuoJ, ZhangZ, LiM, et al. The crosstalk between reactive oxygen species and noncoding RNAs: from cancer code to drug role. Mol Cancer. 2022;21(1):30.

[34]

van der WerfJ, ChinC, FlemingN. SnoRNA in cancer progression, metastasis and immunotherapy response. Biology. 2021;10(8):809.

[35]

YaoF, MaL. piRNA-unbound PIWIL1 promotes metastasis. Nature Cell Biol. 2020;22(4):359-360.

[36]

LiuSJ, DangHX, LimDA, Feng FY, MaherCA. Long noncoding RNAs in cancer metastasis. Nat Rev Cancer. 2021;21(7):446-460.

[37]

HuangW, LiH, YuQ, XiaoW, WangDO. LncRNA-mediated DNA methylation: an emerging mechanism in cancer and beyond. J Exp Clin Cancer Res. 2022;41(1):100.

[38]

LuJ, HuangY, ZhangX, Xu Y, NieS. Noncoding RNAs involved in DNA methylation and histone methylation, and acetylation in diabetic vascular complications. Pharmacol Res. 2021;170:105520.

[39]

SunR, YuanL, JiangY, et al. ALKBH5 activates FAK signaling through m6A demethylation in ITGB1 mRNA and enhances tumor-associated lymphangiogenesis and lymph node metastasis in ovarian cancer. Theranostics. 2023;13(2):833-848.

[40]

ChenX, YuanL, ZhangL, et al. GPX8 deficiency-induced oxidative stress reprogrammed m6A epitranscriptome of oral cancer cells. Epigenetics. 2023;18(1):2208707.

[41]

ChengYT, YangCC, ShyurLF. Phytomedicine-modulating oxidative stress and the tumor microenvironment for cancer therapy. Pharmacol Res. 2016;114:128-143.

[42]

Garcia-MartinezL, Zhang Y, NakataY, ChanHL, MoreyL. Epigenetic mechanisms in breast cancer therapy and resistance. Nat Commun. 2021;12(1):1786.

[43]

ReczekCR, Chandel NS. ROS promotes cancer cell survival through calcium signaling. Cancer Cell. 2018;33(6):949-951.

[44]

HaoM, HuangB, WuR, PengZ, LuoKQ. The interaction between macrophages and triple-negative breast cancer cells induces ROS-mediated interleukin 1αexpression to enhance tumorigenesis and metastasis. Adv Sci. 2023;10(29):e2302857.

[45]

PowersJA, ChioIIC. Softening redox homeostasis in cancer cells. Nature Cell Biol. 2022;24(2):133-134.

[46]

DeAngeloSL, Győrffy B, KoutmosM, ShahYM. Selenoproteins and tRNA-Sec: regulators of cancer redox homeostasis. Trends in Cancer. 2023;9(12):1006-1018.

[47]

KlaunigJE. Oxidative stress and cancer. Curr Pharm Des. 2019;24(40):4771-4778.

[48]

JanbandhuV, Tallapragada V, PatrickR, et al. Hif-1a suppresses ROS-induced proliferation of cardiac fibroblasts following myocardial infarction. Cell Stem Cell. 2022;29(2):281-297.e12.

[49]

Friedmann AngeliJP, Meierjohann S. NRF2-dependent stress defense in tumor antioxidant control and immune evasion. Pigm Cell Melanoma Res. 2021;34(2):268-279.

[50]

MatsuzawaA, Nishitoh H, TobiumeK, TakedaK, IchijoH. Physiological roles of ASK1-mediated signal transduction in oxidative stress-and endoplasmic reticulum stress-induced apoptosis: advanced findings from ASK1 knockout mice. Antioxid Redox Signaling. 2002;4(3):415-425.

[51]

YangH, WeiZ, SongY, et al. NUAK1 promotes tumor metastasis through upregulating slug transcription in esophageal squamous cell carcinoma. Cancer Cell Int. 2023;23(1):258.

[52]

FangK, GongM, LiuD, et al. FOXM1/KIF20A axis promotes clear cell renal cell carcinoma progression via regulating EMT signaling and affects immunotherapy response. Heliyon. 2023;9(12):e22734.

[53]

EbrahimiN, Adelian S, ShakerianS, et al. Crosstalk between ferroptosis and the epithelial-mesenchymal transition: implications for inflammation and cancer therapy. Cytokine Growth Factor Rev. 2022;64:33-45.

[54]

ZorovDB, Juhaszova M, SollottSJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94(3):909-950.

[55]

PopracP, JomovaK, SimunkovaM, Kollar V, RhodesCJ, ValkoM. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci. 2017;38(7):592-607.

[56]

LiuJ, ZhuH, LinL, et al. Redox imbalance triggered intratumoral cascade reaction for tumor “turn on”imaging and synergistic therapy. Small. 2023;19(16):e2206272.

[57]

MoloneyJN, CotterTG. ROS signalling in the biology of cancer. Semin Cell Dev Biol. 2018;80:50-64.

[58]

JakubczykK, DecK, KałduńskaJ, KawczugaD, Kochman J, JandaK. Reactive oxygen species - sources, functions, oxidative damage. Polski merkuriusz lekarski: organ Polskiego Towarzystwa Lekarskiego. 2020;48(284):124-127.

[59]

WuGJ, ChenTG, ChangHC, Chiu WT, ChangCC, ChenRM. Nitric oxide from both exogenous and endogenous sources activates mitochondria-dependent events and induces insults to human chondrocytes. J Cell Biochem. 2007;101(6):1520-1531.

[60]

MantonK, Volovik S, KulminskiA. ROS effects on neurodegeneration in Alzheimer’s disease and related disorders: on environmental stresses of ionizing radiation. Curr Alzheimer Res. 2004;1(4):277-293.

[61]

LiuX, ChenZ. The pathophysiological role of mitochondrial oxidative stress in lung diseases. J Transl Med. 2017;15(1):207.

[62]

IbrahimIM, Abdelmalek DH, ElfikyAA. GRP78: A cell’s response to stress. Life Sci. 2019;226:156-163.

[63]

Del RíoLA, López-Huertas E. ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol. 2016;57(7):pcw076.

[64]

IatsenkoI, Boquete JP, LemaitreB. Microbiota-derived lactate activates production of reactive oxygen species by the intestinal NADPH oxidase nox and shortens drosophila lifespan. Immunity. 2018;49(5):929-942.e5.

[65]

ZhangJ, Tripathi DN, JingJ, et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nature Cell Biol. 2015;17(10):1259-1269.

[66]

ZhangY, RohYJ, HanSJ, et al. Role of selenoproteins in redox regulation of signaling and the antioxidant system: a review. Antioxidants. 2020;9(5):383.

[67]

BanuSK, Stanley JA, SivakumarKK, AroshJA, Burghardt RC. Resveratrol protects the ovary against chromium-toxicity by enhancing endogenous antioxidant enzymes and inhibiting metabolic clearance of estradiol. Toxicol Appl Pharmacol. 2016;303:65-78.

[68]

GetzoffED, Cabelli DE, FisherCL, et al. Faster superoxide dismutase mutants designed by enhancing electrostatic guidance. Nature. 1992;358(6384):347-351.

[69]

HuntCR, SimJE, SullivanSJ, et al. Genomic instability and catalase gene amplification induced by chronic exposure to oxidative stress. Cancer Res. 1998;58(17):3986-3992.

[70]

LuoT, ZhengQ, ShaoL, Ma T, MaoL, WangM. Intracellular delivery of glutathione peroxidase degrader induces ferroptosis in vivo. Angew Chem Int Ed. 2022;61(39):e202206277.

[71]

RobbinsME, ChoHY, HansenJM, et al. Glutathione reductase deficiency alters lung development and hyperoxic responses in neonatal mice. Redox Biol. 2021;38:101797.

[72]

LiS, ZhangY, LuR, et al. Peroxiredoxin 1 aggravates acute kidney injury by promoting inflammation through Mincle/Syk/NF-κB signaling. Kidney Int. 2023;104(2):305-323.

[73]

VitaleGA, Coppola D, Palma EspositoF, et al. Antioxidant molecules from marine fungi: methodologies and perspectives. Antioxidants. 2020;9(12):1183.

[74]

Arias-MayencoI, González-Rodríguez P, Torres-TorreloH, et al. Acute O(2) sensing: role of coenzyme QH(2)/Q ratio and mitochondrial ROS compartmentalization. Cell Metab. 2018;28(1):145-158.e4.

[75]

WangP, CuiY, LiuY, et al. Mitochondrial ferritin alleviates apoptosis by enhancing mitochondrial bioenergetics and stimulating glucose metabolism in cerebral ischemia reperfusion. Redox Biol. 2022;57:102475.

[76]

PaulBD, SbodioJI, SnyderSH. Cysteine metabolism in neuronal redox homeostasis. Trends Pharmacol Sci. 2018;39(5):513-524.

[77]

IslamMT, SarkarC, HossainR, et al. Therapeutic strategies for rheumatic diseases and disorders: targeting redox imbalance and oxidative stress. Biomed Pharmacother. 2023;164:114900.

[78]

XuY, FangF, MiriyalaS, et al. KEAP1 is a redox sensitive target that arbitrates the opposing radiosensitive effects of parthenolide in normal and cancer cells. Cancer Res. 2013;73(14):4406-4417.

[79]

ChiuHY, TayEXY, OngDST, Taneja R. Mitochondrial dysfunction at the center of cancer therapy. Antioxid Redox Signaling. 2020;32(5):309-330.

[80]

WuK, El Zowalaty AE, SayinVI, PapagiannakopoulosT. The pleiotropic functions of reactive oxygen species in cancer. Nature Cancer. 2024;5(3):384-399.

[81]

CebulaM, Schmidt EE, ArnérESJ. TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid Redox Signaling. 2015;23(10):823-853.

[82]

ItohK, Wakabayashi N, KatohY, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999;13(1):76-86.

[83]

WuWL, Papagiannakopoulos T. The pleiotropic role of the KEAP1/NRF2 pathway in cancer. Annu Rev Cancer Biol. 2020;4(1):413-435.

[84]

ChoiS, JeongHJ, KimH, et al. Skeletal muscle-specific Prmt1 deletion causes muscle atrophy via deregulation of the PRMT6-FOXO3 axis. Autophagy. 2019;15(6):1069-1081.

[85]

GlorieuxC, LiuS, TrachoothamD, HuangP. Targeting ROS in cancer: rationale and strategies. Nat Rev Drug Discovery. 2024;23(8):583-606.

[86]

LiaoZ, ChuaD, TanNS. Reactive oxygen species: a volatile driver of field cancerization and metastasis. Mol Cancer. 2019;18(1):65.

[87]

SuhailY, CainMP, VanajaK, et al. Systems biology of cancer metastasis. Cell Systems. 2019;9(2):109-127.

[88]

MingH, LiB, JiangJ, et al. Protein degradation: expanding the toolbox to restrain cancer drug resistance. J Hematol Oncol. 2023;16(1):6.

[89]

HuangZ, ZhangZ, ZhouC, Liu L, HuangC. Epithelial-mesenchymal transition: the history, regulatory mechanism, and cancer therapeutic opportunities. MedComm. 2022;3(2):e144.

[90]

YuM, BardiaA, WittnerBS, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339(6119):580-584.

[91]

PaniG, Galeotti T, ChiarugiP. Metastasis: cancer cell’s escape from oxidative stress. Cancer Metastasis Rev. 2010;29(2):351-378.

[92]

ChatterjeeR, Chatterjee J. ROS and oncogenesis with special reference to EMT and stemness. EJCB. 2020;99(2-3):151073.

[93]

BryanBA, D’Amore PA. What tangled webs they weave: Rho-GTPase control of angiogenesis. Cell Mol Life Sci. 2007;64(16):2053-2065.

[94]

RaghavanA, RaoP, NeuzilJ, Pountney DL, NathS. Oxidative stress and Rho GTPases in the biogenesis of tunnelling nanotubes: implications in disease and therapy. Cell Mol Life Sci. 2021;79(1):36.

[95]

MoldovanL, Mythreye K, Goldschmidt-ClermontP, SatterwhiteL. Reactive oxygen species in vascular endothelial cell motility. Roles of NAD(P)H oxidase and Rac1. Cardiovasc Res. 2006;71(2):236-246.

[96]

MoldovanL, IraniK, MoldovanNI, Finkel T, Goldschmidt-ClermontPJ. The actin cytoskeleton reorganization induced by Rac1 requires the production of superoxide. Antioxid Redox Signaling. 1999;1(1):29-43.

[97]

ChenYH, HsuJY, ChuCT, et al. Loss of cell-cell adhesion triggers cell migration through Rac1-dependent ROS generation. Life Science Alliance. 2022;6(2):e202201529.

[98]

SternS, HiltonBJ, BurnsideER, et al. RhoA drives actin compaction to restrict axon regeneration and astrocyte reactivity after CNS injury. Neuron. 2021;109(21):3436-3455.e9.

[99]

TuntithavornwatS, Shea DJ, WongBS, et al. Giant obscurin regulates migration and metastasis via RhoA-dependent cytoskeletal remodeling in pancreatic cancer. Cancer Lett. 2022;526:155-167.

[100]

NimnualAS, TaylorLJ, Bar-SagiD. Redox-dependent downregulation of Rho by Rac. Nature Cell Biol. 2003;5(3):236-241.

[101]

LamCRI, TanC, TeoZ, et al. Loss of TAK1 increases cell traction force in a ROS-dependent manner to drive epithelial-mesenchymal transition of cancer cells. Cell Death Dis. 2013;4(10):e848.

[102]

SongJ. EMT or apoptosis: a decision for TGF-β. Cell Res. 2007;17(4):289-290.

[103]

TobarN, VillarV, SantibanezJF. ROS-NFκΒ mediates TGF-β1-induced expression of urokinase-type plasminogen activator, matrix metalloproteinase-9 and cell invasion. Mol Cell Biochem. 2010;340(1-2):195-202.

[104]

PezoneA, TaddeiML, TramontanoA, et al. Targeted DNA oxidation by LSD1-SMAD2/3 primes TGF-β1/EMT genes for activation or repression. Nucleic Acids Res. 2020;48(16):8943-8958.

[105]

YazakiK, Matsuno Y, YoshidaK, et al. ROS-Nrf2 pathway mediates the development of TGF-β1-induced epithelial-mesenchymal transition through the activation of Notch signaling. EJCB. 2021;100(7-8):151181.

[106]

XuZ, FengJ, LiY, et al. The vicious cycle between ferritinophagy and ROS production triggered EMT inhibition of gastric cancer cells was through p53/AKT/mTor pathway. Chemico-Biol Interact. 2020;328:109196.

[107]

ZhuY, YinW, YuP, et al. Meso-Hannokinol inhibits breast cancer bone metastasis via the ROS/JNK/ZEB1 axis. Phytother Res. 2023;37(6):2262-2279.

[108]

ZhangL, CaoY, GuoX, et al. Hypoxia-induced ROS aggravate tumor progression through HIF-1α-SERPINE1 signaling in glioblastoma. J Zhejiang Univ-Sci B. 2023;24(1):32-49.

[109]

NajafiM, Farhood B, MortezaeeK. Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem. 2019;120(3):2782-2790.

[110]

NikitovicD, Corsini E, KouretasD, TsatsakisA, Tzanakakis G. ROS-major mediators of extracellular matrix remodeling during tumor progression. Food Chem Toxicol. 2013;61:178-186.

[111]

PiperigkouZ, Kyriakopoulou K, KoutsakisC, MastronikolisS, Karamanos NK. Key matrix remodeling enzymes: functions and targeting in cancer. Cancers. 2021;13(6):1441.

[112]

YuzhalinAE, LimSY, KutikhinAG, Gordon-Weeks AN. Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta (BBA) -Rev Cancer. 2018;1870(2):207-228.

[113]

SullivanWJ, MullenPJ, SchmidEW, et al. Extracellular matrix remodeling regulates glucose metabolism through TXNIP destabilization. Cell. 2018;175(1):117-132.e21.

[114]

JeongHD, KimJH, KwonGE, Lee ST. Expression of polyamine oxidase in fibroblasts induces MMP-1 and decreases the integrity of extracellular matrix. Int J Mol Sci. 2022;23(18):10487.

[115]

KimJH, JeongHD, SongMJ, Lee DH, ChungJH, LeeST. SOD3 suppresses the expression of MMP-1 and increases the integrity of extracellular matrix in fibroblasts. Antioxidants. 2022;11(5):928.

[116]

YangHL, Thiyagarajan V, ShenPC, et al. Anti-EMT properties of CoQ0 attributed to PI3K/AKT/NFKB/MMP-9 signaling pathway through ROS-mediated apoptosis. J Exp Clin Cancer Res. 2019;38(1):186.

[117]

ParkJH, ShinJM, YangHW, et al. Cigarette smoke extract stimulates MMP-2 production in nasal fibroblasts via ROS/PI3K, akt, and NF-κB signaling pathways. Antioxidants. 2020;9(8):739.

[118]

RodriguesP, Vanharanta S. Circulating tumor cells: come together, right now, over metastasis. Cancer Discovery. 2019;9(1):22-24.

[119]

Pereira-VeigaT, Schneegans S, PantelK, WikmanH. Circulating tumor cell-blood cell crosstalk: biology and clinical relevance. Cell Rep. 2022;40(9):111298.

[120]

SunYF, WuL, LiuSP, et al. Dissecting spatial heterogeneity and the immune-evasion mechanism of CTCs by single-cell RNA-seq in hepatocellular carcinoma. Nat Commun. 2021;12(1):4091.

[121]

ZhuP, TanMJ, HuangRL, et al. Angiopoietin-like 4 protein elevates the prosurvival intracellular O2:H2O2 ratio and confers anoikis resistance to tumors. Cancer Cell. 2011;19(3):401-415.

[122]

TeradaLS, Nwariaku FE. Escaping anoikis through ROS: ANGPTL4 controls integrin signaling through Nox1. Cancer Cell. 2011;19(3):297-299.

[123]

QueZJ, YangY, LiuHT, et al. Jinfukang regulates integrin/Src pathway and anoikis mediating circulating lung cancer cells migration. J Ethnopharmacol. 2021;267:113473.

[124]

ChenX, XiaQ, SunN, et al. Shear stress enhances anoikis resistance of cancer cells through ROS and NO suppressed degeneration of Caveolin-1. Free Radic Biol Med. 2022;193(Pt 1):95-107.

[125]

LiS, ChenY, ZhangY, et al. Shear stress promotes anoikis resistance of cancer cells via caveolin-1-dependent extrinsic and intrinsic apoptotic pathways. J Cell Physiol. 2019;234(4):3730-3743.

[126]

RungtabnapaP, Nimmannit U, HalimH, RojanasakulY, Chanvorachote P. Hydrogen peroxide inhibits non-small cell lung cancer cell anoikis through the inhibition of caveolin-1 degradation. Am J Physiol-Cell Physiol. 2011;300(2):C235-C245.

[127]

ChenJ, LouQ, HeL, et al. Reduced-gliotoxin induces ROS-mediated anoikis in human colorectal cancer cells. Int J Oncol. 2018;52(3):1023-1032.

[128]

DuS, MiaoJ, ZhuZ, et al. NADPH oxidase 4 regulates anoikis resistance of gastric cancer cells through the generation of reactive oxygen species and the induction of EGFR. Cell Death Dis. 2018;9(10):948.

[129]

KimH, SungJY, ParkEK, et al. Regulation of anoikis resistance by NADPH oxidase 4 and epidermal growth factor receptor. Br J Cancer. 2017;116(3):370-381.

[130]

ZhuG, XuP, GuoS, et al. Metastatic melanoma cells rely on sestrin2 to acquire anoikis resistance via detoxifying intracellular ROS. J Invest Dermatol. 2020;140(3):666-675.e2.

[131]

ZhouX, LiL, GuoX, et al. HBXIP induces anoikis resistance by forming a reciprocal feedback loop with Nrf2 to maintain redox homeostasis and stabilize Prdx1 in breast cancer. NPJ Breast Cancer. 2022;8(1):7.

[132]

JordanNV, BardiaA, WittnerBS, et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature. 2016;537(7618):102-106.

[133]

MaeshiroM, Shinriki S, LiuR, et al. Colonization of distant organs by tumor cells generating circulating homotypic clusters adaptive to fluid shear stress. Sci Rep. 2021;11(1):6150.

[134]

LabuschagneCF, CheungEC, BlagihJ, Domart MC, VousdenKH. Cell clustering promotes a metabolic switch that supports metastatic colonization. Cell Metab. 2019;30(4):720-734.e5.

[135]

BatesM, Mohamed BM, WardMP, et al. Circulating tumour cells: the good, the bad and the ugly. Biochim Biophys Acta (BBA) -Rev Cancer. 2023;1878(2):188863.

[136]

ChoiHY, YangGM, DayemAA, et al. Hydrodynamic shear stress promotes epithelial-mesenchymal transition by downregulating ERK and GSK3βactivities. Breast Cancer Res. 2019;21(1):6.

[137]

MaS, FuA, ChiewGGY, Luo KQ. Hemodynamic shear stress stimulates migration and extravasation of tumor cells by elevating cellular oxidative level. Cancer Lett. 2017;388:239-248.

[138]

HuangQ, LiS, HuX, et al. Shear stress activates ATOH8 via autocrine VEGF promoting glycolysis dependent-survival of colorectal cancer cells in the circulation. J Exp Clin Cancer Res. 2020;39(1):25.

[139]

FarshbafnadiM, RezaeiN. The metabolism of cancer cells during metastasis. Handbook of Cancer and Immunology. Springer;2023:1-21.

[140]

CaiZ, LiCF, HanF, et al. Phosphorylation of PDHA by AMPK drives TCA cycle to promote cancer metastasis. Mol Cell. 2020;80(2):263-278.e7.

[141]

SteinertG, Schölch S, NiemietzT, et al. Immune escape and survival mechanisms in circulating tumor cells of colorectal cancer. Cancer Res. 2014;74(6):1694-1704.

[142]

YaguchiT, Sumimoto H, Kudo-SaitoC, et al. The mechanisms of cancer immunoescape and development of overcoming strategies. Int J Hematol. 2011;93(3):294-300.

[143]

PanY, TrojanJ, GuoY, Anthony DD. Rescue of MHC-1 antigen processing machinery by down-regulation in expression of IGF-1 in human glioblastoma cells. PLoS One. 2013;8(3):e58428.

[144]

TangS, NingQ, YangL, Mo Z, TangS. Mechanisms of immune escape in the cancer immune cycle. Int Immunopharmacol. 2020;86:106700.

[145]

ZhuX, LiS. Nanomaterials in tumor immunotherapy: new strategies and challenges. Mol Cancer. 2023;22(1):94.

[146]

GaoY, YouM, FuJ, et al. Intratumoral stem-like CCR4+regulatory T cells orchestrate the immunosuppressive microenvironment in HCC associated with hepatitis B. J Hepatol. 2022;76(1):148-159.

[147]

WangM, ZhangC, SongY, et al. Mechanism of immune evasion in breast cancer. Onco Targets Ther. 2017;10:1561-1573.

[148]

MohmeM, Riethdorf S, PantelK. Circulating and disseminated tumour cells-mechanisms of immune surveillance and escape. Nat Rev Clin Oncol. 2017;14(3):155-167.

[149]

ZengX, LiX, ZhangY, Cao C, ZhouQ. IL6 induces mtDNA leakage to affect the immune escape of endometrial carcinoma via cGAS-STING. J Immunol Res. 2022;2022:3815853.

[150]

WelchDR, HurstDR. Defining the hallmarks of metastasis. Cancer Res. 2019;79(12):3011-3027.

[151]

SariG, RockKL. Tumor immune evasion through loss of MHC class-I antigen presentation. Curr Opin Immunol. 2023;83:102329.

[152]

Alix-PanabièresC, PantelK. Challenges in circulating tumour cell research. Nat Rev Cancer. 2014;14(9):623-631.

[153]

PadmanabanV, KrolI, SuhailY, et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature. 2019;573(7774):439-444.

[154]

XinY, LiK, YangM, Tan Y. Fluid shear stress induces EMT of circulating tumor cells via JNK signaling in favor of their survival during hematogenous dissemination. Int J Mol Sci. 2020;21(21):8115.

[155]

ZengLH, WangQM, FengLY, et al. High-dose vitamin C suppresses the invasion and metastasis of breast cancer cells via inhibiting epithelial-mesenchymal transition. Onco Targets Ther. 2019;12:7405-7413.

[156]

StrilicB, Offermanns S. Intravascular survival and extravasation of tumor cells. Cancer Cell. 2017;32(3):282-293.

[157]

ZhouM, LiK, LuoKQ. Shear stress drives the cleavage activation of protease-activated receptor 2 by PRSS3/Mesotrypsin to promote invasion and metastasis of circulating lung cancer cells. Adv Sci. 2023;10(25):e2301059.

[158]

ZhaoT, ZhuY, MorinibuA, et al. HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Sci Rep. 2014;4:3793.

[159]

ZhangF, JiangC, JiangD, et al. ARHGAP15 promotes metastatic colonization in gastric cancer by suppressing RAC1-ROS pathway. PLoS Genet. 2023;19(2):e1010640.

[160]

ZhongJ, LiQ, LuoH, Holmdahl R. Neutrophil-derived reactive oxygen species promote tumor colonization. Commun Biol. 2021;4(1):865.

[161]

LiuZ, TianJ, PengF, Wang J. Hypermethylation of mitochondrial DNA facilitates bone metastasis of renal cell carcinoma. J Cancer. 2022;13(1):304-312.

[162]

PiskounovaE, Agathocleous M, MurphyMM, et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 2015;527(7577):186-191.

[163]

Le GalK, Ibrahim MX, WielC, et al. Antioxidants can increase melanoma metastasis in mice. Sci Transl Med. 2015;7(308):308re8.

[164]

AyobAZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci. 2018;25(1):20.

[165]

WangT, Fahrmann JF, LeeH, et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab. 2018;27(6):1357.

[166]

WangC, ShaoL, PanC, et al. Elevated level of mitochondrial reactive oxygen species via fatty acid β-oxidation in cancer stem cells promotes cancer metastasis by inducing epithelial-mesenchymal transition. Stem Cell Res Ther. 2019;10(1):175.

[167]

TriantafilluUL, ParkS, KlaassenNL, Raddatz AD, KimY. Fluid shear stress induces cancer stem cell-like phenotype in MCF7 breast cancer cell line without inducing epithelial to mesenchymal transition. Int J Oncol. 2017;50(3):993-1001.

[168]

TriantafilluUL, ParkS, KimYJAT. Fluid shear stress induces drug resistance to doxorubicin and paclitaxel in the breast cancer cell line MCF7. Adv Ther. 2019;2(3):1800112.

[169]

FuA, MaS, WeiN, Xuan Tan BX, TanEY, LuoKQ. High expression of MnSOD promotes survival of circulating breast cancer cells and increases their resistance to doxorubicin. Oncotarget. 2016;7(31):50239-50257.

[170]

Rojo de la VegaM, Chapman E, ZhangDD. NRF2 and the hallmarks of cancer. Cancer Cell. 2018;34(1):21-43.

[171]

Weiss-SadanT, GeM, HayashiM, et al. NRF2 activation induces NADH-reductive stress, providing a metabolic vulnerability in lung cancer. Cell Metab. 2023;35(3):487-503.e7.

[172]

IlterD, Drapela S, SchildT, et al. NADK-mediated de novo NADP(H) synthesis is a metabolic adaptation essential for breast cancer metastasis. Redox Biol. 2023;61:102627.

[173]

WielC, Le GalK, IbrahimMX, et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell. 2019;178(2):330-345.e22.

[174]

XingY, WeiX, LiuY, et al. Autophagy inhibition mediated by MCOLN1/TRPML1 suppresses cancer metastasis via regulating a ROS-driven TP53/p53 pathway. Autophagy. 2022;18(8):1932-1954.

[175]

WanL, WangY, ZhangZ, et al. Elevated TEFM expression promotes growth and metastasis through activation of ROS/ERK signaling in hepatocellular carcinoma. Cell Death Dis. 2021;12(4):325.

[176]

JinM, WangJ, JiX, et al. MCUR1 facilitates epithelial-mesenchymal transition and metastasis via the mitochondrial calcium dependent ROS/Nrf2/Notch pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 2019;38(1):136.

[177]

AydinE, Johansson J, NazirFH, HellstrandK, Martner A. Role of NOX2-Derived reactive oxygen species in NK cell-mediated control of murine melanoma metastasis. Cancer Immunol Res. 2017;5(9):804-811.

[178]

PrasadS, GuptaSC, TyagiAK. Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett. 2017;387:95-105.

[179]

YenCY, HuangHW, ShuCW, et al. DNA methylation, histone acetylation and methylation of epigenetic modifications as a therapeutic approach for cancers. Cancer Lett. 2016;373(2):185-192.

[180]

HayesJD, Dinkova-Kostova AT. Oncogene-stimulated congestion at the KEAP1 stress signaling hub allows bypass of NRF2 and induction of NRF2-target genes that promote tumor survival. Cancer Cell. 2017;32(5):539-541.

[181]

ShenJ, ChenM, LeeD, et al. Histone chaperone FACT complex mediates oxidative stress response to promote liver cancer progression. Gut. 2020;69(2):329-342.

[182]

DawsonMA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12-27.

[183]

SkvortsovaK, IovinoN, BogdanovićO. Functions and mechanisms of epigenetic inheritance in animals. Nat Rev Mol Cell Biol. 2018;19(12):774-790.

[184]

NacevBA, JonesKB, IntlekoferAM, et al. The epigenomics of sarcoma. Nat Rev Cancer. 2020;20(10):608-623.

[185]

Corso-DíazX, Jaeger C, ChaitankarV, SwaroopA. Epigenetic control of gene regulation during development and disease: a view from the retina. Prog Retinal Eye Res. 2018;65:1-27.

[186]

HuangM, WuQ, JiangZH. Epigenetic alterations under oxidative stress in stem cells. Oxid Med Cell Longevity. 2022;2022:6439097.

[187]

ZhengX, Sawalha AH. The role of oxidative stress in epigenetic changes underlying autoimmunity. Antioxid Redox Signaling. 2022;36(7-9):423-440.

[188]

KowluruRA, Kowluru A, MishraM, KumarB. Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy. Prog Retinal Eye Res. 2015;48:40-61.

[189]

ChoyJS, WeiS, LeeJY, Tan S, ChuS, LeeTH. DNA methylation increases nucleosome compaction and rigidity. J Am Chem Soc. 2010;132(6):1782-1783.

[190]

LeeJY, LeeTH. Effects of DNA methylation on the structure of nucleosomes. J Am Chem Soc. 2012;134(1):173-175.

[191]

LiS, PengY, LandsmanD, Panchenko AR. DNA methylation cues in nucleosome geometry, stability and unwrapping. Nucleic Acids Res. 2022;50(4):1864-1874.

[192]

FujiiY, Wakamori M, UmeharaT, YokoyamaS. Crystal structure of human nucleosome core particle containing enzymatically introduced CpG methylation. FEBS Open Bio. 2016;6(6):498-514.

[193]

AbramovG, Velyvis A, RennellaE, WongLE, KayLE. A methyl-TROSY approach for NMR studies of high-molecular-weight DNA with application to the nucleosome core particle. Proc Natl Acad Sci. 2020;117(23):12836-12846.

[194]

García-GuedeÁ, VeraO, Ibáñez-de-Caceres I. When oxidative stress meets epigenetics: implications in cancer development. Antioxidants. 2020;9(6):468.

[195]

XuS, LiX, ZhangS, et al. Oxidative stress gene expression, DNA methylation, and gut microbiota interaction trigger Crohn’s disease: a multi-omics Mendelian randomization study. BMC Med. 2023;21(1):179.

[196]

NishidaN, KudoM. Oxidative stress and epigenetic instability in human hepatocarcinogenesis. Dig Dis. 2013;31(5-6):447-453.

[197]

ZhangYW, WangZ, XieW, et al. Acetylation enhances TET2 function in protecting against abnormal DNA methylation during oxidative stress. Mol Cell. 2017;65(2):323-335.

[198]

WuZ, QuJ, ZhangW, Liu GH. Stress, epigenetics, and aging: unraveling the intricate crosstalk. Mol Cell. 2024;84(1):34-54.

[199]

KreuzS, Fischle W. Oxidative stress signaling to chromatin in health and disease. Epigenomics. 2016;8(6):843-862.

[200]

WuQ, NiX. ROS-mediated DNA methylation pattern alterations in carcinogenesis. Curr Drug Targets. 2015;16(1):13-19.

[201]

InanoH, OnodaM. Radioprotective action of curcumin extracted from Curcuma longa LINN: inhibitory effect on formation of urinary 8-hydroxy-2’-deoxyguanosine, tumorigenesis, but not mortality, induced by gamma-ray irradiation. Int J Radiat Oncol Biol Phys. 2002;53(3):735-743.

[202]

UdomsinprasertW, Kitkumthorn N, MutiranguraA, ChongsrisawatV, Poovorawan Y, HonsawekS. Global methylation, oxidative stress, and relative telomere length in biliary atresia patients. Sci Rep. 2016;6:26969.

[203]

LiouSH, WuWT, LiaoHY, et al. Global DNA methylation and oxidative stress biomarkers in workers exposed to metal oxide nanoparticles. J Hazard Mater. 2017;331:329-335.

[204]

BannisterAJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381-395.

[205]

LuB, QiuR, WeiJ, et al. Phase separation of phospho-HDAC6 drives aberrant chromatin architecture in triple-negative breast cancer. Nature Cancer. 2024. In press.

[206]

HuangX, Zentella R, ParkJ, et al. Phosphorylation activates master growth regulator DELLA by promoting histone H2A binding at chromatin in Arabidopsis. Nat Commun. 2024;15(1):7694.

[207]

ZhengH, XueH, JiangH. The roles of ING5 in cancer: a tumor suppressor. Front Cell Dev Biol. 2022;10:1012179.

[208]

KumarA, KonoH. Heterochromatin protein 1 (HP1): interactions with itself and chromatin components. Biophys Rev. 2020;12(2):387-400.

[209]

AudiaJE, Campbell RM. Histone modifications and cancer. Cold Spring Harbor Perspect Biol. 2016;8(4):a019521.

[210]

DimauroI, Paronetto MP, CaporossiD. Exercise, redox homeostasis and the epigenetic landscape. Redox Biol. 2020;35:101477.

[211]

BajboujK, Al-AliA, RamakrishnanRK, Saber-AyadM, HamidQ. Histone modification in NSCLC: molecular mechanisms and therapeutic targets. Int J Mol Sci. 2021;22(21):11701.

[212]

OkugawaY, GradyWM, GoelA. Epigenetic alterations in colorectal cancer: emerging biomarkers. Gastroenterology. 2015;149(5):1204-1225.e12.

[213]

NiuY, DesMarais TL, TongZ, YaoY, CostaM. Oxidative stress alters global histone modification and DNA methylation. Free Radic Biol Med. 2015;82:22-28.

[214]

El-OstaA, Brasacchio D, YaoD, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008;205(10):2409-2417.

[215]

MiuraK, TauraK, KodamaY, Schnabl B, BrennerDA. Hepatitis C virus-induced oxidative stress suppresses hepcidin expression through increased histone deacetylase activity. Hepatology. 2008;48(5):1420-1429.

[216]

KangJ, ChenJ, ShiY, JiaJ, ZhangY. Curcumin-induced histone hypoacetylation: the role of reactive oxygen species. Biochem Pharmacol. 2005;69(8):1205-1213.

[217]

TikooK, LauSS, MonksTJ. Histone H3 phosphorylation is coupled to poly-(ADP-ribosylation) during reactive oxygen species-induced cell death in renal proximal tubular epithelial cells. Mol Pharmacol. 2001;60(2):394-402.

[218]

LiJ, ZhengC, WangM, et al. ROS-regulated phosphorylation of ITPKB by CAMK2G drives cisplatin resistance in ovarian cancer. Oncogene. 2022;41(8):1114-1128.

[219]

ShiQ, ZhangW, GuoS, et al. Oxidative stress-induced overexpression of miR-25: the mechanism underlying the degeneration of melanocytes in vitiligo. Cell Death Differ. 2016;23(3):496-508.

[220]

YangQ, FangD, ChenJ, et al. LncRNAs associated with oxidative stress in diabetic wound healing: regulatory mechanisms and application prospects. Theranostics. 2023;13(11):3655-3674.

[221]

WangX, YangJ, LiH, et al. miR-484 mediates oxidative stress-induced ovarian dysfunction and promotes granulosa cell apoptosis via SESN2 downregulation. Redox Biol. 2023;62:102684.

[222]

YangH, LiTWH, ZhouY, et al. Activation of a novel c-Myc-miR27-prohibitin 1 circuitry in cholestatic liver injury inhibits glutathione synthesis in mice. Antioxid Redox Signaling. 2015;22(3):259-274.

[223]

XiaoY, YanW, LuL, et al. RETRACTED ARTICLE: p38/p53/miR-200a-3p feedback loop promotes oxidative stress-mediated liver cell death. Cell Cycle. 2015;14(10):1548-1558.

[224]

YinM, RenX, ZhangX, et al. Selective killing of lung cancer cells by miRNA-506 molecule through inhibiting NF-κB p65 to evoke reactive oxygen species generation and p53 activation. Oncogene. 2015;34(6):691-703.

[225]

LanJ, HuangZ, HanJ, ShaoJ, HuangC. Redox regulation of microRNAs in cancer. Cancer Lett. 2018;418:250-259.

[226]

SinghA, HappelC, MannaSK, et al. Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis. J Clin Invest. 2013;123(7):2921-2934.

[227]

BarrI, SmithAT, SenturiaR, et al. DiGeorge critical region 8 (DGCR8) is a double-cysteine-ligated heme protein. J Biol Chem. 2011;286(19):16716-16725.

[228]

ZhangL, MengX, PanC, et al. piR-31470 epigenetically suppresses the expression of glutathione S-transferase pi 1 in prostate cancer via DNA methylation. Cell Signal. 2020;67:109501.

[229]

MichelCI, HolleyCL, ScruggsBS, et al. Small nucleolar RNAs U32a, U33, and U35a are critical mediators of metabolic stress. Cell Metab. 2011;14(1):33-44.

[230]

ChuL, SuMY, MaggiLB, et al. Multiple myeloma-associated chromosomal translocation activates orphan snoRNA ACA11 to suppress oxidative stress. J Clin Invest. 2012;122(8):2793-2806.

[231]

ChuC, YuL, Henry-BergerJ, et al. Knockout of glutathione peroxidase 5 down-regulates the piRNAs in the caput epididymidis of aged mice. Asian J Androl. 2020;22(6):590-601.

[232]

CaputaG, ZhaoS, CriadoAEG, Ory DS, DuncanJG, SchafferJE. RNASET2 is required for ROS propagation during oxidative stress-mediated cell death. Cell Death Differ. 2016;23(2):347-357.

[233]

ZhangJ, LiD, WangD, Man K, YangX. CircRNA expression profiles in human dental pulp stromal cells undergoing oxidative stress. J Transl Med. 2019;17(1):327.

[234]

XieQ, WuTP, GimpleRC, et al. N-methyladenine DNA modification in glioblastoma. Cell. 2018;175(5):1228-1243.e20.

[235]

ZhaoBS, Roundtree IA, HeC. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18(1):31-42.

[236]

SendincE, ShiY. RNA m6A methylation across the transcriptome. Mol Cell. 2023;83(3):428-441.

[237]

OerumS, Meynier V, CatalaM, TisnéC. A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Res. 2021;49(13):7239-7255.

[238]

ZhengR, GaoF, XiaoY, et al. PM(2.5)-derived exosomal long noncoding RNA PAET participates in childhood asthma by enhancing DNA damage via m(6)A-dependent OXPHOS regulation. Environ Int. 2024;183:108386.

[239]

TarduM, JonesJD, KennedyRT, Lin Q, KoutmouKS. Identification and quantification of modified nucleosides in saccharomyces cerevisiae mRNAs. ACS Chem Biol. 2019;14(7):1403-1409.

[240]

QuT, MouY, DaiJ, et al. Changes and relationship of N(6)-methyladenosine modification and long non-coding RNAs in oxidative damage induced by cadmium in pancreatic β-cells. Toxicol Lett. 2021;343:56-66.

[241]

ZhongX, YuJ, FrazierK, et al. Circadian clock regulation of hepatic lipid metabolism by modulation of m(6)A mRNA methylation. Cell Rep. 2018;25(7):1816-1828.e4.

[242]

AndersM, Chelysheva I, GoebelI, et al. Dynamic m(6)A methylation facilitates mRNA triaging to stress granules. Life Science Alliance. 2018;1(4):e201800113.

[243]

FuhrmannDC, Brüne B. Mitochondrial composition and function under the control of hypoxia. Redox Biol. 2017;12:208-215.

[244]

WangY, LiuX, HuangW, Liang J, ChenY. The intricate interplay between HIFs, ROS, and the ubiquitin system in the tumor hypoxic microenvironment. Pharmacol Ther. 2022;240:108303.

[245]

OkoyeCN, KorenSA, WojtovichAP. Mitochondrial complex I ROS production and redox signaling in hypoxia. Redox Biol. 2023;67:102926.

[246]

WangYJ, YangB, LaiQ, et al. Reprogramming of m(6)A epitranscriptome is crucial for shaping of transcriptome and proteome in response to hypoxia. RNA Biol. 2021;18(1):131-143.

[247]

LiQ, NiY, ZhangL, et al. HIF-1α-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation. Signal Transduct Target Ther. 2021;6(1):76.

[248]

ZhangQ, WeiT, YanL, et al. Hypoxia-responsive lncRNA AC115619 encodes a micropeptide that suppresses m6A modifications and hepatocellular carcinoma progression. Cancer Res. 2023;83(15):2496-2512.

[249]

YangH, HuY, WengM, et al. Hypoxia inducible lncRNA-CBSLR modulates ferroptosis through m6A-YTHDF2-dependent modulation of CBS in gastric cancer. J Adv Res. 2022;37:91-106.

[250]

ZhangC, Samanta D, LuH, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci. 2016;113(14):E2047-E2056.

[251]

ZhouL, JiangJ, HuangZ, et al. Hypoxia-induced lncRNA STEAP3-AS1 activates Wnt/β-catenin signaling to promote colorectal cancer progression by preventing m(6)A-mediated degradation of STEAP3 mRNA. Mol Cancer. 2022;21(1):168.

[252]

YuF, WeiJ, CuiX, et al. Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response. Nucleic Acids Res. 2021;49(10):5779-5797.

[253]

HouG, ZhaoX, LiL, et al. SUMOylation of YTHDF2 promotes mRNA degradation and cancer progression by increasing its binding affinity with m6A-modified mRNAs. Nucleic Acids Res. 2021;49(5):2859-2877.

[254]

QuY, WangJ, RayPS, et al. Thioredoxin-like 2 regulates human cancer cell growth and metastasis via redox homeostasis and NF-κB signaling. J Clin Invest. 2011;121(1):212-225.

[255]

DavisonCA, DurbinSM, ThauMR, et al. Antioxidant enzymes mediate survival of breast cancer cells deprived of extracellular matrix. Cancer Res. 2013;73(12):3704-3715.

[256]

SchaferZT, Grassian AR, SongL, et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature. 2009;461(7260):109-113.

[257]

CaoX, ChenXM, XiaoWZ, et al. ROS mediated hypomethylation of PRDX5 promotes STAT3 binding and activates the Nrf2 signaling pathway in NSCLC. Int J Mol Med. 2020;47(2):573-582.

[258]

MinJY, LimSO, JungG. Downregulation of catalase by reactive oxygen species via hypermethylation of CpG island II on the catalase promoter. FEBS Lett. 2010;584(11):2427-2432.

[259]

GlorieuxC, Sandoval JM, DejeansN, et al. Evaluation of potential mechanisms controlling the catalase expression in breast cancer cells. Oxid Med Cell Longevity. 2018;2018:5351967.

[260]

LinZ, HuangW, HeQ, et al. FOXC1 promotes HCC proliferation and metastasis by upregulating DNMT3B to induce DNA hypermethylation of CTH promoter. J Exp Clin Cancer Res. 2021;40(1):50.

[261]

XiaL, HuangW, BellaniM, et al. CHD4 has oncogenic functions in initiating and maintaining epigenetic suppression of multiple tumor suppressor genes. Cancer Cell. 2017;31(5):653-668.e7.

[262]

KarichevaO, Rodriguez-Vargas JM, WadierN, et al. PARP3 controls TGFβand ROS driven epithelial-to-mesenchymal transition and stemness by stimulating a TG2-Snail-E-cadherin axis. Oncotarget. 2016;7(39):64109-64123.

[263]

AzimiI, Petersen RM, ThompsonEW, Roberts-ThomsonSJ, Monteith GR. Hypoxia-induced reactive oxygen species mediate N-cadherin and SERPINE1 expression, EGFR signalling and motility in MDA-MB-468 breast cancer cells. Sci Rep. 2017;7(1):15140.

[264]

RidgeKM, Eriksson JE, PeknyM, GoldmanRD. Roles of vimentin in health and disease. Genes Dev. 2022;36(7-8):391-407.

[265]

CichonMA, Radisky DC. ROS-induced epithelial-mesenchymal transition in mammary epithelial cells is mediated by NF-κB-dependent activation of snail. Oncotarget. 2014;5(9):2827-2838.

[266]

ZhaoZ, SunYS, ChenW, Lv LX, LiYQ. Hispolon inhibits breast cancer cell migration by reversal of epithelial-to-mesenchymal transition via suppressing the ROS/ERK/Slug/E-cadherin pathway. Oncol Rep. 2016;35(2):896-904.

[267]

HanX, DuanX, LiuZ, et al. ZEB1 directly inhibits GPX4 transcription contributing to ROS accumulation in breast cancer cells. Breast Cancer Res Treat. 2021;188(2):329-342.

[268]

LimSO, GuJM, KimMS, et al. Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology. 2008;135(6):2128-2140.e8.

[269]

PradhanN, ParbinS, KarS, et al. Epigenetic silencing of genes enhanced by collective role of reactive oxygen species and MAPK signaling downstream ERK/Snail axis: Ectopic application of hydrogen peroxide repress CDH1 gene by enhanced DNA methyltransferase activity in human breast cancer. Biochim Biophys Acta (BBA) -Mol Basis Dis. 2019;1865(6):1651-1665.

[270]

LiD, YunY, GaoR. Oxygenated polycyclic aromatic hydrocarbons (Oxy-PAHs) facilitate lung cancer metastasis by epigenetically regulating the epithelial-to-mesenchymal transition (EMT). Environ Pollut. 2019;255(Pt 2):113261.

[271]

YunY, GaoR, YueH, GuoL, LiG, SangN. Sulfate aerosols promote lung cancer metastasis by epigenetically regulating the epithelial-to-mesenchymal transition (EMT). Environ Sci Technol. 2017;51(19):11401-11411.

[272]

PaillerE, AugerN, LindsayCR, et al. High level of chromosomal instability in circulating tumor cells of ROS1-rearranged non-small-cell lung cancer. Ann Oncol. 2015;26(7):1408-1415.

[273]

RaezLE, MancaP, RolfoC, Singh V. ROS-1 rearrangements in circulating tumor cells. J Thorac Oncol. 2018;13(5):e71-e72.

[274]

PixbergCF, RabaK, MüllerF, et al. Analysis of DNA methylation in single circulating tumor cells. Oncogene. 2017;36(23):3223-3231.

[275]

ChimonidouM, StratiA, TzitziraA, et al. DNA methylation of tumor suppressor and metastasis suppressor genes in circulating tumor cells. Clin Chem. 2011;57(8):1169-1177.

[276]

GuoH, VuilleJA, WittnerBS, et al. DNA hypomethylation silences anti-tumor immune genes in early prostate cancer and CTCs. Cell. 2023;186(13):2765-2782.e28.

[277]

SandersYY, LiuH, ZhangX, et al. Histone modifications in senescence-associated resistance to apoptosis by oxidative stress. Redox Biol. 2013;1(1):8-16.

[278]

García-GiménezJL, GarcésC, Romá-Mateo C, PallardóFV. Oxidative stress-mediated alterations in histone post-translational modifications. Free Radic Biol Med. 2021;170:6-18.

[279]

DingSZ, YangYX, LiXL, et al. Epithelial-mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells. Toxicol Appl Pharmacol. 2013;269(1):61-71.

[280]

LiH, PengC, ZhuC, et al. Hypoxia promotes the metastasis of pancreatic cancer through regulating NOX4/KDM5A-mediated histone methylation modification changes in a HIF1A-independent manner. Clin Epigenetics. 2021;13(1):18.

[281]

Sunnaghatta NagarajaS, Raviraj R, SelvakumarI, et al. Radiation-induced H3K9 tri-methylation in E-cadherin promoter during lung EMT: in vitro and in vivo approaches using vanillin. Free Radic Res. 2020;54(7):540-555.

[282]

NagarajaSS, Subramanian U, NagarajanD. Radiation-induced H3K9 methylation on E-cadherin promoter mediated by ROS/Snail axis: role of G9a signaling during lung epithelial-mesenchymal transition. Toxicol In Vitro. 2021;70:105037.

[283]

SongY, WuF, WuJ. Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives. J Hematol Oncol. 2016;9(1):49.

[284]

BernsteinBE, KamalM, Lindblad-TohK, et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell. 2005;120(2):169-181.

[285]

PanZ, XuT, BaoL, et al. CREB3L1 promotes tumor growth and metastasis of anaplastic thyroid carcinoma by remodeling the tumor microenvironment. Mol Cancer. 2022;21(1):190.

[286]

YuanZ, LiY, ZhangS, et al. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer. 2023;22(1):48.

[287]

LiuG, LiB, QinS, et al. Redox signaling-mediated tumor extracellular matrix remodeling: pleiotropic regulatory mechanisms. Cell Oncol. 2024;47(2):429-445.

[288]

AliMM, Mahmoud AM, Le MasterE, LevitanI, Phillips SA. Role of matrix metalloproteinases and histone deacetylase in oxidative stress-induced degradation of the endothelial glycocalyx. Am J Physiol-Heart Circ Physiol. 2019;316(3):H647-H663.

[289]

BartlingTR, Subbaram S, ClarkRR, ChandrasekaranA, KarS, Andres MelendezJ. Redox-sensitive gene-regulatory events controlling aberrant matrix metalloproteinase-1 expression. Free Radic Biol Med. 2014;74:99-107.

[290]

DasguptaJ, KarS, LiuR, et al. Reactive oxygen species control senescence-associated matrix metalloproteinase-1 through c-Jun-N-terminal kinase. J Cell Physiol. 2010;225(1):52-62.

[291]

Targosz-KoreckaM, Malek-Zietek KE, KloskaD, et al. Metformin attenuates adhesion between cancer and endothelial cells in chronic hyperglycemia by recovery of the endothelial glycocalyx barrier. Biochim Biophys Acta (BBA) -Gen Subjects. 2020;1864(4):129533.

[292]

RaiS, Nejadhamzeeigilani Z, GutowskiNJ, WhatmoreJL. Loss of the endothelial glycocalyx is associated with increased E-selectin mediated adhesion of lung tumour cells to the brain microvascular endothelium. J Exp Clin Cancer Res. 2015;34:105.

[293]

SunM, HongS, LiW, et al. MiR-99a regulates ROS-mediated invasion and migration of lung adenocarcinoma cells by targeting NOX4. Oncol Rep. 2016;35(5):2755-2766.

[294]

ChenD, DangBL, HuangJ, et al. MiR-373 drives the epithelial-to-mesenchymal transition and metastasis via the miR-373-TXNIP-HIF1α-TWIST signaling axis in breast cancer. Oncotarget. 2015;6(32):32701-32712.

[295]

YehLY, LiuCJ, WongYK, Chang C, LinSC, ChangKW. miR-372 inhibits p62 in head and neck squamous cell carcinoma in vitro and in vivo. Oncotarget. 2015;6(8):6062-6075.

[296]

XiaoS, LiuN, YangX, Ji G, LiM. Polygalacin D suppresses esophageal squamous cell carcinoma growth and metastasis through regulating miR-142-5p/Nrf2 axis. Free Radic Biol Med. 2021;164:58-75.

[297]

MengX, WuJ, PanC, et al. Genetic and epigenetic down-regulation of microRNA-212 promotes colorectal tumor metastasis via dysregulation of MnSOD. Gastroenterology. 2013;145(2):426-436.e6.

[298]

YinK, YinW, WangY, et al. MiR-206 suppresses epithelial mesenchymal transition by targeting TGF-βsignaling in estrogen receptor positive breast cancer cells. Oncotarget. 2016;7(17):24537-24548.

[299]

ChenQ, JiaoD, WangJ, et al. miR-206 regulates cisplatin resistance and EMT in human lung adenocarcinoma cells partly by targeting MET. Oncotarget. 2016;7(17):24510-24526.

[300]

XingS, TianZ, ZhengW, et al. Hypoxia downregulated miR-4521 suppresses gastric carcinoma progression through regulation of IGF2 and FOXM1. Mol Cancer. 2021;20(1):9.

[301]

TuH, SunH, LinY, et al. Oxidative stress upregulates PDCD4 expression in patients with gastric cancer via miR-21. Curr Pharm Des. 2014;20(11):1917-1923.

[302]

GibbonsDL, LinW, CreightonCJ, et al. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev. 2009;23(18):2140-2151.

[303]

MadhyasthaR, Madhyastha H, PengjamY, NakajimaY, OmuraS, MaruyamaM. NFkappaB activation is essential for miR-21 induction by TGFβ1 in high glucose conditions. Biochem Biophys Res Commun. 2014;451(4):615-621.

[304]

HongJ, WangY, HuBC, et al. Transcriptional downregulation of microRNA-19a by ROS production and NF-κB deactivation governs resistance to oxidative stress-initiated apoptosis. Oncotarget. 2017;8(41):70967-70981.

[305]

HuH, LiK, WangX, et al. Set9, NF-κB, and microRNA-21 mediate berberine-induced apoptosis of human multiple myeloma cells. Acta Pharmacol Sin. 2013;34(1):157-166.

[306]

HuangX, DingL, BennewithKL, et al. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell. 2009;35(6):856-867.

[307]

SeokJK, LeeSH, KimMJ, Lee YM. MicroRNA-382 induced by HIF-1αis an angiogenic miR targeting the tumor suppressor phosphatase and tensin homolog. Nucleic Acids Res. 2014;42(12):8062-8072.

[308]

GeX, LiuX, LinF, et al. MicroRNA-421 regulated by HIF-1αpromotes metastasis, inhibits apoptosis, and induces cisplatin resistance by targeting E-cadherin and caspase-3 in gastric cancer. Oncotarget. 2016;7(17):24466-24482.

[309]

NagpalN, AhmadHM, ChameettachalS, SundarD, GhoshS, KulshreshthaR. HIF-inducible miR-191 promotes migration in breast cancer through complex regulation of TGFβ-signaling in hypoxic microenvironment. Sci Rep. 2015;5:9650.

[310]

FengJ, YangM, WeiQ, et al. Novel evidence for oncogenic piRNA-823 as a promising prognostic biomarker and a potential therapeutic target in colorectal cancer. J Cell Mol Med. 2020;24(16):9028-9040.

[311]

MilyaevaPA, Kukushkina IV, KimAI, NefedovaLN. Stress induced activation of LTR retrotransposons in the drosophila melanogaster genome. Life. 2023;13(12):2272.

[312]

SuJF, ZhaoF, GaoZW, et al. piR-823 demonstrates tumor oncogenic activity in esophageal squamous cell carcinoma through DNA methylation induction via DNA methyltransferase 3B. Pathol -Res Pract. 2020;216(4):152848.

[313]

ZhaoQ, QianL, GuoY, et al. IL11 signaling mediates piR-2158 suppression of cell stemness and angiogenesis in breast cancer. Theranostics. 2023;13(7):2337-2349.

[314]

XuQ, QiaoH, XuY, et al. HSP90 and noncoding RNAs. DNA Cell Biol. 2023;42(10):585-593.

[315]

KoduruSV, TiwariAK, HazardSW, Mahajan M, RavnicDJ. Exploration of small RNA-seq data for small non-coding RNAs in human colorectal cancer. J Genomics. 2017;5:16-31.

[316]

HuangL, LiangXZ, DengY, et al. Prognostic value of small nucleolar RNAs (snoRNAs) for colon adenocarcinoma based on RNA sequencing data. Pathol -Res Pract. 2020;216(6):152937.

[317]

WangB, ZhaoY, LiY, et al. A plasma SNORD33 signature predicts platinum benefit in metastatic triple-negative breast cancer patients. Mol Cancer. 2022;21(1):22.

[318]

HuangL, LiangX-Z, DengY, et al. Prognostic value of small nucleolar RNAs (snoRNAs) for colon adenocarcinoma based on RNA sequencing data. Pathol Res Pract. 2020;216(6):152937.

[319]

FuJ, LiuG, ZhangX, et al. TRPM8 promotes hepatocellular carcinoma progression by inducing SNORA55 mediated nuclear-mitochondrial communication. Cancer Gene Ther. 2023;30(5):738-751.

[320]

NazıroğluM, BlumW, Jósvay K, et al. Menthol evokes Ca(2+) signals and induces oxidative stress independently of the presence of TRPM8 (menthol) receptor in cancer cells. Redox Biol. 2018;14:439-449.

[321]

LiP, RenX, ZhengY, Sun J, YeG. Tumor promoting effect of circ_002172 associates with induced immune escape in breast cancer via the miR-296-5p/CXCL12 axis. Int Immunopharmacol. 2022;106:108530.

[322]

WeiCY, ZhuMX, LuNH, et al. Circular RNA circ_0020710 drives tumor progression and immune evasion by regulating the miR-370-3p/CXCL12 axis in melanoma. Mol Cancer. 2020;19(1):84.

[323]

MengJ, ChenS, HanJX, et al. Twist1 regulates vimentin through Cul2 circular RNA to promote EMT in hepatocellular carcinoma. Cancer Res. 2018;78(15):4150-4162.

[324]

ZhangR, ZhuW, MaC, AiK. Silencing of circRNA circ_0001666 represses EMT in pancreatic cancer through upregulating miR-1251 and downregulating SOX4. Front Mol Biosci. 2021;8:684866.

[325]

OuR, LuS, WangL, et al. Circular RNA circLMO1 suppresses cervical cancer growth and metastasis by triggering miR-4291/ACSL4-mediated ferroptosis. Front Oncol. 2022;12:858598.

[326]

YuT, WangY, FanY, et al. CircRNAs in cancer metabolism: a review. J Hematol Oncol. 2019;12(1):90.

[327]

ShenW, WangC, HuangB. Oxidative stress-induced circHBEGF promotes extracellular matrix production via regulating miR-646/EGFR in human trabecular meshwork cells. Oxid Med Cell Longevity. 2020;2020:4692034.

[328]

ChenL, ZhuL, FangJ, et al. Circular RNA circFoxo3 promotes granulosa cell apoptosis under oxidative stress through regulation of FOXO3 protein. DNA Cell Biol. 2022;41(12):1026-1037.

[329]

LiGY, WangW, SunJY, et al. Long non-coding RNAs AC026904.1 and UCA1: a “one-two punch”for TGF-β-induced SNAI2 activation and epithelial-mesenchymal transition in breast cancer. Theranostics. 2018;8(10):2846-2861.

[330]

YanX, ZhangD, WuW, et al. Mesenchymal stem cells promote hepatocarcinogenesis via lncRNA-MUF interaction with ANXA2 and miR-34a. Cancer Res. 2017;77(23):6704-6716.

[331]

WenJF, JiangYQ, LiC, DaiXK, WuT, YinWZ. LncRNA-XIST promotes the oxidative stress-induced migration, invasion, and epithelial-to-mesenchymal transition of osteosarcoma cancer cells through miR-153-SNAI1 axis. Cell Biol Int. 2020;44(10):1991-2001.

[332]

WangWT, YeH, WeiPP, et al. LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. J Hematol Oncol. 2016;9(1):117.

[333]

ShiY, FanS, WuM, et al. YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nat Commun. 2019;10(1):4892.

[334]

SongH, LiuD, WangL, et al. Methyltransferase like 7B is a potential therapeutic target for reversing EGFR-TKIs resistance in lung adenocarcinoma. Mol Cancer. 2022;21(1):43.

[335]

AydinlouZH, RajabiA, EmamiA, et al. Three possible diagnostic biomarkers for gastric cancer: miR-362-3p, miR-362-5p and miR-363-5p. Biomark Med. 2024;18(10-12):567-579.

[336]

ChenT, ChenJ, ZengT, et al. WZ35 inhibits gastric cancer cell metastasis by depleting glutathione to promote cellular metabolic remodeling. Cancer Lett. 2023;555:216044.

[337]

ChenC, ZhaiE, LiuY, et al. ALKBH5-mediated CHAC1 depletion promotes malignant progression and decreases cisplatin-induced oxidative stress in gastric cancer. Cancer Cell Int. 2023;23(1):293.

[338]

RuanDY, LiT, WangYN, et al. FTO downregulation mediated by hypoxia facilitates colorectal cancer metastasis. Oncogene. 2021;40(33):5168-5181.

[339]

FanZ, YangG, ZhangW, et al. Hypoxia blocks ferroptosis of hepatocellular carcinoma via suppression of METTL14 triggered YTHDF2-dependent silencing of SLC7A11. J Cell Mol Med. 2021;25(21):10197-10212.

[340]

ChenG, LiuB, YinS, et al. Hypoxia induces an endometrial cancer stem-like cell phenotype via HIF-dependent demethylation of SOX2 mRNA. Oncogenesis. 2020;9(9):81.

[341]

WangX, DongJ, JiaL, et al. HIF-2-dependent expression of stem cell factor promotes metastasis in hepatocellular carcinoma. Cancer Lett. 2017;393:113-124.

[342]

WangY, YangY, YangY, et al. Hypoxia induces hepatocellular carcinoma metastasis via the HIF-1α/METTL16/lnc-CSMD1-7/RBFOX2 axis. iScience. 2023;26(12):108495.

[343]

LuY, ChenQ, ZhuS, GongX. Hypoxia promotes immune escape of pancreatic cancer cells by lncRNA NNT-AS1/METTL3-HuR-mediated ITGB1 m(6)A modification. Exp Cell Res. 2023;432(2):113764.

[344]

YinH, ZhangX, YangP, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun. 2021;12(1):1394.

[345]

ŞahinM, Şahin E, Gümüşlü S, ErdoğanA, GültekinM. DNA methylation or histone modification status in metastasis and angiogenesis-related genes: a new hypothesis on usage of DNMT inhibitors and S-adenosylmethionine for genome stability. Cancer Metastasis Rev. 2010;29(4):655-676.

[346]

ErdmannA, HalbyL, FahyJ, Arimondo PB. Targeting DNA methylation with small molecules: what’s next? J Med Chem. 2015;58(6):2569-2583.

[347]

BohlSR, Bullinger L, RückerFG. Epigenetic therapy: azacytidine and decitabine in acute myeloid leukemia. Expert Rev Hematol. 2018;11(5):361-371.

[348]

AzadNS, El-Khoueiry A, YinJ, et al. Combination epigenetic therapy in metastatic colorectal cancer (mCRC) with subcutaneous 5-azacitidine and entinostat: a phase 2 consortium/stand up 2 cancer study. Oncotarget. 2017;8(21):35326-35338.

[349]

ConnollyRM, LiH, JankowitzRC, et al. Combination epigenetic therapy in advanced breast cancer with 5-Azacitidine and Entinostat: a phase II National Cancer Institute/Stand up to Cancer Study. Clin Cancer Res. 2017;23(11):2691-2701.

[350]

MeiM, AldossI, MarcucciG, Pullarkat V. Hypomethylating agents in combination with venetoclax for acute myeloid leukemia: update on clinical trial data and practical considerations for use. Am J Hematol. 2019;94(3):358-362.

[351]

LeeE, WangJ, YumotoK, et al. DNMT1 regulates Epithelial-Mesenchymal transition and cancer stem cells, which promotes prostate cancer metastasis. Neoplasia. 2016;18(9):553-566.

[352]

MomparlerRL, Bouffard DY, MomparlerLF, DionneJ, Belanger K, AyoubJ. Pilot phase l-ll study on 5-aza-2’-deoxycytidine (Decitabine) in patients with metastatic lung cancer. Anti-Cancer Drugs. 1997;8(4):358-368.

[353]

EliopoulosN, Cournoyer D, MomparlerRL. Drug resistance to 5-aza-2’-deoxycytidine, 2’ 2’-difluorodeoxycytidine, and cytosine arabinoside conferred by retroviral-mediated transfer of human cytidine deaminase cDNA into murine cells. Cancer Chemother Pharmacol. 1998;42(5):373-378.

[354]

ShiR, ZhaoK, WangT, et al. 5-aza-2’-deoxycytidine potentiates anti-tumor immunity in colorectal peritoneal metastasis by modulating ABC A9-mediated cholesterol accumulation in macrophages. Theranostics. 2022;12(2):875-890.

[355]

HoCM, LeeFK, YenTL, Huang SH, ChengWF. Everolimus combined with 5-aza-2-deoxycytidine generated potent anti-tumor effects on ovarian clear cell cancer stem-like/spheroid cells by inhibiting the COL6A3-AKT-mTOR pathway. Am J Cancer Res. 2022;12(4):1686-1706.

[356]

ShangD, LiG, ZhangC, Liu Y. Synergistic inhibitory effects of 5-aza-2’-deoxycytidine and cisplatin on urothelial carcinoma growth via suppression of TGFBI-MAPK signaling pathways. Biochem Cell Biol. 2022;100(2):115-124.

[357]

KoyamaM, OsadaE, AkiyamaN, Eto K, ManomeY. Effect of thymidine phosphorylase gene demethylation on sensitivity to 5-fluorouracil in colorectal cancer cells. Anticancer Res. 2022;42(2):837-844.

[358]

LaiJ, FuY, TianS, et al. Zebularine elevates STING expression and enhances cGAMP cancer immunotherapy in mice. Mol Ther. 2021;29(5):1758-1771.

[359]

GuD, DongK, JiangA, et al. PBRM1 deficiency sensitizes renal cancer cells to DNMT inhibitor 5-fluoro-2’-deoxycytidine. Front Oncol. 2022;12:870229.

[360]

CoyneG, WangL, ZlottJ, et al. Intravenous 5-fluoro-2’-deoxycytidine administered with tetrahydrouridine increases the proportion of p16-expressing circulating tumor cells in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2020;85(5):979-993.

[361]

FenauxP, GobbiM, KropfPL, et al. Guadecitabine vs treatment choice in newly diagnosed acute myeloid leukemia: a global phase 3 randomized study. Blood Adv. 2023;7(17):5027-5037.

[362]

LiJ, LiangY, FanJ, et al. DNA methylation subtypes guiding prognostic assessment and linking to responses the DNA methyltransferase inhibitor SGI-110 in urothelial carcinoma. BMC Med. 2022;20(1):222.

[363]

Hummel-EisenbeissJ, Hascher A, HalsPA, et al. The role of human equilibrative nucleoside transporter 1 on the cellular transport of the DNA methyltransferase inhibitors 5-azacytidine and CP-4200 in human leukemia cells. Mol Pharmacol. 2013;84(3):438-450.

[364]

MondalP, NateshJ, PentaD, Meeran SM. Progress and promises of epigenetic drugs and epigenetic diets in cancer prevention and therapy: a clinical update. Sem Cancer Biol. 2022;83:503-522.

[365]

LuY, ChanYT, TanHY, Li S, WangN, FengY. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol Cancer. 2020;19(1):79.

[366]

BabikerH, Schlegel PJ, HicksLG, et al. A multicenter phase 1/2 study investigating the safety, pharmacokinetics, pharmacodynamics and efficacy of a small molecule antimetabolite, RX-3117, plus nab-paclitaxel in pancreatic adenocarcinoma. Invest New Drugs. 2022;40(1):81-90.

[367]

HuangKCY, KeTW, LaiCY, et al. Inhibition of DNMTs increases neoantigen-reactive T-cell toxicity against microsatellite-stable colorectal cancer in combination with radiotherapy. Biomed Pharmacother. 2024;177:116958.

[368]

AlfardanAS, NadeemA, AhmadSF, et al. DNMT inhibitor, 5-aza-2’-deoxycytidine mitigates di(2-ethylhexyl) phthalate-induced aggravation of psoriasiform inflammation in mice via reduction in global DNA methylation in dermal and peripheral compartments. Int Immunopharmacol. 2024;137:112503.

[369]

FilipK, Lewińska A, Adamczyk-GrochalaJ, et al. 5-Azacytidine inhibits the activation of senescence program and promotes cytotoxic autophagy during Trdmt1-mediated oxidative stress response in insulinoma β-TC-6 cells. Cells. 2022;11(7):1213.

[370]

MahalingaiahPKS, Ponnusamy L, SinghKP. Oxidative stress-induced epigenetic changes associated with malignant transformation of human kidney epithelial cells. Oncotarget. 2017;8(7):11127-11143.

[371]

LiW, LiS, XuG, et al. Developing a ruthenium(III) complex to trigger gasdermin E-mediated pyroptosis and an immune response based on decitabine and liposomes: targeting inhibition of gastric tumor growth and metastasis. J Med Chem. 2023;66(18):13072-13085.

[372]

WachowskaM, Gabrysiak M, MuchowiczA, et al. 5-Aza-2’-deoxycytidine potentiates antitumour immune response induced by photodynamic therapy. Eur J Cancer. 2014;50(7):1370-1381.

[373]

BanerjeeSM, AcedoP, El SheikhS, et al. Combination of verteporfin-photodynamic therapy with 5-aza-2’-deoxycytidine enhances the anti-tumour immune response in triple negative breast cancer. Front Immunol. 2023;14:1188087.

[374]

WachowskaM, Muchowicz A, GolabJ. Evaluation of the antitumor immune response following photofrin-based PDT in combination with the epigenetic agent 5-Aza-2’-deoxycytidine. Methods Mol Biol. 2022;2451:559-567.

[375]

GleneadieHJ, BakerAH, BatisN, et al. The anti-tumour activity of DNA methylation inhibitor 5-aza-2’-deoxycytidine is enhanced by the common analgesic paracetamol through induction of oxidative stress. Cancer Lett. 2021;501:172-186.

[376]

ChenX, LiW, XuC, et al. Comparative profiling of analog targets: a case study on resveratrol for mouse melanoma metastasis suppression. Theranostics. 2018;8(13):3504-3516.

[377]

SteedKL, JordanHR, TollefsbolTO. SAHA and EGCG promote apoptosis in triple-negative breast cancer cells, possibly through the modulation of cIAP2. Anticancer Res. 2020;40(1):9-26.

[378]

JiS, ZhengZ, LiuS, et al. Resveratrol promotes oxidative stress to drive DLC1 mediated cellular senescence in cancer cells. Exp Cell Res. 2018;370(2):292-302.

[379]

SunY, ZhouQM, LuYY, et al. Resveratrol inhibits the migration and metastasis of MDA-MB-231 human breast cancer by reversing TGF-β1-induced epithelial-mesenchymal transition. Molecules. 2019;24(6):1131.

[380]

AchourM, MousliM, AlhosinM, et al. Epigallocatechin-3-gallate up-regulates tumor suppressor gene expression via a reactive oxygen species-dependent down-regulation of UHRF1. Biochem Biophys Res Commun. 2013;430(1):208-212.

[381]

TongR, WuX, LiuY, et al. Curcumin-induced DNA demethylation in human gastric cancer cells is mediated by the DNA-damage response pathway. Oxid Med Cell Longevity. 2020;2020:2543504.

[382]

ZhangS, WuK, FengJ, et al. Epigenetic therapy potential of suberoylanilide hydroxamic acid on invasive human non-small cell lung cancer cells. Oncotarget. 2016;7(42):68768-68780.

[383]

ChiuHW, YehYL, WangYC, et al. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, enhances radiosensitivity and suppresses lung metastasis in breast cancer in vitro and in vivo. PLoS One. 2013;8(10):e76340.

[384]

LinCY, HuangKY, LinYC, et al. Vorinostat combined with brigatinib overcomes acquired resistance in EGFR-C797S-mutated lung cancer. Cancer Lett. 2021;508:76-91.

[385]

RamalingamSS, Maitland ML, FrankelP, et al. Carboplatin and Paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer. J Clin Oncol. 2010;28(1):56-62.

[386]

GrayJE, SaltosA, TanvetyanonT, et al. Phase I/Ib study of pembrolizumab plus vorinostat in advanced/metastatic non-small cell lung cancer. Clin Cancer Res. 2019;25(22):6623-6632.

[387]

LuuTH, MorganRJ, LeongL, et al. A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California Cancer Consortium study. Clin Cancer Res. 2008;14(21):7138-7142.

[388]

WoyachJA, KloosRT, RingelMD, et al. Lack of therapeutic effect of the histone deacetylase inhibitor vorinostat in patients with metastatic radioiodine-refractory thyroid carcinoma. J Clin Endocrinol Metab. 2009;94(1):164-170.

[389]

QuinnDI, Tsao-Wei DD, TwardowskiP, et al. Phase II study of the histone deacetylase inhibitor vorinostat (Suberoylanilide Hydroxamic Acid;SAHA) in recurrent or metastatic transitional cell carcinoma of the urothelium -an NCI-CTEP sponsored: California Cancer Consortium trial, NCI 6879. Invest New Drugs. 2021;39(3):812-820.

[390]

YardleyDA, Ismail-Khan RR, MelicharB, et al. Randomized phase II, double-blind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromatase inhibitor. J Clin Oncol: Off J Am Soc Clin Oncol. 2013;31(17):2128-2135.

[391]

HellmannMD, Jänne PA, OpyrchalM, et al. Entinostat plus pembrolizumab in patients with metastatic NSCLC previously treated with anti-PD-(L)1 therapy. Clin Cancer Res. 2021;27(4):1019-1028.

[392]

LinJ, ElkonJ, RicartB, et al. Phase I study of entinostat in combination with enzalutamide for treatment of patients with metastatic castration-resistant prostate cancer. Oncologist. 2021;26(12):e2136-e2142.

[393]

ChoiDS, ChangJC. Abstract 4129: chloroquine and romidepsin: combination therapy for treatment of breast cancer metastases. Cancer Res. 2015;75(15 suppl):4129.

[394]

HeersH, Stanislaw J, HarrelsonJ, LeeMW. Valproic acid as an adjunctive therapeutic agent for the treatment of breast cancer. Eur J Pharmacol. 2018;835:61-74.

[395]

CaponigroF, Di Gennaro E, IonnaF, et al. Phase II clinical study of valproic acid plus cisplatin and cetuximab in recurrent and/or metastatic squamous cell carcinoma of Head and Neck-V-CHANCE trial. BMC Cancer. 2016;16(1):918.

[396]

WittenburgLA, BissonL, RoseBJ, Korch C, ThammDH. The histone deacetylase inhibitor valproic acid sensitizes human and canine osteosarcoma to doxorubicin. Cancer Chemother Pharmacol. 2011;67(1):83-92.

[397]

AvalloneA, Piccirillo MC, Di GennaroE, et al. Randomized phase II study of valproic acid in combination with bevacizumab and oxaliplatin/fluoropyrimidine regimens in patients with RAS-mutated metastatic colorectal cancer: the REVOLUTION study protocol. Ther Adv Med Oncol. 2020;12:1758835920929589.

[398]

Haigentz Jr.,M, KimM, SartaC, et al. Phase II trial of the histone deacetylase inhibitor romidepsin in patients with recurrent/metastatic head and neck cancer. Oral Oncol. 2012;48(12):1281-1288.

[399]

MolifeLR, AttardG, FongPC, et al. Phase II, two-stage, single-arm trial of the histone deacetylase inhibitor (HDACi) romidepsin in metastatic castration-resistant prostate cancer (CRPC). Ann Oncol. 2010;21(1):109-113.

[400]

El-NaggarAM, Somasekharan SP, WangY, et al. Class I HDAC inhibitors enhance YB-1 acetylation and oxidative stress to block sarcoma metastasis. EMBO Rep. 2019;20(12):e48375.

[401]

MaloneCF, Emerson C, IngrahamR, et al. mTOR and HDAC inhibitors converge on the TXNIP/thioredoxin pathway to cause catastrophic oxidative stress and regression of RAS-driven tumors. Cancer Discovery. 2017;7(12):1450-1463.

[402]

FanF, LiuP, BaoR, et al. A dual PI3K/HDAC inhibitor induces immunogenic ferroptosis to potentiate cancer immune checkpoint therapy. Cancer Res. 2021;81(24):6233-6245.

[403]

AfolabiLO, BiJ, LiX, et al. Synergistic tumor cytolysis by NK cells in combination with a pan-HDAC inhibitor, panobinostat. Front Immunol. 2021;12:701671.

[404]

GoyalA, BauerJ, HeyJ, et al. DNMT and HDAC inhibition induces immunogenic neoantigens from human endogenous retroviral element-derived transcripts. Nat Commun. 2023;14(1):6731.

[405]

McGivernTJP, SlatorC, KellettA, Marmion CJ. Innovative DNA-targeted metallo-prodrug strategy combining histone deacetylase inhibition with oxidative stress. Mol Pharmaceutics. 2018;15(11):5058-5071.

[406]

LawlessMW, O’Byrne KJ, GraySG. Oxidative stress induced lung cancer and COPD: opportunities for epigenetic therapy. J Cell Mol Med. 2009;13(9a):2800-2821.

[407]

SahaS, YinY, KimK, et al. Valproic acid induces endocytosis-mediated doxorubicin internalization and shows synergistic cytotoxic effects in hepatocellular carcinoma cells. Int J Mol Sci. 2017;18(5):1048.

[408]

NazS, Banerjee T, TotsinganF, WoodyK, GrossRA, SantraS. Therapeutic efficacy of lactonic sophorolipids: nanoceria-assisted combination therapy of NSCLC using HDAC and Hsp90 inhibitors. Nanotheranostics. 2021;5(4):391-404.

[409]

YuanYG, PengQL, GurunathanS. Combination of palladium nanoparticles and tubastatin-a potentiates apoptosis in human breast cancer cells: a novel therapeutic approach for cancer. Int J Nanomed. 2017;12:6503-6520.

[410]

RoytM, Mukherjee S, SarkarR, BiswasJ. Curcumin sensitizes chemotherapeutic drugs via modulation of PKC, telomerase, NF-kappaB and HDAC in breast cancer. Ther Deliv. 2011;2(10):1275-1293.

[411]

DharS, KumarA, LiK, Tzivion G, LevensonAS. Resveratrol regulates PTEN/Akt pathway through inhibition of MTA1/HDAC unit of the NuRD complex in prostate cancer. Biochim Biophys Acta (BBA) -Mol Cell Res. 2015;1853(2):265-275.

[412]

AlvarezMC, MasoV, TorelloCO, Ferro KP, SaadSTO. The polyphenol quercetin induces cell death in leukemia by targeting epigenetic regulators of pro-apoptotic genes. Clin Epigenetics. 2018;10(1):139.

[413]

GiommarelliC, ZucoV, FaviniE, et al. The enhancement of antiproliferative and proapoptotic activity of HDAC inhibitors by curcumin is mediated by Hsp90 inhibition. Cell Mol Life Sci. 2010;67(6):995-1004.

[414]

LiuQL, ZhangZ, WeiX, ZhouZG. Noncoding RNAs in tumor metastasis: molecular and clinical perspectives. Cell Mol Life Sci. 2021;78(21-22):6823-6850.

[415]

YangM, MattesJ. Discovery, biology and therapeutic potential of RNA interference, microRNA and antagomirs. Pharmacol Ther. 2008;117(1):94-104.

[416]

EbertMS, SharpPA. MicroRNA sponges: progress and possibilities. RNA. 2010;16(11):2043-2050.

[417]

Vázquez-SalazarA, LazcanoA. Early life: embracing the RNA world. Curr Biol. 2018;28(7):1166-1167.

[418]

MaL, Reinhardt F, PanE, et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol. 2010;28(4):341-347.

[419]

DaiY, PanY, QuanM, et al. MicroRNA-1246 mediates drug resistance and metastasis in breast cancer by targeting NFE2L3. Front Oncol. 2021;11:677168.

[420]

ChangY, LiuC, YangJ, et al. MiR-20a triggers metastasis of gallbladder carcinoma. J Hepatol. 2013;59(3):518-527.

[421]

HowellJC, ChunE, FarrellAN, et al. Global microRNA expression profiling: curcumin (diferuloylmethane) alters oxidative stress-responsive microRNAs in human ARPE-19 cells. Mol Vision. 2013;19:544-560.

[422]

LiuC, Rokavec M, HuangZ, HermekingH. Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis. Cell Death Differ. 2023;30(7):1771-1785.

[423]

CaiJ, SunH, ZhengB, et al. Curcumin attenuates lncRNA H19 induced epithelial mesenchymal transition in tamoxifen resistant breast cancer cells. Mol Med Rep. 2021;23(1):13.

[424]

WangM, JiangS, YuF, ZhouL, WangK. Noncoding RNAs as molecular targets of resveratrol underlying its anticancer effects. J Agricult Food Chem. 2019;67(17):4709-4719.

[425]

ReidG, KaoSC, PavlakisN, et al. Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics. 2016;8(8):1079-1085.

[426]

WangZ. The guideline of the design and validation of MiRNA mimics. Methods Mol Biol. 2011;676:211-223.

[427]

BouchieA. First microRNA mimic enters clinic. Nat Biotechnol. 2013;31(7):577.

[428]

HongDS, KangYK, BoradM, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 2020;122(11):1630-1637.

[429]

WuX, LiuT, FangO, et al. MicroRNA-708-5p acts as a therapeutic agent against metastatic lung cancer. Oncotarget. 2016;7(3):2417-2432.

[430]

GuptaG, Chellappan DK, de Jesus Andreoli PintoT, HansbroPM, Bebawy M, DuaK. Tumor suppressor role of miR-503. Panminerva Med. 2018;60(1):17-24.

[431]

CosentinoG, Plantamura I, CataldoA, IorioMV. MicroRNA and oxidative stress interplay in the context of breast cancer pathogenesis. Int J Mol Sci. 2019;20(20):5143.

[432]

SachdevaM, MoYY. miR-145-mediated suppression of cell growth, invasion and metastasis. Am J Transl Res. 2010;2(2):170-180.

[433]

ZeinaliT, Mansoori B, MohammadiA, BaradaranB. Regulatory mechanisms of miR-145 expression and the importance of its function in cancer metastasis. Biomed Pharmacother. 2019;109:195-207.

[434]

BabaeiG, RaeiN, Toofani MilaniA, Gholizadeh-Ghaleh AzizS, PourjabbarN, Geravand F. The emerging role of miR-200 family in metastasis: focus on EMT, CSCs, angiogenesis, and anoikis. Mol Biol Rep. 2021;48(10):6935-6947.

[435]

KaraG, CalinGA, OzpolatB. RNAi-based therapeutics and tumor targeted delivery in cancer. Adv Drug Deliv Rev. 2022;182:114113.

[436]

SendiH, Yazdimamaghani M, HuM, et al. Nanoparticle delivery of miR-122 inhibits colorectal cancer liver metastasis. Cancer Res. 2022;82(1):105-113.

[437]

WangS, GaoS, ZengY, et al. N6-methyladenosine reader YTHDF1 promotes ARHGEF2 translation and RhoA signaling in colorectal cancer. Gastroenterology. 2022;162(4):1183-1196.

[438]

GilamA, CondeJ, Weissglas-VolkovD, et al. Local microRNA delivery targets Palladin and prevents metastatic breast cancer. Nat Commun. 2016;7:12868.

[439]

ParvaniJG, Gujrati MD, MackMA, SchiemannWP, LuZR. Silencing β3 Integrin by targeted ECO/siRNA nanoparticles inhibits EMT and metastasis of triple-negative breast cancer. Cancer Res. 2015;75(11):2316-2325.

[440]

ChenY, ZhuX, ZhangX, Liu B, HuangL. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther. 2010;18(9):1650-1656.

[441]

MaoW, WangK, ZhangW, et al. Transfection with Plasmid-Encoding lncRNA-SLERCC nanoparticle-mediated delivery suppressed tumor progression in renal cell carcinoma. J Exp Clin Cancer Res. 2022;41(1):252.

[442]

ZhangQ, HuangY, YangR, Mu J, ZhouZ, SunM. Poly-antioxidants for enhanced anti-miR-155 delivery and synergistic therapy of metastatic breast cancer. Biomater Sci. 2022;10(13):3637-3646.

[443]

ShangM, WuY, WangY, Cai Y, JinJ, YangZ. Dual antisense oligonucleotide targeting miR-21/miR-155 synergize photodynamic therapy to treat triple-negative breast cancer and inhibit metastasis. Biomed Pharmacother. 2022;146:112564.

[444]

ZhaoH, LiT, YaoC, et al. Dual roles of metal-organic frameworks as nanocarriers for miRNA delivery and adjuvants for chemodynamic therapy. ACS Appl Mater Interfaces. 2021;13(5):6034-6042.

[445]

MaY, LinH, WangP, et al. A miRNA-based gene therapy nanodrug synergistically enhances pro-inflammatory antitumor immunity against melanoma. Acta Biomater. 2023;155:538-553.

[446]

ZhangY, WangRR, LiuR, et al. Delivery of miR-3529-3p using MnO(2) -SiO(2) -APTES nanoparticles combined with phototherapy suppresses lung adenocarcinoma progression by targeting HIGD1A. Thorac Cancer. 2023;14(10):913-928.

[447]

MaY, LiJ, ZhaoY, Hu B, LiuY, LiuC. Nanobubble-mediated co-delivery of Ce6 and miR-195 for synergized sonodynamic and checkpoint blockade combination therapy with elicitation of robust immune response in hepatocellular carcinoma. Eur J Pharma Biopharma. 2022;181:36-48.

[448]

MaghsoudniaN, Baradaran Eftekhari R, Naderi SohiA, et al. Mitochondrial delivery of microRNA mimic let-7b to NSCLC cells by PAMAM-based nanoparticles. J Drug Target. 2020;28(7-8):818-830.

[449]

AhirM, Upadhyay P, GhoshA, et al. Delivery of dual miRNA through CD44-targeted mesoporous silica nanoparticles for enhanced and effective triple-negative breast cancer therapy. Biomater Sci. 2020;8(10):2939-2954.

[450]

KimH, Kitamatsu M, OhtsukiT. Combined apoptotic effects of peptide and miRNA in a peptide/miRNA nanocomplex. J Biosci Bioeng. 2019;128(1):110-116.

[451]

YinL, WeiY, LiuY, MoX, SongJ, Cai W. Bio-responsive Au-miR-183 inhibitor enhances immunotherapy in hepatocellular carcinoma by inducing immunogenic cell death. J Controlled Release. 2024;368:498-517.

[452]

ZhouX, YouM, WangF, et al. Multifunctional graphdiyne-cerium oxide nanozymes facilitate microRNA delivery and attenuate tumor hypoxia for highly efficient radiotherapy of esophageal cancer. Adv Mater. 2021;33(24):e2100556.

[453]

HuY, WangD, ZhangT, et al. Combined photosensitive gene therapy effective against triple-negative breast cancer in mice model. Int J Nanomed. 2024;19:1809-1825.

[454]

WangH, WangZ, ChenW, et al. Self-assembly of photosensitive and radiotherapeutic peptide for combined photodynamic-radio cancer therapy with intracellular delivery of miRNA-139-5p. Bioorg Med Chem. 2021;44:116305.

[455]

YangC, WangK, LiangG, et al. A versatile MOF-derived theranostic for dual-miRNA controlled accurate cancer cell recognition and photodynamic therapy. Talanta. 2023;265:124805.

[456]

HeX, LinF, JiaR, et al. Coordinated modulation of long non-coding RNA ASBEL and curcumin co-delivery through multicomponent nanocomplexes for synchronous triple-negative breast cancer theranostics. J Nanobiotechnol. 2023;21(1):397.

[457]

GaiC, LiuC, WuX, et al. MT1DP loaded by folate-modified liposomes sensitizes erastin-induced ferroptosis via regulating miR-365a-3p/NRF2 axis in non-small cell lung cancer cells. Cell Death Dis. 2020;11(9):751.

[458]

WangJ, WangK, LiangJ, Jin J, WangX, YanS. Chitosan-tripolyphosphate nanoparticles-mediated co-delivery of MTHFD1L shRNA and 5-aminolevulinic acid for combination photodynamic-gene therapy in oral cancer. Photodiagn Photodyn Ther. 2021;36:102581.

[459]

XuS, LingS, ShanQ, et al. Self-activated cascade-responsive sorafenib and USP22 shRNA co-delivery system for synergetic hepatocellular carcinoma therapy. Adv Sci. 2021;8(5):2003042.

[460]

JoseA, LabalaS, NinaveKM, Gade SK, VenugantiVVK. Effective skin cancer treatment by topical co-delivery of curcumin and STAT3 siRNA using cationic liposomes. AAPS PharmSciTech. 2018;19(1):166-175.

[461]

JoseA, LabalaS, VenugantiVVK. Co-delivery of curcumin and STAT3 siRNA using deformable cationic liposomes to treat skin cancer. J Drug Target. 2017;25(4):330-341.

[462]

Al-AttarT, Madihally SV. Targeted cancer treatment using a combination of siRNA-liposomes and resveratrol-electrospun fibers in co-cultures. Int J Pharm. 2019;569:118599.

[463]

Al-AttarT, Madihally SV. Influence of controlled release of resveratrol from electrospun fibers in combination with siRNA on leukemia cells. Eur J Pharm Sci. 2018;123:173-183.

[464]

XingZH, WeiJH, CheangTY, et al. Bifunctional pH-sensitive Zn(ii)-curcumin nanoparticles/siRNA effectively inhibit growth of human bladder cancer cells in vitro and in vivo. J Mater Chem B. 2014;2(18):2714-2724.

[465]

JiaL, GaoY, ZhouT, et al. Enhanced response to PD-L1 silencing by modulation of TME via balancing glucose metabolism and robust co-delivery of siRNA/Resveratrol with dual-responsive polyplexes. Biomaterials. 2021;271:120711.

[466]

YuH, TangK, CaiZ, et al. Carbon dots-based nanozyme for drug-resistant lung cancer therapy by encapsulated doxorubicin/siRNA cocktail. Int J Nanomed. 2023;18:933-948.

[467]

TongR, FengX, SunJ, et al. Co-delivery of siNRF2 and sorafenib by a “Click”dual functioned hyperbranched nanocarrier for synergistically inducing ferroptosis in hepatocellular carcinoma. Small. 2023;20(21):e2307273.

[468]

Reyna-LázaroL, Morales-Becerril A, Aranda-LaraL, et al. Pharmaceutical nanoplatforms based on self-nanoemulsifying drug delivery systems for optimal transport and co-delivery of siRNAs and anticancer drugs. J Pharm Sci. 2024;113(7):1907-1918.

[469]

FangY, ChenS, ZhangM, et al. Tailoring biomimetic dual-redox-responsive nanoplexes for enhanced RNAi-synergized photodynamic cancer immunotherapy. Acta Biomater. 2023;S1742-7061(23):00086-00087.

[470]

KuangG, LuH, HeS, et al. Near-infrared light-triggered polyprodrug/siRNA loaded upconversion nanoparticles for multi-modality imaging and synergistic cancer therapy. Adv Healthcare Mater. 2021;10(20):e2100938.

[471]

YueD, CaiX, FanM, et al. An alternating irradiation strategy-driven combination therapy of PDT and RNAi for highly efficient inhibition of tumor growth and metastasis. Adv Healthcare Mater. 2021;10(8):e2001850.

[472]

FangY, ChenS, ZhangM, et al. A trojan horse delivery vehicle carrying siRNA nanotherapeutics with multiple tumor microenvironment responsiveness elicits robust antitumor immune responses in situ via a “Self-Synergistic”approach. Adv Healthcare Mater. 2023;12(28):e2301401.

[473]

MoY, ChengMHY, D’EliaA, et al. Light-activated siRNA endosomal release (LASER) by porphyrin lipid nanoparticles. ACS Nano. 2023;17(5):4688-4703.

[474]

DengS, WangS, XiaoZ, Cheng D. Unprotonatable and ROS-sensitive nanocarrier for NIR spatially activated siRNA therapy with synergistic drug effect. Small. 2022;18(41):e2203823.

[475]

GuoY, ZhangQ, ZhuQ, et al. Copackaging photosensitizer and PD-L1 siRNA in a nucleic acid nanogel for synergistic cancer photoimmunotherapy. Sci Adv. 2022;8(16):eabn2941.

[476]

YehCH, ChenJ, ZhengG, Huang L, HsuYC. Novel pyropheophorbide phosphatydic acids photosensitizer combined EGFR siRNA gene therapy for head and neck cancer treatment. Pharmaceutics. 2021;13(9):1435.

[477]

ZhengN, LuoX, ZhangZ, Wang A, SongW. Cationic polyporphyrins as siRNA delivery vectors for photodynamic and gene synergistic anticancer therapy. ACS Appl Mater Interfaces. 2021;13(23):27513-27521.

[478]

LarouiN, CosteM, LichonL, et al. Combination of photodynamic therapy and gene silencing achieved through the hierarchical self-assembly of porphyrin-siRNA complexes. Int J Pharm. 2019;569:118585.

[479]

ZhangX, ChenL, GaoL, et al. Comparative study of the effects of ferrochelatase-siRNA transfection mediated by ultrasound microbubbles and polyethyleneimine in combination with low-dose ALA to enhance PpIX accumulation in human endometrial cancer xenograft nude mice models. Photochem Photobiol. 2019;95(4):1045-1051.

[480]

SunS, XuY, FuP, et al. Ultrasound-targeted photodynamic and gene dual therapy for effectively inhibiting triple negative breast cancer by cationic porphyrin lipid microbubbles loaded with HIF1α-siRNA. Nanoscale. 2018;10(42):19945-19956.

[481]

ZhaoR, LiangX, ZhaoB, et al. Ultrasound assisted gene and photodynamic synergistic therapy with multifunctional FOXA1-siRNA loaded porphyrin microbubbles for enhancing therapeutic efficacy for breast cancer. Biomaterials. 2018;173:58-70.

[482]

YangY, YangY, XieX, et al. Dual-modified liposomes with a two-photon-sensitive cell penetrating peptide and NGR ligand for siRNA targeting delivery. Biomaterials. 2015;48:84-96.

[483]

XiaL, GuanW, WangD, et al. Killing effect of Ad5/F35-APE1 siRNA recombinant adenovirus in combination with hematoporphrphyrin derivative-mediated photodynamic therapy on human nonsmall cell lung cancer. BioMed Res Int. 2013;2013:957913.

[484]

LimMSH, Nishiyama Y, OhtsukiT, et al. Lactosome-conjugated siRNA nanoparticles for photo-enhanced gene silencing in cancer cells. J Pharm Sci. 2021;110(4):1788-1798.

[485]

ZhangM, WengY, CaoZ, et al. ROS-activatable siRNA-engineered polyplex for NIR-triggered synergistic cancer treatment. ACS Appl Mater Interfaces. 2020;12(29):32289-32300.

[486]

ZhangY, RenK, ZhangX, et al. Photo-tearable tape close-wrapped upconversion nanocapsules for near-infrared modulated efficient siRNA delivery and therapy. Biomaterials. 2018;163:55-66.

[487]

Mohammad Gholinia SarpoliL, Zare-KariziS, Heidari E, et al. Co-delivery of curcumin and Bcl-2 siRNA to enhance therapeutic effect against breast cancer cells using PEI-functionalized PLGA nanoparticles. Pharm Dev Technol. 2022;27(7):785-793.

[488]

KavyaKV, Vargheese S, ShuklaS, et al. A cationic amino acid polymer nanocarrier synthesized in supercritical CO(2) for co-delivery of drug and gene to cervical cancer cells. Colloids Surf B. 2022;216:112584.

[489]

TangY, JiaC, WangY, et al. Lactate consumption via cascaded enzymes combined VEGF siRNA for synergistic anti-proliferation and anti-angiogenesis therapy of tumors. Adv Healthcare Mater. 2021;10(19):e2100799.

[490]

CaoW, ZhangX, LiR, et al. Lipid core-shell nanoparticles co-deliver FOLFOX regimen and siPD-L1 for synergistic targeted cancer treatment. J Controlled Release. 2024;368:52-65.

[491]

XieZ, GuoW, GuoN, et al. Targeting tumor hypoxia with stimulus-responsive nanocarriers in overcoming drug resistance and monitoring anticancer efficacy. Acta Biomater. 2018;71:351-362.

[492]

MaC, DuanY, WuC, et al. Spatiotemporally co-delivery of triple therapeutic drugs via HA-coating nanosystems for enhanced immunotherapy. Asian J Pharma Sci. 2021;16(5):653-664.

[493]

LiX, ZhangS, ZhangM, et al. A multifunctional Nano-delivery system against rheumatoid arthritis by combined phototherapy, hypoxia-activated chemotherapy, and RNA interference. Int J Nanomed. 2022;17:6257-6273.

[494]

DangJ, LiY, YanJ, et al. Reversal of chemo-resistance via staged liberation of chemodrug and siRNA in hierarchical response to ROS gradient. Adv Healthc Mater. 2024;13:e2304130.

[495]

ZhengW, YinT, ChenQ, et al. Co-delivery of Se nanoparticles and pooled SiRNAs for overcoming drug resistance mediated by P-glycoprotein and class III β-tubulin in drug-resistant breast cancers. Acta Biomater. 2016;31:197-210.

[496]

WangZ, SongL, LiuQ, et al. A tubular DNA nanodevice as a siRNA/chemo-drug co-delivery vehicle for combined cancer therapy. Angew Chem Int Ed. 2021;60(5):2594-2598.

[497]

HuangJ, ZhuangC, ChenJ, et al. Targeted drug/gene/photodynamic therapy via a stimuli-responsive dendritic-polymer-based nanococktail for treatment of EGFR-TKI-resistant non-small-cell lung cancer. Adv Mater. 2022;34(27):e2201516.

[498]

EngelberthSA, HempelN, BergkvistM. Cationic dendritic starch as a vehicle for photodynamic therapy and siRNA co-delivery. J Photochem Photobiol, B. 2017;168:185-192.

[499]

MaC, ShiL, HuangY, et al. Nanoparticle delivery of Wnt-1 siRNA enhances photodynamic therapy by inhibiting epithelial-mesenchymal transition for oral cancer. Biomater Sci. 2017;5(3):494-501.

[500]

ZhouJY, WangWJ, ZhangCY, et al. Ru(II)-modified TiO(2) nanoparticles for hypoxia-adaptive photo-immunotherapy of oral squamous cell carcinoma. Biomaterials. 2022;289:121757.

[501]

ChenWH, Lecaros RLG, TsengYC, HuangL, HsuYC. Nanoparticle delivery of HIF1αsiRNA combined with photodynamic therapy as a potential treatment strategy for head-and-neck cancer. Cancer Lett. 2015;359(1):65-74.

[502]

JinG, FengG, QinW, TangBZ, LiuB, LiK. Multifunctional organic nanoparticles with aggregation-induced emission (AIE) characteristics for targeted photodynamic therapy and RNA interference therapy. Chem Commun. 2016;52(13):2752-2755.

[503]

SteegPS. Targeting metastasis. Nat Rev Cancer. 2016;16(4):201-218.

[504]

ZhangF, LiuH, DuanM, et al. Crosstalk among m(6)A RNA methylation, hypoxia and metabolic reprogramming in TME: from immunosuppressive microenvironment to clinical application. J Hematol Oncol. 2022;15(1):84.

[505]

ZhuangH, YuB, TaoD, et al. The role of m6A methylation in therapy resistance in cancer. Mol Cancer. 2023;22(1):91.

[506]

LiuY, LiangG, XuH, et al. Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance. Cell Metab. 2021;33(6):1221-1233.e11.

[507]

LiN, KangY, WangL, et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci. 2020;117(33):20159-20170.

[508]

MalacridaA, RivaraM, Di DomizioA, et al. 3D proteome-wide scale screening and activity evaluation of a new ALKBH5 inhibitor in U87 glioblastoma cell line. Bioorg Med Chem. 2020;28(4):115300.

[509]

CuiX, WangZ, LiJ, et al. Cross talk between RNA N6-methyladenosine methyltransferase-like 3 and miR-186 regulates hepatoblastoma progression through Wnt/β-catenin signalling pathway. Cell Proliferation. 2020;53(3):e12768.

[510]

XuLM, ZhangJ, MaY, et al. MicroRNA-135 inhibits initiation of epithelial-mesenchymal transition in breast cancer by targeting ZNF217 and promoting m6A modification of NANOG. Oncogene. 2022;41(12):1742-1751.

[511]

XiaoL, LiX, MuZ, et al. FTO inhibition enhances the antitumor effect of temozolomide by targeting MYC-miR-155/23a cluster-MXI1 feedback circuit in glioma. Cancer Res. 2020;80(18):3945-3958.

[512]

HuangY, YanJ, LiQ, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res. 2015;43(1):373-384.

[513]

ChenWW, QiJW, HangY, et al. Simvastatin is beneficial to lung cancer progression by inducing METTL3-induced m6A modification on EZH2 mRNA. Eur Rev Med Pharmacol Sci. 2020;24(8):4263-4270.

[514]

WuJ, GanZ, ZhuoR, Zhang L, WangT, ZhongX. Resveratrol attenuates aflatoxin B(1)-induced ROS formation and increase of m(6)A RNA methylation. Animals. 2020;10(4):677.

[515]

JiangL, LiY, HeY, WeiD, YanL, WenH. Knockdown of m6A reader IGF2BP3 inhibited hypoxia-induced cell migration and angiogenesis by regulating hypoxia inducible factor-1αin stomach cancer. Front Oncol. 2021;11:711207.

[516]

DuY, DaiX, HanM, et al. Targeting N6-methyladenosine reader YTHDF1 promotes second near-infrared Nano-Photothermal immunotherapy. Chem Eng J. 2023;453:139635.

[517]

SinghM, KumarV, SehrawatN, et al. Current paradigms in epigenetic anticancer therapeutics and future challenges. Sem Cancer Biol. 2022;83:422-440.

[518]

GaoDJ, XuM, ZhangYQ, et al. Upregulated histone deacetylase 1 expression in pancreatic ductal adenocarcinoma and specific siRNA inhibits the growth of cancer cells. Pancreas. 2010;39(7):994-1001.

[519]

CherblancF, Chapman-Rothe N, BrownR, FuchterM. Current limitations and future opportunities for epigenetic therapies. Future Med Chem. 2012;4(4):425-446.

[520]

NemethK, Bayraktar R, FerracinM, CalinGA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet. 2024;25(3):211-232.

[521]

WinkleM, El-Daly SM, FabbriM, CalinGA. Noncoding RNA therapeutics-challenges and potential solutions. Nat Rev Drug Discovery. 2021;20(8):629-651.

[522]

JinHY, Gonzalez-Martin A, MileticAV, et al. Transfection of microRNA mimics should be used with caution. Front Genet. 2015;6:340.

[523]

SugoT, TeradaM, OikawaT, et al. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles. J Controlled Release. 2016;237:1-13.

[524]

LiuWW, ZhengSQ, LiT, et al. RNA modifications in cellular metabolism: implications for metabolism-targeted therapy and immunotherapy. Signal Transduct Target Ther. 2024;9(1):70.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm – Oncology published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).

AI Summary AI Mindmap
PDF

193

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/