Recent Progress in Gene Delivery Systems Based on Gemini-Surfactant

Peng Qian , Yuxin Chen , Yangchen Xing , Kexin Wu , Qianyu Zhang , Huali Chen

MEDCOMM - Future Medicine ›› 2025, Vol. 4 ›› Issue (3) : e70027

PDF
MEDCOMM - Future Medicine ›› 2025, Vol. 4 ›› Issue (3) : e70027 DOI: 10.1002/mef2.70027
REVIEW ARTICLE

Recent Progress in Gene Delivery Systems Based on Gemini-Surfactant

Author information +
History +
PDF

Abstract

Gemini surfactants (GSs) are two single-chain surfactant molecules covalently linked to their hydrophilic head groups via a spacer, resulting in a distinct structure with two hydrophilic heads and two hydrophobic tails. The GSs with cationic head groups have the potential for gene delivery by forming aggregates with negatively charged nucleic acids under the action of positive charge and self-assembly ability. Therefore, they have attracted increasing attention in the field of gene delivery. However, there remains a lack of systematic reviews summarizing various optimization strategies for GSs as gene delivery vectors in recent years. To address this gap, this review summarizes strategies for enhancing the transfection efficiency and biocompatibility of Gemini surfactant vectors, explores the relationship between their molecular structure and gene delivery performance, along with their delivery mechanism, highlights their applications in various gene delivery contexts, and discusses future development strategies and key challenges. This review provides a foundation for the further development of superior GSs, offering additional viable approaches for effective gene delivery and gene therapy of diseases.

Keywords

biocompatibility / Gemini surfactants / gene delivery mechanisms / transfection efficiency

Cite this article

Download citation ▾
Peng Qian, Yuxin Chen, Yangchen Xing, Kexin Wu, Qianyu Zhang, Huali Chen. Recent Progress in Gene Delivery Systems Based on Gemini-Surfactant. MEDCOMM - Future Medicine, 2025, 4(3): e70027 DOI:10.1002/mef2.70027

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. D. Miller, “Human Gene Therapy Comes of Age,” Nature 357, no. 6378 (1992): 455–460.

[2]

I. M. Verma and M. D. Weitzman, “Gene Therapy: Twenty-First Century Medicine,” Annual Review of Biochemistry 74 (2005): 711–738.

[3]

I. Lostalé-Seijo and J. Montenegro, “Synthetic Materials at the Forefront of Gene Delivery,” Nature Reviews Chemistry 2, no. 10 (2018): 258–277.

[4]

C. E. Dunbar, K. A. High, J. K. Joung, D. B. Kohn, K. Ozawa, and M. Sadelain, “Gene Therapy Comes of Age,” Science 359, no. 6372 (2018): eaan4672.

[5]

A. V. Anzalone, P. B. Randolph, J. R. Davis, et al., “Search-and-Replace Genome Editing Without Double-Strand Breaks or Donor DNA,” Nature 576 (2019): 149–157.

[6]

M. Bhagat, R. Kamal, J. Sharma, et al., “Gene Therapy: Towards a New Era of Medicine,” AAPS PharmSciTech 26, no. 1 (2024): 17.

[7]

S. R. Kumar, D. M. Markusic, M. Biswas, K. A. High, and R. W. Herzog, “Clinical Development of Gene Therapy: Results and Lessons From Recent Successes,” Molecular Therapy—Methods & Clinical Development 3 (2016): 16034.

[8]

F. Locatelli, P. Lang, D. Wall, et al., “Exagamglogene Autotemcel for Transfusion-Dependent Β-Thalassemia,” New England Journal of Medicine 390, no. 18 (2024): 1663–1676.

[9]

A. El-Beshlawy, H. Dewedar, S. Hindawi, et al., “Management of Transfusion-Dependent β-thalassemia (TDT): Expert Insights and Practical Overview From the Middle East,” Blood Reviews 63 (2024): 101138.

[10]

J. R. Mendell, S. A. Al-Zaidy, K. J. Lehman, et al., “Five-Year Extension Results of the Phase 1 START Trial of Onasemnogene Abeparvovec in Spinal Muscular Atrophy,” JAMA Neurology 78 (2021): 834–841.

[11]

E. Mercuri, B. T. Darras, C. A. Chiriboga, et al., “Nusinersen Versus Sham Control in Later-Onset Spinal Muscular Atrophy,” New England Journal of Medicine 378 (2018): 625–635.

[12]

J. T. Bulcha, Y. Wang, H. Ma, P. W. L. Tai, and G. Gao, “Viral Vector Platforms Within the Gene Therapy Landscape,” Signal Transduction and Targeted Therapy 6, no. 1 (2021): 53.

[13]

P. Huang, H. Deng, Y. Zhou, and X. Chen, “The Roles of Polymers in mRNA Delivery,” Matter 5, no. 6 (2022): 1670–1699.

[14]

D. W. Pack, A. S. Hoffman, S. Pun, and P. S. Stayton, “Design and Development of Polymers for Gene Delivery,” Nature Reviews Drug Discovery 4, no. 7 (2005): 581–593.

[15]

M. A. Mintzer and E. E. Simanek, “Nonviral Vectors for Gene Delivery,” Chemical Reviews 109, no. 2 (2009): 259–302.

[16]

J. Gilleron, W. Querbes, A. Zeigerer, et al., “Image-Based Analysis of Lipid Nanoparticle–Mediated siRNA Delivery, Intracellular Trafficking and Endosomal Escape,” Nature Biotechnology 31 (2013): 638–646.

[17]

R. Kumar, C. F. Santa Chalarca, M. R. Bockman, et al., “Polymeric Delivery of Therapeutic Nucleic Acids,” Chemical Reviews 121, no. 18 (2021): 11527–11652.

[18]

G. D. Schmidt-Wolf and I. G. H. Schmidt-Wolf, “Non-Viral and Hybrid Vectors in Human Gene Therapy: An Update,” Trends in Molecular Medicine 9, no. 2 (2003): 67–72.

[19]

A. Mokhtarzadeh, A. Alibakhshi, H. Yaghoobi, M. Hashemi, M. Hejazi, and M. Ramezani, “Recent Advances on Biocompatible and Biodegradable Nanoparticles as Gene Carriers,” Expert Opinion on Biological Therapy 16, no. 6 (2016): 771–785.

[20]

R. Verbeke, I. Lentacker, S. C. De Smedt, and H. Dewitte, “The Dawn of mRNA Vaccines: The COVID-19 Case,” Journal of Controlled Release 333 (2021): 511–520.

[21]

Y. Wu, S. Yu, and I. de Lázaro, “Advances in Lipid Nanoparticle mRNA Therapeutics Beyond COVID-19 Vaccines,” Nanoscale 16, no. 14 (2024): 6820–6836.

[22]

R.-M. Lu, H.-E. Hsu, S. J. L. P. Perez, et al., “Current Landscape of mRNA Technologies and Delivery Systems for New Modality Therapeutics,” Journal of Biomedical Science 31, no. 1 (2024): 89.

[23]

D. Zhang, E. N. Atochina-Vasserman, D. S. Maurya, et al., “One-Component Multifunctional Sequence-Defined Ionizable Amphiphilic Janus Dendrimer Delivery Systems for mRNA,” Journal of the American Chemical Society 143, no. 31 (2021): 12315–12327.

[24]

R. Shi, X. Liu, Y. Wang, et al., “Long-Term Stability and Immunogenicity of Lipid Nanoparticle COVID-19 mRNA Vaccine Is Affected by Particle Size,” Human Vaccines & Immunotherapeutics 20, no. 1 (2024): 2374232.

[25]

M. Qiu, Z. Glass, J. Chen, et al., “Lipid Nanoparticle-Mediated Codelivery of Cas9 mRNA and Single-Guide RNA Achieves Liver-Specific In Vivo Genome Editing of Angptl3,” Proceedings of the National Academy of Sciences 118, no. 10 (2021): e2020401118.

[26]

O. Boussif, F. Lezoualc'h, M. A. Zanta, et al., “A Versatile Vector for Gene and Oligonucleotide Transfer Into Cells in Culture and In Vivo: Polyethylenimine,” Proceedings of the National Academy of Sciences 92, no. 16 (1995): 7297–7301.

[27]

A. Hall, U. Lächelt, J. Bartek, E. Wagner, and S. M. Moghimi, “Polyplex Evolution: Understanding Biology, Optimizing Performance,” Molecular Therapy 25, no. 7 (2017): 1476–1490.

[28]

L. M. P. Vermeulen, S. C. De Smedt, K. Remaut, and K. Braeckmans, “The Proton Sponge Hypothesis: Fable or Fact?,” European Journal of Pharmaceutics and Biopharmaceutics 129 (2018): 184–190.

[29]

S. S. Das, P. Bharadwaj, M. Bilal, et al., “Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis,” Polymers 12, no. 6 (2020): 1397.

[30]

E. Fleige, M. A. Quadir, and R. Haag, “Stimuli-Responsive Polymeric Nanocarriers for the Controlled Transport of Active Compounds: Concepts and Applications,” Advanced Drug Delivery Reviews 64, no. 9 (2012): 866–884.

[31]

S. R. Tracey, P. Smyth, U. M. Herron, et al., “Development of a Cationic Polyethyleneimine-Poly(Lactic-Co-Glycolic Acid) Nanoparticle System for Enhanced Intracellular Delivery of Biologics,” RSC Advances 13, no. 48 (2023): 33721–33735.

[32]

M. D. Buschmann, A. Merzouki, M. Lavertu, M. Thibault, M. Jean, and V. Darras, “Chitosans for Delivery of Nucleic Acids,” Advanced Drug Delivery Reviews 65, no. 9 (2013): 1234–1270.

[33]

N. A. N. Hanafy, “7—Chitosan Nanoparticles as Drug Carriers and Gene Delivery Systems: Advances and Challenges.” in Fundamentals and Biomedical Applications of Chitosan Nanoparticles, eds. K. Deshmukh, J. Mohan Dodda, I. M. El-Sherbiny, and E. R. Sadiku (Woodhead Publishing, 2025), 267–308.

[34]

S. Mülhopt, S. Diabaté, M. Dilger, et al., “Characterization of Nanoparticle Batch-To-Batch Variability,” Nanomaterials 8, no. 5 (2018): 311.

[35]

R. M. Crist, J. H. Grossman, A. K. Patri, et al., “Common Pitfalls in Nanotechnology: Lessons Learned From NCI's Nanotechnology Characterization Laboratory,” Integrative Biology 5, no. 1 (2013): 66–73.

[36]

F. M. Menger and C. A. Littau, “Gemini-Surfactants: Synthesis and Properties,” Journal of the American Chemical Society 113, no. 4 (1991): 1451–1452.

[37]

A. M. Cardoso, C. M. Morais, A. R. Cruz, et al., “Gemini Surfactants Mediate Efficient Mitochondrial Gene Delivery and Expression,” Molecular Pharmaceutics 12, no. 3 (2015): 716–730.

[38]

A. J. Kirby, P. Camilleri, J. B. F. N. Engberts, et al., “Gemini Surfactants: New Synthetic Vectors for Gene Transfection,” Angewandte Chemie International Edition 42, no. 13 (2003): 1448–1457.

[39]

V. D. Sharma and M. A. Ilies, “Heterocyclic Cationic Gemini Surfactants: A Comparative Overview of Their Synthesis, Self-Assembling, Physicochemical, and Biological Properties,” Medicinal Research Reviews 34, no. 1 (2014): 1–44.

[40]

F. M. Menger and J. S. Keiper, “Gemini Surfactants,” Angewandte Chemie International Edition 39, no. 11 (2000): 1906–1920.

[41]

L. M. Bergström, A. Tehrani-Bagha, and G. Nagy, “Growth Behavior, Geometrical Shape, and Second CMC of Micelles Formed by Cationic Gemini Esterquat Surfactants,” Langmuir 31, no. 16 (2015): 4644–4653.

[42]

J. Singh, D. Michel, J. M. Chitanda, R. E. Verrall, and I. Badea, “Evaluation of Cellular Uptake and Intracellular Trafficking as Determining Factors of Gene Expression for Amino Acid-Substituted Gemini Surfactant-Based DNA Nanoparticles,” Journal of Nanobiotechnology 10, no. 1 (2012): 7.

[43]

U. Satyal, B. Draghici, L. L. Dragic, et al., “Interfacially Engineered Pyridinium Pseudogemini Surfactants as Versatile and Efficient Supramolecular Delivery Systems for DNA, siRNA, and mRNA,” ACS Applied Materials & Interfaces 9, no. 35 (2017): 29481–29495.

[44]

M. Maeki, S. Uno, A. Niwa, Y. Okada, and M. Tokeshi, “Microfluidic Technologies and Devices for Lipid Nanoparticle-Based RNA Delivery,” Journal of Controlled Release 344 (2022): 80–96.

[45]

L. R. Baden, H. M. El Sahly, B. Essink, et al., “Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine,” New England Journal of Medicine 384, no. 5 (2021): 403–416.

[46]

M. N. Patel, S. Tiwari, Y. Wang, et al., “Safer Non-Viral DNA Delivery Using Lipid Nanoparticles Loaded With Endogenous Anti-Inflammatory Lipids,” Nature Biotechnology, ahead of print, February 5, 2025, https://doi.org/10.1038/s41587-025-02556-5.

[47]

S. Renzi, L. Digiacomo, D. Pozzi, et al., “Structuring Lipid Nanoparticles, DNA, and Protein Corona Into Stealth Bionanoarchitectures for In Vivo Gene Delivery,” Nature Communications 15, no. 1 (2024): 9119.

[48]

L. Buscail, B. Bournet, F. Vernejoul, et al., “First-In-Man Phase 1 Clinical Trial of Gene Therapy for Advanced Pancreatic Cancer: Safety, Biodistribution, and Preliminary Clinical Findings,” Molecular Therapy 23, no. 4 (2015): 779–789.

[49]

T. Bo, C. Wang, D. Yao, et al., “Efficient Gene Delivery by Multifunctional Star Poly (β-Amino Ester)S Into Difficult-to-Transfect Macrophages for M1 Polarization,” Journal of Controlled Release 368 (2024): 157–169.

[50]

J. Casper, S. H. Schenk, E. Parhizkar, P. Detampel, A. Dehshahri, and J. Huwyler, “Polyethylenimine (PEI) in Gene Therapy: Current Status and Clinical Applications,” Journal of Controlled Release 362 (2023): 667–691.

[51]

G. Li, J. Wu, X. Cheng, X. Pei, J. Wang, and W. Xie, “Nanoparticle-Mediated Gene Delivery for Bone Tissue Engineering,” Small 21, no. 4 (2025): 2408350.

[52]

M. Damen, A. J. J. Groenen, S. F. M. van Dongen, R. J. M. Nolte, B. J. Scholte, and M. C. Feiters, “Transfection by Cationic Gemini Lipids and Surfactants,” MedChemComm 9, no. 9 (2018): 1404–1425.

[53]

M. J. Rosen, “Geminis: A New Generation of Surfactants,” CHEMTECH 23, no. 3 (1993): 30–33.

[54]

A. R. Ahmady, P. Hosseinzadeh, A. Solouk, S. Akbari, A. M. Szulc, and B. E. Brycki, “Cationic Gemini Surfactant Properties, Its Potential as a Promising Bioapplication Candidate, and Strategies for Improving Its Biocompatibility: A Review,” Advances in Colloid and Interface Science 299 (2022): 102581.

[55]

D. R. Acosta-Martínez, E. Rodríguez-Velázquez, F. Araiza-Verduzco, et al., “Bis-Quaternary Ammonium Gemini Surfactants for Gene Therapy: Effects of the Spacer Hydrophobicity on the DNA Complexation and Biological Activity,” Colloids and Surfaces B: Biointerfaces 189 (2020): 110817.

[56]

S. M. Shaban, A. M. Elsharif, A. H. Elged, M. M. Eluskkary, I. Aiad, and E. A. Soliman, “Some New Phospho-Zwitterionic Gemini Surfactants as Corrosion Inhibitors for Carbon Steel in 1.0 M HCl Solution,” Environmental Technology & Innovation 24 (2021): 102051.

[57]

A. Labena, A. Hamed, E. H. I. Ismael, and S. M. Shaban, “Novel Gemini Cationic Surfactants: Thermodynamic, Antimicrobial Susceptibility, and Corrosion Inhibition Behavior Against Acidithiobacillus Ferrooxidans,” Journal of Surfactants and Detergents 23, no. 5 (2020): 991–1004.

[58]

A. Abd-ElHamid, W. El-dougdoug, S. M. Syam, I. Aiad, S. M. Shaban, and D.-H. Kim, “Synthesis of Gemini Cationic Surfactants-Based Pyridine Schiff Base for Steel Corrosion and Sulfate Reducing Bacteria Mitigation,” Journal of Molecular Liquids 369 (2023): 120890.

[59]

S. M. Shaban, B. Ea, M. A. Shenashen, and A. A. Farag, “Fabrication and Characterization of Encapsulated Gemini Cationic Surfactant as Anticorrosion Material for Carbon Steel Protection in Down-Hole Pipelines,” Environmental Technology & Innovation 23 (2021): 101603.

[60]

S. M. Shaban, E. H. I. Ismael, A. M. Elsharif, A. H. Elged, and N. M. El Basiony, “Preparation Gemini Non-Ionic Surfactants-Based Polyethylene Oxide With Variable Hydrophobic Tails for Controlling the Catalytic and Antimicrobial Activity of AgNPs,” Journal of Molecular Liquids 367 (2022): 120416.

[61]

S. M. Shaban, A. A. Taha, A. H. Elged, et al., “Insights on Gemini Cationic Surfactants Influence AgNPs Synthesis: Controlling Catalytic and Antimicrobial Activity,” Journal of Molecular Liquids 397 (2024): 124071.

[62]

E. A. Badr, S. H. Shafek, H. H. H. Hefni, et al., “Synthesis of Schiff Base-Based Cationic Gemini Surfactants and Evaluation of Their Effect on In-Situ AgNPs Preparation: Structure, Catalytic, and Biological Activity Study,” Journal of Molecular Liquids 326 (2021): 115342.

[63]

S. M. Shaban and D.-H. Kim, “The Influence of the Gemini Surfactants Hydrocarbon Tail on In-Situ Synthesis of Silver Nanoparticles: Characterization, Surface Studies and Biological Performance,” Korean Journal of Chemical Engineering 37, no. 6 (2020): 1008–1019.

[64]

V. Agarwal, V. Gupta, V. K. Bhardwaj, K. Singh, P. Khullar, and M. S. Bakshi, “Avoiding Hemolytic Anemia by Understanding the Effect of the Molecular Architecture of Gemini Surfactants on Hemolysis,” Langmuir 37, no. 12 (2021): 3709–3720.

[65]

T. Ahmed, A. O. Kamel, and S. D. Wettig, “Interactions Between DNA and Gemini Surfactant: Impact on Gene Therapy: Part I,” Nanomedicine 11, no. 3 (2016): 289–306.

[66]

M. Muñoz-Úbeda, S. K. Misra, A. L. Barrán-Berdón, et al., “How Does the Spacer Length of Cationic Gemini Lipids Influence the Lipoplex Formation With Plasmid DNA? Physicochemical and Biochemical Characterizations and Their Relevance in Gene Therapy,” Biomacromolecules 13, no. 12 (2012): 3926–3937.

[67]

S. K. Misra, M. Muñoz-Úbeda, S. Datta, et al., “Effects of a Delocalizable Cation on the Headgroup of Gemini Lipids on the Lipoplex-Type Nanoaggregates Directly Formed From Plasmid DNA,” Biomacromolecules 14, no. 11 (2013): 3951–3963.

[68]

L. Y. Zakharova, D. R. Gabdrakhmanov, A. R. Ibragimova, et al., “Structural, Biocomplexation and Gene Delivery Properties of Hydroxyethylated Gemini Surfactants With Varied Spacer Length,” Colloids and Surfaces B: Biointerfaces 140 (2016): 269–277.

[69]

E. Fisicaro, C. Compari, F. Bacciottini, et al., “Nonviral Gene-Delivery by Highly Fluorinated Gemini Bispyridinium Surfactant-Based DNA Nanoparticles,” Journal of Colloid and Interface Science 487 (2017): 182–191.

[70]

A. M. Cardoso, C. M. Morais, S. G. Silva, E. F. Marques, M. C. P. de Lima, and M. A. S. Jurado, “Bis-Quaternary Gemini Surfactants as Components of Nonviral Gene Delivery Systems: A Comprehensive Study From Physicochemical Properties to Membrane Interactions,” International Journal of Pharmaceutics 474, no. 1–2 (2014): 57–69.

[71]

H. Wang, T. Kaur, N. Tavakoli, J. Joseph, and S. Wettig, “Transfection and Structural Properties of Phytanyl Substituted Gemini Surfactant-Based Vectors for Gene Delivery,” Physical Chemistry Chemical Physics 15, no. 47 (2013): 20510–20516.

[72]

T. Zhou, G. Xu, M. Ao, Y. Yang, and C. Wang, “DNA Compaction to Multi-Molecular DNA Condensation Induced by Cationic Imidazolium Gemini Surfactants,” Colloids and Surfaces, A: Physicochemical and Engineering Aspects 414 (2012): 33–40.

[73]

M. Donkuru, S. D. Wettig, R. E. Verrall, I. Badea, and M. Foldvari, “Designing pH-Sensitive Gemini Nanoparticles for Non-Viral Gene Delivery Into Keratinocytes,” Journal of Materials Chemistry 22 (2012): 6232–6244.

[74]

M. A. Al-Dulaymi, J. M. Chitanda, W. Mohammed-Saeid, et al., “Di-Peptide-Modified Gemini Surfactants as Gene Delivery Vectors: Exploring the Role of the Alkyl Tail in Their Physicochemical Behavior and Biological Activity,” AAPS Journal 18, no. 5 (2016): 1168–1181.

[75]

V. D. Sharma, E. O. Aifuwa, P. A. Heiney, and M. A. Ilies, “Interfacial Engineering of Pyridinium Gemini Surfactants for the Generation of Synthetic Transfection Systems,” Biomaterials 34, no. 28 (2013): 6906–6921.

[76]

M. Massa, M. Rivara, T. A. Pertinhez, et al., “Chemico-Physical Properties of Some 1,1′-Bis-alkyl-2,2′-hexane-1,6-diyl-bispyridinium Chlorides Hydrogenated and Partially Fluorinated for Gene Delivery,” Molecules 28, no. 8 (2023): 3585.

[77]

L. Narsineni and M. Foldvari, “Dicationic Amino Substituted Gemini Surfactants and Their Nanoplexes: Improved Synthesis and Characterization of Transfection Efficiency and Corneal Penetration In Vitro,” Pharmaceutical Research 37, no. 7 (2020): 144.

[78]

S. Taheri-Araghi, D. W. Chen, M. Kohandel, S. Sivaloganathan, and M. Foldvari, “Tuning Optimum Transfection of Gemini Surfactant-Phospholipid-DNA Nanoparticles by Validated Theoretical Modeling,” Nanoscale 11, no. 3 (2019): 1037–1046.

[79]

C. Costa, I. S. Oliveira, J. P. N. Silva, et al., “Effective Cytocompatible Nanovectors Based on Serine-Derived Gemini Surfactants and Monoolein for Small Interfering RNA Delivery,” Journal of Colloid and Interface Science 584 (2021): 34–44.

[80]

A. A. Begum, I. Toth, W. M. Hussein, and P. M. Moyle, “Advances in Targeted Gene Delivery,” Current Drug Delivery 16, no. 7 (2019): 588–608.

[81]

K. Xiang, Y. Li, H. Cong, B. Yu, and Y. Shen, “Peptide-Based Non-Viral Gene Delivery: A Comprehensive Review of the Advances and Challenges,” International Journal of Biological Macromolecules 266, no. Pt 1 (2024): 131194.

[82]

W. Mohammed-Saeid, R. Soudy, R. Tikoo, K. Kaur, R. E. Verrall, and I. Badea, “Design and Evaluation of Gemini Surfactant-Based Lipoplexes Modified With Cell-Binding Peptide for Targeted Gene Therapy in Melanoma Model,” Journal of Pharmacy & Pharmaceutical Sciences 21, no. 1 (2018): 363–375.

[83]

J. Singh, D. Michel, H. M. Getson, J. M. Chitanda, R. E. Verrall, and I. Badea, “Development of Amino Acid Substituted Gemini Surfactant-Based Mucoadhesive Gene Delivery Systems for Potential Use as Noninvasive Vaginal Genetic Vaccination,” Nanomedicine 10, no. 3 (2015): 405–417.

[84]

W. Mohammed-Saeid, J. Chitanda, M. Al-Dulaymi, R. Verrall, and I. Badea, “Design and Evaluation of RGD-Modified Gemini Surfactant-Based Lipoplexes for Targeted Gene Therapy in Melanoma Model,” Pharmaceutical Research 34, no. 9 (2017): 1886–1896.

[85]

L. Narsineni, D. W. Chen, and M. Foldvari, “BDNF Gene Delivery to the Retina by Cell Adhesion Peptide-Conjugated Gemini Nanoplexes In Vivo,” Journal of Controlled Release 359 (2023): 244–256.

[86]

S. G. Silva, C. Alves, A. M. S. Cardoso, et al., “Synthesis of Gemini Surfactants and Evaluation of Their Interfacial and Cytotoxic Properties: Exploring the Multifunctionality of Serine as Headgroup,” European Journal of Organic Chemistry 2013 (2013): 1758–1769.

[87]

A. Pinazo, R. Pons, L. Pérez, and M. R. Infante, “Amino Acids as Raw Material for Biocompatible Surfactants,” Industrial & Engineering Chemistry Research 50, no. 9 (2011): 4805–4817.

[88]

A. M. Cardoso, C. M. Morais, A. R. Cruz, et al., “New Serine-Derived Gemini Surfactants as Gene Delivery Systems,” European Journal of Pharmaceutics and Biopharmaceutics 89 (2015): 347–356.

[89]

R. Q. Cruz, C. M. Morais, A. M. Cardoso, et al., “Enhancing Glioblastoma Cell Sensitivity to Chemotherapeutics: A Strategy Involving Survivin Gene Silencing Mediated by Gemini Surfactant-Based Complexes,” European Journal of Pharmaceutics and Biopharmaceutics 104 (2016): 7–18.

[90]

K. Kumar, A. L. Barrán-Berdón, S. Datta, et al., “A Delocalizable Cationic Headgroup Together With an Oligo-Oxyethylene Spacer in Gemini Cationic Lipids Improves Their Biological Activity as Vectors of Plasmid DNA,” Journal of Materials Chemistry B 3, no. 8 (2015): 1495–1506.

[91]

Y.-n Zhao, F. Qureshi, S. B. Zhang, et al., “Novel Gemini Cationic Lipids With Carbamate Groups for Gene Delivery,” Journal of Materials Chemistry B: Materials for Biology and Medicine 2, no. 19 (2014): 2920–2928.

[92]

M. Massa, M. Rivara, G. Donofrio, et al., “Gene-Delivery Ability of New Hydrogenated and Partially Fluorinated Gemini Bispyridinium Surfactants With Six Methylene Spacers,” International Journal of Molecular Sciences 23, no. 6 (2022): 3062.

[93]

G. Candiani, M. Frigerio, F. Viani, et al., “Dimerizable Redox-Sensitive Triazine-Based Cationic Lipids for In Vitro Gene Delivery,” ChemMedChem 2, no. 3 (2007): 292–296.

[94]

Z. Lu, G. Zongjie, Z. Qianyu, et al., “Preparation and Characterization of a Gemini Surfactant- Based Biomimetic Complex for Gene Delivery,” European Journal of Pharmaceutics and Biopharmaceutics 182 (2023): 92–102.

[95]

K. Wu, M. He, B. Mao, et al., “Enhanced Delivery of CRISPR/Cas9 System Based on Biomimetic Nanoparticles for Hepatitis B Virus Therapy,” Journal of Controlled Release 374 (2024): 293–311.

[96]

M. R. Yadav, M. Kumar, and P. R. Murumkar, “Further Studies on Cationic Gemini Amphiphiles as Carriers for Gene Delivery─The Effect of Linkers in the Structure and Other Factors Affecting the Transfection Efficacy of These Amphiphiles,” ACS Omega 6, no. 49 (2021): 33370–33388.

[97]

D. Pezzoli, M. Zanda, R. Chiesa, and G. Candiani, “The Yin of Exofacial Protein Sulfhydryls and the Yang of Intracellular Glutathione in In Vitro Transfection With SS14 Bioreducible Lipoplexes,” Journal of Controlled Release 165, no. 1 (2013): 44–53.

[98]

X. Liu, X. Zhong, and C. Li, “Challenges In Cell Membrane-Camouflaged Drug Delivery Systems: Development Strategies and Future Prospects,” Chinese Chemical Letters 32, no. 8 (2021): 2347–2358.

[99]

R. M. Preto, V. C. T. dos Santos, M. V. S. Lordelo, et al., “Optimization of Methods for Isolation and Purification of Outer Membrane Vesicles (OMVs) From Neisseria Lactamica,” Applied Microbiology and Biotechnology 109, no. 1 (2025): 82.

[100]

Q. Guo, S. Wang, R. Xu, Y. Tang, and X. Xia, “Cancer Cell Membrane-Coated Nanoparticles: A Promising Anti-Tumor Bionic Platform,” RSC Advances 14, no. 15 (2024): 10608–10637.

[101]

H. T. McMahon and E. Boucrot, “Molecular Mechanism and Physiological Functions of Clathrin-Mediated Endocytosis,” Nature Reviews Molecular Cell Biology 12, no. 8 (2011): 517–533.

[102]

S. Xiang, H. Tong, Q. Shi, et al., “Uptake Mechanisms of Non-Viral Gene Delivery,” Journal of Controlled Release 158, no. 3 (2012): 371–378.

[103]

X.-X. Ma, H. Gao, Y.-X. Zhang, et al., “Construction and Evaluation of BSA-CaP Nanomaterials With Enhanced Transgene Performance via Biocorona-Inspired Caveolae-Mediated Endocytosis,” Nanotechnology 29, no. 8 (2018): 085101.

[104]

A. El-Sayed and H. Harashima, “Endocytosis of Gene Delivery Vectors: From Clathrin-Dependent to Lipid Raft-Mediated Endocytosis,” Molecular Therapy 21, no. 6 (2013): 1118–1130.

[105]

V. I. Slepnev and P. De Camilli, “Accessory Factors in Clathrin-Dependent Synaptic Vesicle Endocytosis,” Nature Reviews Neuroscience 1, no. 3 (2000): 161–172.

[106]

F. M. Brodsky, C. Y. Chen, C. Knuehl, M. C. Towler, and D. E. Wakeham, “Biological Basket Weaving: Formation and Function of Clathrin-Coated Vesicles,” Annual Review of Cell and Developmental Biology 17 (2001): 517–568.

[107]

J. Z. Rappoport, A. Benmerah, and S. M. Simon, “Analysis of the AP-2 Adaptor Complex and Cargo During Clathrin-Mediated Endocytosis,” Traffic 6, no. 7 (2005): 539–547.

[108]

P. U. Le and I. R. Nabi, “Distinct Caveolae-Mediated Endocytic Pathways Target the Golgi Apparatus and the Endoplasmic Reticulum,” Journal of Cell Science 116, no. Pt 6 (2003): 1059–1071.

[109]

Y. Xing, L. Zhou, Y. Chen, et al., “A Dual-Peptides and Specific Promoter-Modified Nano Gene Delivery System for Myocardial Hypertrophy Treatment,” International Journal of Biological Macromolecules 311, no. Pt 2 (2025): 143759.

[110]

W. Li, J. Shi, C. Zhang, et al., “Co-Delivery of Thioredoxin 1 shRNA and Doxorubicin by Folate-Targeted Gemini Surfactant-Based Cationic Liposomes to Sensitize Hepatocellular Carcinoma Cells,” Journal of Materials Chemistry B: Materials for Biology and Medicine 2, no. 30 (2014): 4901–4910.

[111]

L. Billiet, J.-P. Gomez, M. Berchel, et al., “Gene Transfer by Chemical Vectors, and Endocytosis Routes of Polyplexes, Lipoplexes and Lipopolyplexes in a Myoblast Cell Line,” Biomaterials 33, no. 10 (2012): 2980–2990.

[112]

A. Asati, S. Santra, C. Kaittanis, and J. M. Perez, “Surface-Charge-Dependent Cell Localization and Cytotoxicity of Cerium Oxide Nanoparticles,” ACS Nano 4, no. 9 (2010): 5321–5331.

[113]

A. Pampel, S. Chaloupka, L. M. Venanzi, et al., “The Proton Sponge: A Trick to Enter Cells the Viruses Did Not Exploit,” Chimia 51, no. 1–2 (1997): 34–36.

[114]

S. Pollock, R. Antrobus, L. Newton, et al., “Uptake and Trafficking of Liposomes to the Endoplasmic Reticulum,” FASEB Journal 24, no. 6 (2010): 1866–1878.

[115]

H. Andersen, L. Parhamifar, A. C. Hunter, V. Shahin, and S. M. Moghimi, “AFM Visualization of Sub-50 nm Polyplex Disposition to the Nuclear Pore Complex Without Compromising the Integrity of the Nuclear Envelope,” Journal of Controlled Release 244, no. Pt A (2016): 24–29.

[116]

J. Z. Gasiorowski and D. A. Dean, “Postmitotic Nuclear Retention of Episomal Plasmids Is Altered by DNA Labeling and Detection Methods,” Molecular Therapy 12, no. 3 (2005): 460–467.

[117]

W. Jin, M. Al-Dulaymi, I. Badea, S. C. Leary, J. Rehman, and A. El-Aneed, “Cellular Uptake and Distribution of Gemini Surfactant Nanoparticles Used as Gene Delivery Agents,” AAPS Journal 21, no. 5 (2019): 98.

[118]

F. Mohabatpour, M. Al-Dulaymi, L. Lobanova, et al., “Gemini Surfactant-Based Nanoparticles T-Box 1 Gene Delivery as a Novel Approach to Promote Epithelial Stem Cells Differentiation and Dental Enamel Formation,” Biomaterials Advances 137 (2022): 212844.

[119]

M. Rzycki, A. Kaczorowska, S. Kraszewski, and D. Drabik, “A Systematic Approach: Molecular Dynamics Study and Parametrisation of Gemini Type Cationic Surfactants,” International Journal of Molecular Sciences 22, no. 20 (2021): 10939.

[120]

L. Cheng, Y. Zhu, J. Ma, et al., “Machine Learning Elucidates Design Features of Plasmid Deoxyribonucleic Acid Lipid Nanoparticles for Cell Type-Preferential Transfection,” ACS Nano 18, no. 42 (2024): 28735–28747.

[121]

W. Jin, R. Purves, E. Krol, I. Badea, and A. El-Aneed, “Mass Spectrometric Detection and Characterization of Metabolites of Gemini Surfactants Used as Gene Delivery Vectors,” Journal of the American Society for Mass Spectrometry 31, no. 2 (2020): 366–378.

[122]

H. He, L. Wang, Y. Ma, et al., “The Biological Fate of Orally Administered mPEG-PDLLA Polymeric Micelles,” Journal of Controlled Release 327 (2020): 725–736.

[123]

H. He, C. Liu, J. Ming, et al., “Accurate and Sensitive Probing of Onset of Micellization Based on Absolute Aggregation-Caused Quenching Effect,” Aggregate 3, no. 5 (2022): e163.

[124]

K.-X. Zhang, A.-X. Ding, Z.-L. Tan, Y.-D. Shi, Z.-L. Lu, and L. He, “Tetraphenylethylene-Based Gemini Surfactant as Nonviral Gene Delivery System: DNA Complexation, Gene Transfection and Cellular Tracking,” Journal of Photochemistry and Photobiology, A: Chemistry 355 (2018): 338–349.

[125]

S. M. Shaban, J. Kang, and D.-H. Kim, “Surfactants: Recent Advances and Their Applications,” Composites Communications 22 (2020): 100537.

[126]

P. Brown, A. M. Khan, J. P. K. Armstrong, A. W. Perriman, C. P. Butts, and J. Eastoe, “Magnetizing DNA and Proteins Using Responsive Surfactants,” Advanced Materials 24, no. 46 (2012): 6244–6247.

[127]

L. Wang, Y. Wang, J. Hao, and S. Dong, “Magnetic Fullerene-DNA/Hyaluronic Acid Nanovehicles With Magnetism/Reduction Dual-Responsive Triggered Release,” Biomacromolecules 18, no. 3 (2017): 1029–1038.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm - Future Medicine published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).

AI Summary AI Mindmap
PDF

44

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/