PDF
Abstract
Cancer immunotherapies, developed on the basis of research into tumor escape mechanisms, manipulate the immune system to reactivate an antitumor immune response to recognize and attack cancer cells. Immunotherapy has demonstrated promising and exciting outcomes in the treatment of many cancers, yet not all patients experience favorable responses. The gut microbiota plays a critical role in modulating the host immune system, influencing responses to cancer immunotherapy. Research has increasingly demonstrated that specific microbial communities can increase the efficacy of immune checkpoint inhibitors, although the mechanisms involved remain under investigation. However, a clear gap exists in the understanding of how bacterial therapies can be further optimized for cancer treatment. This review provides an in-depth analysis of current bacterial therapies used in clinical trials as adjuncts to cancer immunotherapy, summarizing common research approaches and technologies utilized to investigate gut microbiota interactions with the immune system. Additionally, advanced strategies for modifying bacteria, including genetic engineering, surface modifications, and the development of bacterial derivatives, are discussed. By synthesizing these findings, this review highlights the potential of microbiota-based therapies to improve immunotherapy outcomes and offers future directions for improving clinical applications.
Keywords
cancer immunotherapy
/
engineering bacteria
/
gut microbiome
/
tumor microbiome
Cite this article
Download citation ▾
Binyan Zhao, Bailing Zhou, Qing Li, Chunyan Su, Jing Ma, Li Yang.
Harnessing the gut microbiome to enhance cancer immunotherapy: Current advances and future directions in microbiota-based therapeutic strategies.
MEDCOMM - Future Medicine, 2024, 3(4): e70006 DOI:10.1002/mef2.70006
| [1] |
KennedyLB, SalamaAKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin. 2020;70(2):86-104.
|
| [2] |
DunnGP, OldLJ, SchreiberRD. The three ES of cancer immunoediting. Ann Rev Immunol. 2004;22:329-360.
|
| [3] |
PantS, Wainberg ZA, WeekesCD, et al. Lymph-node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: the phase 1 AMPLIFY-201 trial. Nat Med. 2024;30(2):531-542.
|
| [4] |
BesseB, FelipE, Garcia CampeloR, et al. Randomized open-label controlled study of cancer vaccine OSE2101 versus chemotherapy in HLA-A2-positive patients with advanced non-small-cell lung cancer with resistance to immunotherapy: ATALANTE-1. Ann Oncol. 2023;34(10):920-933.
|
| [5] |
ToulmondeM, GueganJP, Spalato-CerusoM, et al. Reshaping the tumor microenvironment of cold soft-tissue sarcomas with oncolytic viral therapy: a phase 2 trial of intratumoral JX-594 combined with avelumab and low-dose cyclophosphamide. Mol Cancer. 2024;23(1):38.
|
| [6] |
MusherBL, Rowinsky EK, SmagloBG, et al. LOAd703, an oncolytic virus-based immunostimulatory gene therapy, combined with chemotherapy for unresectable or metastatic pancreatic cancer (LOKON001): results from arm 1 of a non-randomised, single-centre, phase 1/2 study. Lancet Oncol. 2024;25(4):488-500.
|
| [7] |
BrownCE, Hibbard JC, AlizadehD, et al. Locoregional delivery of IL-13Rα2-targeting CAR-T cells in recurrent high-grade glioma: a phase 1 trial. Nat Med. 2024;30(4):1001-1012.
|
| [8] |
MarinD, LiY, BasarR, et al. Safety, efficacy and determinants of response of allogeneic CD19-specific CAR-NK cells in CD19+ B cell tumors: a phase 1/2 trial. Nat Med. 2024;30(3):772-784.
|
| [9] |
ChiesaR, Georgiadis C, SyedF, et al. Base-edited CAR7 T cells for relapsed T-cell acute lymphoblastic leukemia. N Engl J Med. 2023;389(10):899-910.
|
| [10] |
San-MiguelJ, DhakalB, YongK, et al. Cilta-cel or standard care in lenalidomide-refractory multiple myeloma. N Engl J Med. 2023;389(4):335-347.
|
| [11] |
WakeleeH, Liberman M, KatoT, et al. Perioperative pembrolizumab for early-stage non-small-cell lung cancer. N Engl J Med. 2023;389(6):491-503.
|
| [12] |
WeberJS, Carlino MS, KhattakA, et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. The Lancet. 2024;403(10427):632-644.
|
| [13] |
ReckM, Rodríguez-Abreu D, RobinsonAG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell llung cancer. N Engl J Med. 2016;375(19):1823-1833.
|
| [14] |
OvermanMJ, Lonardi S, WongKYM, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite Instability-high metastatic colorectal cancer. J Clin Oncol. 2018;36(8):773-779.
|
| [15] |
RiniBI, Plimack ER, StusV, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380(12):1116-1127.
|
| [16] |
SharmaP, Hu-Lieskovan S, WargoJA, RibasA. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168(4):707-723.
|
| [17] |
GideTN, Wilmott JS, ScolyerRA, LongGV. Primary and acquired resistance to immune checkpoint inhibitors in metastatic melanoma. Clin Cancer Res. 2018;24(6):1260-1270.
|
| [18] |
BrahmerJR, Govindan R, AndersRA, et al. The society for immunotherapy of cancer consensus statement on immunotherapy for the treatment of non-small cell lung cancer (NSCLC). J Immunother Cancer. 2018;6(1):75.
|
| [19] |
GandhiL, Rodríguez-Abreu D, GadgeelS, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378(22):2078-2092.
|
| [20] |
FehrenbacherL, SpiraA, BallingerM, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. The Lancet. 2016;387(10030):1837-1846.
|
| [21] |
ZitvogelL, Daillère R, RobertiMP, RoutyB, Kroemer G. Anticancer effects of the microbiome and its products. Nat Rev Microbiol. 2017;15(8):465-478.
|
| [22] |
MoradG, Helmink BA, SharmaP, WargoJA. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell. 2021;184(21):5309-5337.
|
| [23] |
SivanA, Corrales L, HubertN, et al. Commensal bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084-1089.
|
| [24] |
VétizouM, PittJM, DaillèreR, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079-1084.
|
| [25] |
GopalakrishnanV, Spencer CN, NeziL, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97-103.
|
| [26] |
MatsonV, Fessler J, BaoR, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359(6371):104-108.
|
| [27] |
RoutyB, Le Chatelier E, DerosaL, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359(6371):91-97.
|
| [28] |
ParkJS, Gazzaniga FS, WuM, et al. Targeting PD-L2-RGMb overcomes microbiome-related immunotherapy resistance. Nature. 2023;617(7960):377-385.
|
| [29] |
KangX, LauHCH, YuJ. Modulating gut microbiome in cancer immunotherapy: harnessing microbes to enhance treatment efficacy. Cell Rep Med. 2024;5(4):101478.
|
| [30] |
TingNLN, LauHCH, YuJ. Cancer pharmacomicrobiomics: targeting microbiota to optimise cancer therapy outcomes. Gut. 2022;71(7):1412-1425.
|
| [31] |
LiuL, ShahK. The potential of the gut microbiome to reshape the cancer therapy paradigm: a review. JAMA Oncol. 2022;8(7):1059-1067.
|
| [32] |
TitoRY, Verbandt S, Aguirre VazquezM, et al. Microbiome confounders and quantitative profiling challenge predicted microbial targets in colorectal cancer development. Nat Med. 2024;30(5):1339-1348.
|
| [33] |
AyersM, Lunceford J, NebozhynM, et al. IFN-γ–related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127(8):2930-2940.
|
| [34] |
LiuD, Schilling B, LiuD, et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat Med. 2019;25(12):1916-1927.
|
| [35] |
DongZY, ZhongWZ, ZhangXC, et al. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin Cancer Res. 2017;23(12):3012-3024.
|
| [36] |
BodorJN, Boumber Y, BorghaeiH. Biomarkers for immune checkpoint inhibition in non-small cell lung cancer (NSCLC). Cancer. 2020;126(2):260-270.
|
| [37] |
NewsomeRC, Gharaibeh RZ, PierceCM, et al. Interaction of bacterial genera associated with therapeutic response to immune checkpoint PD-1 blockade in a United States cohort. Genome Med. 2022;14(1):35.
|
| [38] |
ZhangC, WangJ, SunZ, CaoY, MuZ, JiX. Commensal microbiota contributes to predicting the response to immune checkpoint inhibitors in non-small-cell lung cancer patients. Cancer Sci. 2021;112(8):3005-3017.
|
| [39] |
PetersBA, WilsonM, MoranU, et al. Relating the gut metagenome and metatranscriptome to immunotherapy responses in melanoma patients. Genome Med. 2019;11(1):61.
|
| [40] |
FrankelAE, Coughlin LA, KimJ, et al. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia. 2017;19(10):848-855.
|
| [41] |
AlexanderJL, WilsonID, TeareJ, Marchesi JR, NicholsonJK, KinrossJM. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol. 2017;14(6):356-365.
|
| [42] |
ZhangZ, TangH, ChenP, Xie H, TaoY. Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct Target Ther. 2019;4(1):41.
|
| [43] |
BuffieCG, PamerEG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. 2013;13(11):790-801.
|
| [44] |
SchultzM, Clinical use of E. coli nissle 1917 in inflammatory bowel disease. Inflamm Bowel Dis. 2008;14(7):1012-1018.
|
| [45] |
ZhaoH, DuY, LiuL, et al. Oral nanozyme-engineered probiotics for the treatment of ulcerative colitis. J Mater Chem B. 2022;10(21):4002-4011.
|
| [46] |
BegleyM, GahanCGM, HillC. The interaction between bacteria and bile. FEMS Microbiol Rev. 2005;29(4):625-651.
|
| [47] |
Stein-ThoeringerCK, Saini NY, ZamirE, et al. A non-antibiotic-disrupted gut microbiome is associated with clinical responses to CD19-CAR-T cell cancer immunotherapy. Nat Med. 2023;29(4):906-916.
|
| [48] |
Di ModicaM, Gargari G, RegondiV, et al. Gut microbiota condition the therapeutic efficacy of trastuzumab in HER2-positive breast cancer. Cancer Res. 2021;81(8):2195-2206.
|
| [49] |
SmithM, DaiA, GhilardiG, et al. Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. Nat Med. 2022;28(4):713-723.
|
| [50] |
RiazQUA, MasudT. Recent trends and applications of encapsulating materials for probiotic stability. Crit Rev Food Sci Nutr. 2013;53(3):231-244.
|
| [51] |
BárcenaC, Valdés-Mas R, MayoralP, et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat Med. 2019;25(8):1234-1242.
|
| [52] |
VilleminC, SixA, NevilleBA, Lawley TD, RobinsonMJ, BakdashG. The heightened importance of the microbiome in cancer immunotherapy. Trends Immunol. 2023;44(1):44-59.
|
| [53] |
PetitprezF, de Reyniès A, KeungEZ, et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature. 2020;577(7791):556-560.
|
| [54] |
HelminkBA, ReddySM, GaoJ, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020;577(7791):549-555.
|
| [55] |
YonekuraS, Terrisse S, Alves Costa SilvaC, et al. Cancer induces a stress ileopathy depending on β-Adrenergic receptors and promoting dysbiosis that contributes to carcinogenesis. Cancer Discov. 2022;12(4):1128-1151.
|
| [56] |
WangDD, NguyenLH, LiY, et al. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat Med. 2021;27(2):333-343.
|
| [57] |
AndrewsMC, DuongCPM, GopalakrishnanV, et al. Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat Med. 2021;27(8):1432-1441.
|
| [58] |
BlakeSJ, JamesJ, RyanFJ, et al. The immunotoxicity, but not anti-tumor efficacy, of anti-CD40 and anti-CD137 immunotherapies is dependent on the gut microbiota. Cell Rep Med. 2021;2(12):100464.
|
| [59] |
ParkEM, Chelvanambi M, BhutianiN, KroemerG, Zitvogel L, WargoJA. Targeting the gut and tumor microbiota in cancer. Nat Med. 2022;28(4):690-703.
|
| [60] |
DaiJH, TanXR, QiaoH, Liu N. Emerging clinical relevance of microbiome in cancer: promising biomarkers and therapeutic targets. Protein Cell. 2023;15(4):239-260.
|
| [61] |
BhattAP, Redinbo MR, BultmanSJ. The role of the microbiome in cancer development and therapy. CA Cancer J Clin. 2017;67(4):326-344.
|
| [62] |
El TekleG, Garrett WS. Bacteria in cancer initiation, promotion and progression. Nat Rev Cancer. 2023;23(9):600-618.
|
| [63] |
RojeB, ZhangB, MastrorilliE, et al. Gut microbiota carcinogen metabolism causes distal tissue tumours. Nature. 2024;632(8027):1137-1144.
|
| [64] |
ErnyD, Hrabě de Angelis AL, JaitinD, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18(7):965-977.
|
| [65] |
Peña-GilN, Santiso-Bellón C, Gozalbo-RoviraR, BuesaJ, Monedero V, Rodríguez-Díaz J. The role of host glycobiology and gut microbiota in rotavirus and norovirus infection, an update. Int J Mol Sci. 2021;22(24):13473.
|
| [66] |
WillyardC. Squeaky clean mice could be ruining research. Nature. 2021;556:7699. https://www.nature.com/articles/d41586-018-03916-9
|
| [67] |
ReardonS. Dirty room-mates make lab mice more useful. Nature. 2016;532(7599):294-295.
|
| [68] |
DerosaL, RoutyB, EnotD, et al. Impact of antibiotics on outcome in patients with metastatic renal cell carcinoma treated with immune checkpoint inhibitors. J Clin Oncol. 2017;35(6_suppl):462.
|
| [69] |
HuemerF, Rinnerthaler G, LangD, HacklH, Lamprecht B, GreilR. Association between antibiotics use and outcome in patients with NSCLC treated with immunotherapeutics. Ann Oncol. 2019;30(4):652-653.
|
| [70] |
KhanU, HoK, HwangEK, et al. Impact of use of antibiotics on response to immune checkpoint inhibitors and tumor microenvironment. Am J Clin Oncol. 2021;44(6):247-253.
|
| [71] |
SerpasV, RogersJE, XiaoL, et al. Impact of antibiotic exposure on the efficacy of immune checkpoint blockade in MSI-H metastatic CRC. J Clin Oncol. 2020;38(suppl 4):161.
|
| [72] |
XieJ, LiuM, DengX, et al. Gut microbiota reshapes cancer immunotherapy efficacy: mechanisms and therapeutic strategies. Imeta. 2024;3(1):e156.
|
| [73] |
Dunn-PirioAM, Vlahovic G. Immunotherapy approaches in the treatment of malignant brain tumors. Cancer. 2017;123(5):734-750.
|
| [74] |
PonzianiFR, BhooriS, CastelliC, et al. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology. 2019;69(1):107-120.
|
| [75] |
HakimH, DallasR, WolfJ, et al. Gut microbiome composition predicts infection risk during chemotherapy in children with acute lymphoblastic leukemia. Clin Infect Dis. 2018;67(4):541-548.
|
| [76] |
MimaK, Nishihara R, QianZR, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 2016;65(12):1973-1980.
|
| [77] |
YuT, GuoF, YuY, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 2017;170(3):548-563.e16.
|
| [78] |
YiY, ShenL, ShiW, et al. Gut microbiome components predict response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer: a prospective, longitudinal study. Clin Cancer Res. 2021;27(5):1329-1340.
|
| [79] |
PengZ, ChengS, KouY, et al. The gut microbiome is associated with clinical response to anti-PD-1/PD-L1 immunotherapy in gastrointestinal cancer. Cancer Immunol Res. 2020;8(10):1251-1261.
|
| [80] |
SmithM, Littmann ER, SlingerlandJB, et al. Intestinal microbiota composition prior to CAR T cell infusion correlates with efficacy and toxicity. Blood. 2018;132(suppl 1):3492.
|
| [81] |
JohnsonDB, Frampton GM, RiothMJ, et al. Targeted next generation sequencing identifies markers of response to PD-1 blockade. Cancer Immunol Res. 2016;4(11):959-967.
|
| [82] |
GopalakrishnanV, Spencer CN, NeziL, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97-103.
|
| [83] |
WirbelJ, PylPT, KartalE, et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med. 2019;25(4):679-689.
|
| [84] |
DaiZ, CokerOO, NakatsuG, et al. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome. 2018;6(1):70.
|
| [85] |
QinX, BiL, YangW, et al. Dysbiosis of the gut microbiome is associated with histopathology of lung cancer. Front Microbiol. 2022;13:918823.
|
| [86] |
L’HermitteA, Pham S, CadouxM, et al. Lect2 controls inflammatory monocytes to constrain the growth and progression of hepatocellular carcinoma. Hepatology. 2019;69(1):160-178.
|
| [87] |
DubinK, Callahan MK, RenB, et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun. 2016;7(1):10391.
|
| [88] |
GoriS, InnoA, BelluominiL, et al. Gut microbiota and cancer: how gut microbiota modulates activity, efficacy and toxicity of antitumoral therapy. Crit Rev Oncol Hematol. 2019;143:139-147.
|
| [89] |
WangDY, SalemJE, CohenJV, et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 2018;4(12):1721-1728.
|
| [90] |
WangY, Wiesnoski DH, HelminkBA, et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nat Med. 2018;24(12):1804-1808.
|
| [91] |
FesslerJ, MatsonV, GajewskiTF. Exploring the emerging role of the microbiome in cancer immunotherapy. J Immunother Cancer. 2019;7(1):108.
|
| [92] |
Murata-KamiyaN, Kurashima Y, TeishikataY, et al. Helicobacter pylori CagA interacts with e-cadherin and deregulates the β-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene. 2007;26(32):4617-4626.
|
| [93] |
WilsonMR, JiangY, VillaltaPW, et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science. 2019;363(6428):eaar7785.
|
| [94] |
GurC, Ibrahim Y, IsaacsonB, et al. Binding of the Fap2 protein of fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42(2):344-355.
|
| [95] |
KosticAD, ChunE, RobertsonL, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor immune microenvironment. Cell Host Microbe. 2013;14(2):207-215.
|
| [96] |
SiW, LiangH, BugnoJ, et al. Lactobacillus rhamnosus GG induces cGAS/STING-dependent type I interferon and improves response to immune checkpoint blockade. Gut. 2022;71(3):521-533.
|
| [97] |
LimB, Zimmermann M, BarryNA, GoodmanAL. Engineered regulatory systems modulate gene expression of human commensals in the gut. Cell. 2017;169(3):547-558.e15.
|
| [98] |
LuX, ChenB, XuD, et al. Epigenetic programming mediates abnormal gut microbiota and disease susceptibility in offspring with prenatal dexamethasone exposure. Cell Rep Med. 2024;5(2):101398.
|
| [99] |
XiangZ, ZhouZ, SongS, et al. Dexamethasone suppresses immune evasion by inducing GR/STAT3 mediated downregulation of PD-L1 and IDO1 pathways. Oncogene. 2021;40(31):5002-5012.
|
| [100] |
FelkleD, Jarczyński M, KaletaK, ZiębaK, Nazimek K. The immunomodulatory effects of antihypertensive therapy: a review. Biomed Pharmacotherapy. 2022;153:113287.
|
| [101] |
XieP, GuoL, YuQ, et al. ACE2 enhances sensitivity to PD-L1 blockade by inhibiting macrophage-induced immunosuppression and angiogenesis. Cancer Res. 2024.
|
| [102] |
HeJ, LiH, JiaJ, et al. Mechanisms by which the intestinal microbiota affects gastrointestinal tumours and therapeutic effects. Mol Biomed. 2023;4(1):45.
|
| [103] |
WangL, WangS, ZhangQ, He C, FuC, WeiQ. The role of the gut microbiota in health and cardiovascular diseases. Mol Biomed. 2022;3(1):30.
|
| [104] |
LiuT, SongX, KhanS, et al. The gut microbiota at the intersection of bile acids and intestinal carcinogenesis: an old story, yet mesmerizing. Int J Cancer. 2020;146(7):1780-1790.
|
| [105] |
MatsonV, Chervin CS, GajewskiTF. Cancer and the microbiome—influence of the commensal microbiota on cancer, immune responses, and immunotherapy. Gastroenterology. 2021;160(2):600-613.
|
| [106] |
KircherB, Woltemate S, GutzkiF, et al. Predicting butyrate-and propionate-forming bacteria of gut microbiota from sequencing data. Gut Microbes. 2022;14(1):2149019.
|
| [107] |
JinJ, GaoL, ZouX, et al. Gut dysbiosis promotes preeclampsia by regulating macrophages and trophoblasts. Circ Res. 2022;131(6):492-506.
|
| [108] |
MannER, LamYK, UhligHH. Short-chain fatty acids: linking diet, the microbiome and immunity. Nat Rev Immunol. 2024;24(8):577-595.
|
| [109] |
SergerE, Luengo-Gutierrez L, ChadwickJS, et al. The gut metabolite indole-3 propionate promotes nerve regeneration and repair. Nature. 2022;607(7919):585-592.
|
| [110] |
ZhangQ, ZhaoQ, LiT, et al. Lactobacillus plantarum-derived indole-3-lactic acid ameliorates colorectal tumorigenesis via epigenetic regulation of CD8+ T cell immunity. Cell Metab. 2023;35(6):943-960.e9.
|
| [111] |
WangG, FanY, ZhangG, et al. Microbiota-derived indoles alleviate intestinal inflammation and modulate microbiome by microbial cross-feeding. Microbiome. 2024;12(1):59.
|
| [112] |
TintelnotJ, XuY, LeskerTR, et al. Microbiota-derived 3-IAA influences chemotherapy efficacy in pancreatic cancer. Nature. 2023;615(7950):168-174.
|
| [113] |
JiaD, WangQ, QiY, et al. Microbial metabolite enhances immunotherapy efficacy by modulating T cell stemness in pan-cancer. Cell. 2024;187(7):1651-1665.e21.
|
| [114] |
SunS, LuoL, LiangW, et al. Bifidobacterium alters the gut microbiota and modulates the functional metabolism of T regulatory cells in the context of immune checkpoint blockade. Proc Natl Acad Sci USA. 2020;117(44):27509-27515.
|
| [115] |
SivanA, Corrales L, HubertN, et al. Commensal bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science. 2015;350(6264):1084-1089.
|
| [116] |
De VosWM, TilgH, Van HulM, Cani PD. Gut microbiome and health: mechanistic insights. Gut. 2022;71(5):1020-1032.
|
| [117] |
BischoffSC. “Gut health”: a new objective in medicine? BMC Med. 2011;9:24.
|
| [118] |
NicholsonJK, HolmesE, KinrossJ, et al. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262-1267.
|
| [119] |
PulendranB, S. Arunachalam P, O’HaganDT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov. 2021;20(6):454-475.
|
| [120] |
SorbaraMT, PamerEG. Microbiome-based therapeutics. Nat Rev Microbiol. 2022;20(6):365-380.
|
| [121] |
BrunelloL. Gut microbiota transfer experiments in germ-free animals. Nat Res. 2019.
|
| [122] |
SchaedlerRW, DubosR, CostelloR. Association of germfree mice with bacteria isolated from normal mice. J Exp Med. 1965;122:77-82.
|
| [123] |
BE, LS. Bilirubin and urobilins in germfree, ex-germfree, and conventional rats. J Exp Med. 1960;112:975-981. Gustafsson Lanke.
|
| [124] |
de GrootPF, Frissen MN, de ClercqNC, NieuwdorpM. Fecal microbiota transplantation in metabolic syndrome: history, present and future. Gut Microbes. 2017;8(3):253-267.
|
| [125] |
TurnbaughPJ, Ridaura VK, FaithJJ, ReyFE, KnightR, GordonJI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1(6):6ra14.
|
| [126] |
StaleyC, KaiserT, BeuraLK, et al. Stable engraftment of human microbiota into mice with a single oral gavage following antibiotic conditioning. Microbiome. 2017;5(1):87.
|
| [127] |
RoundJL, PalmNW. Causal effects of the microbiota on immune-mediated diseases. Sci Immunol. 2018;3(20):eaao1603.
|
| [128] |
WalterJ, ArmetAM, FinlayBB, Shanahan F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell. 2020;180(2):221-232.
|
| [129] |
TangL. Sequence-based identification of human-associated microbiota. Esophagus. 2019;101:4250-4255.
|
| [130] |
HoldGL, PrydeSE, RussellVJ, Furrie E, FlintHJ. Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol Ecol. 2002;39(1):33-39.
|
| [131] |
CaporasoJG, Kuczynski J, StombaughJ, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335-336.
|
| [132] |
LagierJC, Dubourg G, MillionM, et al. Culturing the human microbiota and culturomics. Nat Rev Microbiol. 2018;16(9):540-550.
|
| [133] |
McQuadeJL, DanielCR, HelminkBA, Wargo JA. Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncol. 2019;20(2):e77-e91.
|
| [134] |
StoneL. Faecal microbiota transplantation for clostridioides difficile infection. Nat Res. 2019.
|
| [135] |
BaruchEN, Youngster I, Ben-BetzalelG, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 2021;371(6529):602-609.
|
| [136] |
GoughE, ShaikhH, MangesAR. Systematic review of intestinal microbiota transplantation (Fecal Bacteriotherapy) for recurrent clostridium difficile infection. Clin Infect Dis. 2011;53(10):994-1002.
|
| [137] |
KaoD, RoachB, SilvaM, et al. Effect of oral capsule-vs colonoscopy-delivered fecal microbiota transplantation on recurrent clostridium difficile infection: a randomized clinical trial. JAMA. 2017;318(20):1985-1993.
|
| [138] |
KellyCR, Ihunnah C, FischerM, et al. Fecal microbiota transplant for treatment of clostridium difficile infection in immunocompromised patients. Am J Gastroenterol. 2014;109(7):1065-1071.
|
| [139] |
KarakanT. Fecal microbiota transplant in immunocompromised patients: encouraging results in a vulnarable population. Turk J Gastroenterol. 2014;25(3):346.
|
| [140] |
HelminkBA, KhanMAW, HermannA, Gopalakrishnan V, WargoJA. The microbiome, cancer, and cancer therapy. Nat Med. 2019;25(3):377-388.
|
| [141] |
DavarD, Dzutsev AK, McCullochJA, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science. 2021;371(6529):595-602.
|
| [142] |
HindsonJ. FMT for immunotherapy-refractory melanoma. Nat Rev Gastroenterol Hepatol. 2021;18(2):82.
|
| [143] |
RoutyB, Lenehan JG, MillerWH, et al. Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial. Nat Med. 2023;29(8):2121-2132.
|
| [144] |
MalekiS, Lenehan J, BurtonJ, et al. P864 Combination of fecal microbiota transplantation from healthy donors with anti-PD1 immunotherapy in treatment-naïve advanced or metastatic melanoma patients. 2020. A11-A12.
|
| [145] |
GuarnerF. Probiotics. Int J Food Microbiol. 1998;39(3):237-238.
|
| [146] |
DizmanN, MezaL, BergerotP, et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nat Med. 2022;28(4):704-712.
|
| [147] |
Lauté-CalyDL, Raftis EJ, CowieP, et al. The flagellin of candidate live biotherapeutic enterococcus gallinarum MRx0518 is a potent immunostimulant. Sci Rep. 2019;9(1):801.
|
| [148] |
TanoueT, MoritaS, PlichtaDR, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature. 2019;565(7741):600-605.
|
| [149] |
Feasibility study of microbial ecosystem therapeutics (MET-4) to evaluate effects of fecal microbiome in patients on immunotherapy. 2022. https://clinicaltrials.gov/ct2/show/NCT03686202
|
| [150] |
Gut microbiome and its immune modulation in locally advanced rectal cancer -full text view -ClinicalTrials. 2022. https://clinicaltrials.gov/ct2/show/NCT05079503
|
| [151] |
FeuerstadtP, LouieTJ, LashnerB, et al. SER-109, an oral microbiome therapy for recurrent clostridioides difficile infection. N Engl J Med. 2022;386(3):220-229.
|
| [152] |
LemonKP, Armitage GC, RelmanDA, FischbachMA. Microbiota-targeted therapies: an ecological perspective. Sci Trans Med. 2012;4(137):137rv5.
|
| [153] |
SpencerCN, McQuade JL, GopalakrishnanV, et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science. 2021;374(6575):1632-1640.
|
| [154] |
ZhuY, Michelle Luo T, JobinC, YoungHA. Gut microbiota and probiotics in colon tumorigenesis. Cancer Lett. 2011;309(2):119-127.
|
| [155] |
AppleyardCB, CruzML, IsidroAA, Arthur JC, JobinC, de SimoneC. Pretreatment with the probiotic VSL#3 delays transition from inflammation to dysplasia in a rat model of colitis-associated cancer. Am J Physiol: Gastrointest Liver Physiol. 2011;301(6):1004-1013.
|
| [156] |
WielandA, PatelMR, CardenasMA, et al. Defining HPV-specific B cell responses in patients with head and neck cancer. Nature. 2020;597(7875):274-278.
|
| [157] |
CabritaR, LaussM, SannaA, et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature. 2020;577(7791):561-565.
|
| [158] |
GerdingDN, MeyerT, LeeC, et al. Administration of spores of nontoxigenic clostridium difficile strain M3 for prevention of recurrent C difficile infection: a randomized clinical trial. JAMA. 2015;313(17):1719-1727.
|
| [159] |
PetrofEO, GloorGB, VannerSJ, et al. Stool substitute transplant therapy for the eradication of clostridium difficile infection: “RePOOPulating” the gut. Microbiome. 2013;1(1):3.
|
| [160] |
KhannaS, PardiDS, KellyCR, et al. A novel microbiome therapeutic increases gut microbial diversity and prevents recurrent clostridium difficile infection. J Infect Dis. 2016;214(2):173-181.
|
| [161] |
KroemerG, López-Otín C, MadeoF, de CaboR. Carbotoxicity—noxious effects of carbohydrates. Cell. 2018;175(3):605-614.
|
| [162] |
LamKC, ArayaRE, HuangA, et al. Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell. 2021;184(21):5338-5356.e21.
|
| [163] |
BuquéA, BloyN, Perez-LanzónM, et al. Immunoprophylactic and immunotherapeutic control of hormone receptor-positive breast cancer. Nat Commun. 2020;11(1):3819.
|
| [164] |
FerrereG, Tidjani Alou M, LiuP, et al. Ketogenic diet and ketone bodies enhance the anticancer effects of PD-1 blockade. JCI Insight. 2021;6(2):e145207.
|
| [165] |
WangY, WangF, WangL, et al. NAD+ supplement potentiates tumor-killing function by rescuing defective TUB-mediated NAMPT transcription in tumor-infiltrated T cells. Cell Rep. 2021;36(6):109516.
|
| [166] |
Pomatto-WatsonLCD, Bodogai M, BosompraO, et al. Daily caloric restriction limits tumor growth more effectively than caloric cycling regardless of dietary composition. Nat Commun. 2021;12(1):6201.
|
| [167] |
PietrocolaF, PolJ, VacchelliE, et al. Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell. 2016;30(1):147-160.
|
| [168] |
LévesqueS, Le Naour J, PietrocolaF, et al. A synergistic triad of chemotherapy, immune checkpoint inhibitors, and caloric restriction mimetics eradicates tumors in mice. Oncoimmunology. 2019;8(11):e1657375.
|
| [169] |
BaruchEN, WangJ, WargoJA. Gut microbiota and antitumor immunity: potential mechanisms for clinical effect. Cancer Immunol Res. 2021;9(4):365-370.
|
| [170] |
Becerril-AlarcónY, Campos-GómezS, Valdez-Andrade JJ, et al. Inulin supplementation reduces systolic blood pressure in women with breast cancer undergoing neoadjuvant chemotherapy. Cardiovasc Ther. 2019;2019:1-10.
|
| [171] |
FoglianoV, Corollaro ML, VitaglioneP, et al. In vitro bioaccessibility and gut biotransformation of polyphenols present in the water-insoluble cocoa fraction. Mol Nutr Food Res. 2011;55(S1):S44-S55.
|
| [172] |
ScottKP, MartinJC, DuncanSH, Flint HJ. Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbiol Ecol. 2014;87(1):30-40.
|
| [173] |
SandersME, Merenstein DJ, ReidG, GibsonGR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019;16(10):605-616.
|
| [174] |
GopalakrishnanV, Helmink BA, SpencerCN, ReubenA, WargoJA. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell. 2018;33(4):570-580.
|
| [175] |
HelminkBA, Gaudreau PO, WargoJA. Immune checkpoint blockade across the cancer care continuum. Immunity. 2018;48(6):1077-1080.
|
| [176] |
CogdillAP, Gaudreau PO, AroraR, GopalakrishnanV, WargoJA. The impact of intratumoral and gastrointestinal microbiota on systemic cancer therapy. Trends Immunol. 2018;39(11):900-920.
|
| [177] |
HondaK, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016;535(7610):75-84.
|
| [178] |
IidaN, Dzutsev A, StewartCA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342(6161):967-970.
|
| [179] |
LuH, WangQ, LiuW, WenZ, LiY. Precision strategies for cancer treatment by modifying the tumor-related bacteria. Appl Microbiol Biotechnol. 2021;105(16-17):6183-6197.
|
| [180] |
NguyenPQ, Courchesne NMD, Duraj-ThatteA, PraveschotinuntP, Joshi NS. Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv Mater. 2018;30(19):1704847.
|
| [181] |
BrownAJ, GibsonSJ, HattonD, Arnall CL, JamesDC. Whole synthetic pathway engineering of recombinant protein production. Biotechnol Bioeng. 2019;116(2):375-387.
|
| [182] |
SieowBFL, WunKS, YongWP, Hwang IY, ChangMW. Tweak to treat: reprograming bacteria for cancer treatment. Trends in Cancer. 2021;7(5):447-464.
|
| [183] |
ChenQW, QiaoJY, LiuXH, Zhang C, ZhangXZ. Customized materials-assisted microorganisms in tumor therapeutics. Chem Soc Rev. 2021;50(22):12576-12615.
|
| [184] |
KatzL, ChenYY, GonzalezR, Peterson TC, ZhaoH, BaltzRH. Synthetic biology advances and applications in the biotechnology industry: a perspective. J Ind Microbiol Biotechnol. 2018;45(7):449-461.
|
| [185] |
ClaesenJ, Fischbach MA. Synthetic microbes as drug delivery systems. ACS Synth Biol. 2015;4(4):358-364.
|
| [186] |
ChowdhuryS, CastroS, CokerC, Hinchliffe TE, ArpaiaN, DaninoT. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat Med. 2019;25(7):1057-1063.
|
| [187] |
FanJX, LiZH, LiuXH, Zheng DW, ChenY, ZhangXZ. Bacteria-mediated tumor therapy utilizing photothermally-controlled TNF-α expression via oral administration. Nano Lett. 2018;18(4):2373-2380.
|
| [188] |
JiangSN, ParkSH, LeeHJ, et al. Engineering of bacteria for the visualization of targeted delivery of a cytolytic anticancer agent. Mol Ther. 2013;21(11):1985-1995.
|
| [189] |
LoefflerM, Le’Negrate G, KrajewskaM, ReedJC. Inhibition of tumor growth using salmonella expressing fas ligand. JNCI. 2008;100(15):1113-1116.
|
| [190] |
LoefflerM, Le’Negrate G, KrajewskaM, ReedJC. Attenuated salmonella engineered to produce human cytokine LIGHT inhibit tumor growth. Proc Natl Acad Sci USA. 2007;104(31):12879-12883.
|
| [191] |
KimJE, PhanTX, NguyenVH, et al. Salmonella typhimurium suppresses tumor growth via the pro-inflammatory cytokine interleukin-1β. Theranostics. 2015;5(12):1328-1342.
|
| [192] |
DuongMT, QinY, YouSH, Min JJ. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp Mol Med. 2019;51(12):1-15.
|
| [193] |
GurbatriCR, LiaI, VincentR, et al. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Sci Trans Med. 2020;12(530):876.
|
| [194] |
ForbesNS. Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer. 2010;10(11):785-794.
|
| [195] |
DangLH, Bettegowda C, HusoDL, KinzlerKW, Vogelstein B. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci USA. 2001;98(26):15155-15160.
|
| [196] |
Mercado-LuboR, ZhangY, ZhaoL, et al. A salmonella nanoparticle mimic overcomes multidrug resistance in tumours. Nat Commun. 2016;7(1):12225.
|
| [197] |
RobertsNJ, ZhangL, JankuF, et al. Intratumoral injection of clostridium novyi-NT spores induces antitumor responses. Sci Trans Med. 2014;6(249):249ra111.
|
| [198] |
TosoJF, GillVJ, HwuP, et al. Phase I study of the intravenous administration of attenuated salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol. 2002;20(1):142-152.
|
| [199] |
FritzSE, HensonMS, GreengardE, et al. A phase I clinical study to evaluate safety of orally administered, genetically engineered salmonella enterica serovar typhimurium for canine osteosarcoma. Vet Med Sci. 2016;2(3):179-190.
|
| [200] |
DemirelMC, VuralM, TerronesM. Composites of proteins and 2D nanomaterials. Adv Funct Mater. 2018;28(27):1704990.
|
| [201] |
MiZ, GuoL, LiuP, et al. “Trojan horse” salmonella enabling tumor homing of silver nanoparticles via neutrophil infiltration for synergistic tumor therapy and enhanced biosafety. Nano Lett. 2020;21:414-423.
|
| [202] |
LiuX, WuM, WangM, et al. Metabolically engineered bacteria as light-controlled living therapeutics for anti-angiogenesis tumor therapy. Mater Horizons. 2021;8(5):1454-1460.
|
| [203] |
OladejoM, Paterson Y, WoodLM. Clinical experience and recent advances in the development of listeria-based tumor immunotherapies. Front Immunol. 2021;12:642316.
|
| [204] |
WangSB, LiuXH, LiB, et al. Bacteria-assisted selective photothermal therapy for precise tumor inhibition. Adv Funct Mater. 2019;29(35):1904093.
|
| [205] |
LiX, LiuJ, ZhangW, et al. Biogenic hybrid nanosheets activated photothermal therapy and promoted anti-PD-L1 efficacy for synergetic antitumor strategy. ACS Appl Mater Interfaces. 2020;12(26):29122.
|
| [206] |
FanJX, PengMY, WangH, et al. Engineered bacterial bioreactor for tumor therapy via fenton-like reaction with localized H2O2 generation. Adv Mater. 2019;31(16):1808278.
|
| [207] |
CaoZ, WangX, PangY, Cheng S, LiuJ. Biointerfacial self-assembly generates lipid membrane coated bacteria for enhanced oral delivery and treatment. Nat Commun. 2019;10(1):5783.
|
| [208] |
WuF, LiuJ. Decorated bacteria and the application in drug delivery. Adv Drug Deliv Rev. 2022;188:114443.
|
| [209] |
ChenW, WangY, QinM, et al. Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano. 2018;12(6):5995-6005.
|
| [210] |
CenturionF, BasitAW, LiuJ, Gaisford S, RahimMA, Kalantar-ZadehK. Nanoencapsulation for probiotic delivery. ACS Nano. 2021;15(12):18653-18660.
|
| [211] |
WangL, CaoZ, ZhangM, Lin S, LiuJ. Spatiotemporally controllable distribution of combination therapeutics in solid tumors by dually modified bacteria. Adv Mater. 2022;34(1):2106669.
|
| [212] |
FengP, CaoZ, WangX, Li J, LiuJ. On-demand bacterial reactivation by restraining within a triggerable nanocoating. Adv Mater. 2020;32(34):2002406.
|
| [213] |
WangZH, LiuJM, LiCY, et al. Bacterial biofilm bioinspired persistent luminescence nanoparticles with gut-oriented drug delivery for colorectal cancer imaging and chemotherapy. ACS Appl Mater Interfaces. 2019;11(40):36409-36419.
|
| [214] |
KimOY, ParkHT, DinhNTH, et al. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nat Commun. 2017;8(1):626.
|
| [215] |
ChenQ, BaiH, WuW, et al. Bioengineering bacterial vesicle-coated polymeric nanomedicine for enhanced cancer immunotherapy and metastasis prevention. Nano Lett. 2020;20(1):11-21.
|
| [216] |
YiG, SonJ, YooJ, ParkC, KooH. Rhamnolipid nanoparticles for in vivo drug delivery and photodynamic therapy. Nanomed Nanotechnol Biol Med. 2019;19:12-21.
|
| [217] |
KumeriaT, MaherS, WangY, et al. Naturally derived iron oxide nanowires from bacteria for magnetically triggered drug release and cancer hyperthermia in 2D and 3D culture environments: bacteria biofilm to potent cancer therapeutic. Biomacromolecules. 2016;17(8):2726-2736.
|
| [218] |
YinT, DiaoZ, BlumNT, Qiu L, MaA, HuangP. Engineering bacteria and bionic bacterial derivatives with nanoparticles for cancer therapy. Small. 2022;18(12):2104643.
|
| [219] |
AggarwalN, Breedon AME, DavisCM, HwangIY, ChangMW. Engineering probiotics for therapeutic applications: recent examples and translational outlook. Curr Opin Biotechnol. 2020;65:171-179.
|
| [220] |
FanJX, NiuMT, QinYT, Sun YX, ZhangXZ. Progress of engineered bacteria for tumor therapy. Adv Drug Deliv Rev. 2022;185:114296.
|
| [221] |
HeY, WuW, ZhengHM, et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med. 2018;24(10):1532-1535.
|
| [222] |
LiY, WangY, LiX, LiuC. Hunting field: insights on distribution pattern of bacteria and immune cells in solid tumors. Nat Sci Rev. 2021;8(5):2021.
|
| [223] |
XavierJB, YoungVB, SkufcaJ, et al. The cancer microbiome: distinguishing direct and indirect effects requires a systemic view. Trends Cancer. 2020;6(3):192-204.
|
| [224] |
ZmoraN, Zilberman-Schapira G, SuezJ, et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell. 2018;174(6):1388-1405.e21.
|
RIGHTS & PERMISSIONS
2024 The Author(s). MedComm - Future Medicine published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).