A single-cell transcriptomic atlas of severe intrauterine adhesion

Siyu Xia , Wenting Ye , Jiajun Zeng , Ge Song , Yan Sun , Yongmei Zhang , Xiaoqing Luo , Jing Cai , Hongjin Yu , Wenwei Pan , Jiayun Chen , Chuanbin Yang , Qingming Luo , Jigang Wang , Yali Song

MEDCOMM - Future Medicine ›› 2024, Vol. 3 ›› Issue (4) : e70003

PDF
MEDCOMM - Future Medicine ›› 2024, Vol. 3 ›› Issue (4) : e70003 DOI: 10.1002/mef2.70003
ORIGINAL ARTICLE

A single-cell transcriptomic atlas of severe intrauterine adhesion

Author information +
History +
PDF

Abstract

Intrauterine adhesion (IUA) is a common endometrial disease caused by injury, leading to reproductive health issues. Current treatments have limited effectiveness, side effects, and high recurrence rates, especially, in severe cases. However, the underlying molecular and cellular mechanisms are largely unknown. Here we performed a comprehensive analysis by profiling integrated single-cell transcriptomes of over 72,000 individual endometrial cells, encompassing samples from both patients with IUA and those with normal endometrium. We identified changes in cell type-specific molecular signatures, including the inflammatory activation in immune cells, extensive damage in epithelial subpopulations, and the deposition of collagen secreted by fibroblasts subpopulations. Our results demonstrated activation of the TREM2+ macrophages, which displayed properties of inflammatory regulation. Annexin A1+ NK subpopulations exhibited the highest susceptibility among NK subtypes, displaying decreased cellular density and the most pronounced differential gene expression. Furthermore, we identified the matrix metallopeptidase 7 (MMP7+) and C-C motif chemokine ligand 5 (CCL5+) unciliated epithelial subtype originated from pituitary tumor-transforming gene 1 (PTTG1+) unciliated epithelium as the most vulnerable subpopulations to epithelial injury. Collectively, our study offers integrated resources of the cellular microenvironment of IUA, serving as a comprehensive cellular map of the disease in affected individuals. The insights gained from this study are expected to provide valuable resources for future diagnostic and therapeutic approaches.

Keywords

cellular microenvironment / intrauterine adhesion / single-cell sequence

Cite this article

Download citation ▾
Siyu Xia, Wenting Ye, Jiajun Zeng, Ge Song, Yan Sun, Yongmei Zhang, Xiaoqing Luo, Jing Cai, Hongjin Yu, Wenwei Pan, Jiayun Chen, Chuanbin Yang, Qingming Luo, Jigang Wang, Yali Song. A single-cell transcriptomic atlas of severe intrauterine adhesion. MEDCOMM - Future Medicine, 2024, 3(4): e70003 DOI:10.1002/mef2.70003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TanY, FlynnWF, SivajothiS, et al. Single-cell analysis of endometriosis reveals a coordinated transcriptional programme driving immunotolerance and angiogenesis across eutopic and ectopic tissues. Nature Cell Biol. 2022;24(8):1306-1318.

[2]

FonsecaMAS, HaroM, WrightKN, et al. Single-cell transcriptomic analysis of endometriosis. Nature Genet. 2023;55(2):255-267.

[3]

YuD, WongYM, CheongY, Xia E, LiTC. Asherman syndrome—one century later. Fertil Steril. 2008;89(4):759-779.

[4]

KouL, JiangX, XiaoS, Zhao YZ, YaoQ, ChenR. Therapeutic options and drug delivery strategies for the prevention of intrauterine adhesions. J Control Release. 2020;318:25-37.

[5]

ZupiE, Centini G, LazzeriL. Asherman syndrome: an unsolved clinical definition and management. Fertil Steril. 2015;104(6):1380-1381.

[6]

HookerAB, Lemmers M, ThurkowAL, et al. Systematic review and meta-analysis of intrauterine adhesions after miscarriage: prevalence, risk factors and long-term reproductive outcome. Hum Reprod Update. 2014;20(2):262-278.

[7]

XiaS, WuM, ZhouX, et al. Treating intrauterine adhesion using conditionally reprogrammed physiological endometrial epithelial cells. Stem Cell Res Ther. 2022;13(1):178.

[8]

ZhouX, KangY, ChangY, et al. CRC therapy identifies Indian hedgehog signaling in mouse endometrial epithelial cells and inhibition of Ihh-KLF9 as a novel strategy for treating IUA. Cells. 2022;11(24):4053.

[9]

LeungRKK, LinY, LiuY. Recent advances in understandings towards pathogenesis and treatment for intrauterine adhesion and disruptive insights from single-cell analysis. Reprod Sci. 2021;28(7):1812-1826.

[10]

WangW, Vilella F, AlamaP, et al. Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle. Nat Med. 2020;26(10):1644-1653.

[11]

GuoC, CaiP, JinL, et al. Single-cell profiling of the human decidual immune microenvironment in patients with recurrent pregnancy loss. Cell Discov. 2021;7(1):1.

[12]

MarečkováM, MassalhaH, Lorenzi V, Vento-TormoR. Mapping human reproduction with single-cell genomics. Annu Rev Genomics Hum Genet. 2022;23:523-547.

[13]

Garcia-AlonsoL, Handfield LF, RobertsK, et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nat Genet. 2021;53(12):1698-1711.

[14]

SantamariaX, RosonB, Perez-MoragaR, et al. Decoding the endometrial niche of Asherman’s syndrome at single-cell resolution. Nat Commun. 2023;14(1):5890.

[15]

LvH, SunH, WangL, et al. Targeting CD301+ macrophages inhibits endometrial fibrosis and improves pregnancy outcome. EMBO Mol Med. 2023;15(9):e17601.

[16]

ZhangX, LanY, XuJ, et al. CellMarker: a manually curated resource of cell markers in human and mouse. Nucleic Acids Res. 2019;47(D1):721.

[17]

AranD, LooneyAP, LiuL, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol. 2019;20(2):163-172.

[18]

FunesSC, RiosM, Escobar-VeraJ, KalergisAM. Implications of macrophage polarization in autoimmunity. Immunology. 2018;154(2):186-195.

[19]

StrunzB, BisterJ, JönssonH, et al. Continuous human uterine NK cell differentiation in response to endometrial regeneration and pregnancy. Sci Immunol. 2021;6(56):eabb7800.

[20]

ChenK, ZhengS, FangF. Endometrial stem cells and their applications in intrauterine adhesion. Cell Transplant. 2023;32:9636897231159561.

[21]

EttouS, JungYL, MiyoshiT, et al. Epigenetic transcriptional reprogramming by WT1 mediates a repair response during podocyte injury. Sci Adv. 2020;6(30):eabb5460.

[22]

AbudukeyoumuA, LiMQ, XieF. Transforming growth factor-beta1 in intrauterine adhesion. Am J Reprod Immunol. 2020;84(2):e13262.

[23]

Vento-TormoR, Efremova M, BottingRA, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563(7731):347-353.

[24]

JiAL, RubinAJ, ThraneK, et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell. 2020;182(2):497-514.e22.

[25]

MaS, SunS, GengL, et al. Caloric restriction reprograms the Single-Cell transcriptional landscape of rattus norvegicus aging. Cell. 2020;180(5):984-1001.e22.

[26]

JinS, Guerrero-Juarez CF, ZhangL, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021;12(1):1088.

[27]

TilstamPV, Schulte W, HolowkaT, et al. MIF but not MIF-2 recruits inflammatory macrophages in an experimental polymicrobial sepsis model. J Clin Invest. 2021;131(23):e127171.

[28]

CosanF, YaziciA, YılmazerB, GulA, UstekD, CefleA. A novel TNFRSF1 gene mutation in a Turkish family: a report of three cases. Clin Rheumatol. 2013;32:83-85.

[29]

AziziR, Aghebati-Maleki L, NouriM, MarofiF, Negargar S, YousefiM. Stem cell therapy in Asherman syndrome and thin endometrium: stem cell-based therapy. Biomed Pharmacother. 2018;102:333-343.

[30]

SongY-x, SunJ-x, ZhaoJ-h, et al. Non-coding RNAs participate in the regulatory network of CLDN4 via ceRNA mediated miRNA evasion. Nat Commun. 2017;8(1):289.

[31]

YoonC-H, KimM-J, LeeH, et al. PTTG1 oncogene promotes tumor malignancy via epithelial to mesenchymal transition and expansion of cancer stem cell population. J Biol Chem. 2012;287(23):19516-19527.

[32]

HennD, ChenK, FehlmannT, et al. Xenogeneic skin transplantation promotes angiogenesis and tissue regeneration through activated Trem2+ macrophages. Sci Adv. 2021;7(49):eabi4528.

[33]

TanJ, FanW, LiuT, et al. TREM2+ macrophages suppress CD8+ T-cell infiltration after transarterial chemoembolisation in hepatocellular carcinoma. J Hepatol. 2023;79(1):126-140.

[34]

AlkanFK, Korkaya H. Therapeutic utility of immunosuppressive TREM2+ macrophages: an important step forward in potentiating the immune checkpoint inhibitors. Signal Transduct Target Ther. 2020;5(1):264.

[35]

JaitinDA, AdlungL, ThaissCA, et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell. 2019;178(3):686-698.e14.

[36]

CignarellaF, Filipello F, BollmanB, et al. TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis. Acta Neuropathol. 2020;140:513-534.

[37]

HendrikxT, PorschF, KissMG, et al. Soluble TREM2 levels reflect the recruitment and expansion of TREM2+ macrophages that localize to fibrotic areas and limit NASH. J Hepatol. 2022;77(5):1373-1385.

[38]

RuizV, Ordóñez RM, BerumenJ, et al. Unbalanced collagenases/TIMP-1 expression and epithelial apoptosis in experimental lung fibrosis. Am J Physiol: Lung Cell Mol Physiol. 2003;285(5):1026-1036.

[39]

ShiJ, LiQ, ShengM, Zheng M, YuM, ZhangL. The role of TLR4 in M1 macrophage-induced epithelial-mesenchymal transition of peritoneal mesothelial cells. Cell Physiol Biochem. 2016;40(6):1538-1548.

[40]

QueroL, HanserE, ManigoldT, Tiaden AN, KyburzD. TLR2 stimulation impairs anti-inflammatory activity of M2-like macrophages, generating a chimeric M1/M2 phenotype. Arthritis Res Ther. 2017;19(1):245.

[41]

YoshieO, Matsushima K. CCR4 and its ligands: from bench to bedside. Int Immunol. 2015;27(1):11-20.

[42]

SenchenkovaEY, AnsariJ, BeckerF, et al. Novel role for the AnxA1-Fpr2/ALX signaling axis as a key regulator of platelet function to promote resolution of inflammation. Circulation. 2019;140(4):319-335.

[43]

ParkMD, Reyes-Torres I, LeBerichelJ, et al. TREM2 macrophages drive NK cell paucity and dysfunction in lung cancer. Nat Immunol. 2023;24(5):792-801.

[44]

WuB, LiY, NieN, et al. SFRP4(+) stromal cell subpopulation with IGF1 signaling in human endometrial regeneration. Cell Discov. 2022;8(1):95.

[45]

SonesonC, Robinson MD. Bias, robustness and scalability in single-cell differential expression analysis. Nat Methods. 2018;15(4):255-261.

[46]

StuartT, SatijaR. Integrative single-cell analysis. Nat Rev Genet. 2019;20(5):257-272.

[47]

KorsunskyI, Millard N, FanJ, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019;16(12):1289-1296.

[48]

RegevA, Teichmann SA, LanderES, et al. The human cell atlas. eLife. 2017;6:e27041.

[49]

ZhouR, YangG, ZhangY, Wang Y. Spatial transcriptomics in development and disease. Mol Biomed. 2023;4(1):32.

[50]

AdhesionsA. The American Fertility Society classifications of adnexal adhesions, distal tubal occlusion, tubal occlusion secondary to tubal ligation, tubal pregnancies, Mullerian anomalies and intrauterine adhesions. Fertil Steril. 1988;49(6):944.

[51]

ZhangW, XiaS, ZhongX, et al. Characterization of 2, 2′ 4, 4′-tetrabromodiphenyl ether (BDE47)-induced testicular toxicity via single-cell RNA-sequencing. Precis Clin Med. 2022;5(3):pbac016.

[52]

ZhangW, XiaS, XiaoW, et al. A single-cell transcriptomic landscape of mouse testicular aging. J Adv Res. 2023;53:219-234.

[53]

ZhangH, LiJ, RenJ, et al. Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell. 2021;12(9):695-716.

[54]

StreetK, RissoD, FletcherRB, et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics. 2018;19(1):477.

[55]

AibarS, González-Blas CB, MoermanT, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14(11):1083-1086.

[56]

MoermanT, Aibar Santos S, Bravo González-Blas C, et al. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics. 2019;35(12):2159-2161.

[57]

SuG, MorrisJH, DemchakB, Bader GD. Biological network exploration with Cytoscape 3. Curr Protoc Bioinformatics. 2014;47(1):8.13.1-24.

[58]

WuT, HuE, XuS, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb). 2021;2(3):100141.

[59]

CarbonS, Ireland A, MungallCJ, ShuS, Marshall B, LewisS. AmiGO: online access to ontology and annotation data. Bioinformatics. 2009;25(2):288-289.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm - Future Medicine published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).

AI Summary AI Mindmap
PDF

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/