Small but mighty: Platelets as multifunctional architects of tumor metastasis and immune regulation

Leyi Tang , Hubing Shi , Yong Luo

MEDCOMM - Future Medicine ›› 2024, Vol. 3 ›› Issue (4) : e70000

PDF
MEDCOMM - Future Medicine ›› 2024, Vol. 3 ›› Issue (4) : e70000 DOI: 10.1002/mef2.70000
REVIEW ARTICLE

Small but mighty: Platelets as multifunctional architects of tumor metastasis and immune regulation

Author information +
History +
PDF

Abstract

Platelets play an irreplaceable role in hemostasis and wound healing. However, beyond these classical roles, as the smallest anucleate cells in the blood stream, they are crucial for immune response which have inflammatory functions through specialized receptors and different signaling pathways, influencing both innate and adaptive immune response. Furthermore, many research have proved that platelets significantly contribute to tumor metastasis and are associated with poor prognoses in cancer patients through its coagulability and supporting an immunosuppressive tumor microenvironment. When tumor cells detach from the primary tumor mass and enter the bloodstream, they rapidly initiate the direct activation and adhesion of platelets, forming a protective microenvironment. This environment shields circulating tumor cells (CTCs) from the mechanical shear forces of blood flow and immune surveillance. Here we delve into the interaction between platelets and immunomodulation and explore the multifaceted roles and underlying mechanisms by which platelets influence tumor cell metastasis and tumor growth. Furthermore, we also discussed the diagnostic role of platelets in cancer occurrence and progression, as well as the feasibility and prospects of targeting platelets for antitumor immunotherapy. This review provides a multidimensional perspective and reference for platelet-related cancer treatment strategies and diagnosis.

Keywords

circulating tumor cells / diagnose / immunomodulation / platelets / tumor growth and metastasis

Cite this article

Download citation ▾
Leyi Tang, Hubing Shi, Yong Luo. Small but mighty: Platelets as multifunctional architects of tumor metastasis and immune regulation. MEDCOMM - Future Medicine, 2024, 3(4): e70000 DOI:10.1002/mef2.70000

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

van der MeijdenPEJ, Heemskerk JWM, et al. Platelet biology and functions: new concepts and clinical perspectives. Nat Rev Cardiol. 2019;16:166-179.

[2]

GerdesN, ZhuL, ErsoyM, et al. Platelets regulate CD4+ T-cell differentiation via multiple chemokines in humans. Thromb Haemost. 2011;106(2):353-362.

[3]

LismanT. Platelet-neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell Tissue Res. 2018;371(3):567-576.

[4]

MaurerS, Ferrari de Andrade L. NK cell interaction with platelets and myeloid cells in the tumor milieu. Front Immunol. 2020;11(11):608849.

[5]

LangerHF, DaubK, BraunG, et al. Platelets recruit human dendritic cells via Mac-1/JAM-C interaction and modulate dendritic cell function in vitro. Arterioscler Thromb Vasc Biol. 2007;27(6):1463-1470.

[6]

RollingCC, SowaMA, WangTT, et al. P2Y12 inhibition suppresses proinflammatory platelet-monocyte interactions. Thromb Haemost. 2023;123(2):231-244.

[7]

TrousseauA, BazirePV, CormackJR. Lectures on Clinical Medicine, Delivered at the Hotel-Dieu . New Sydenham Society; 1872.

[8]

DAVISRB. Comparative studies of blood coagulation and platelet aggregation in patients with cancer and nonmalignant diseases. Ann Intern Med. 1969;71(1):67.

[9]

GasicGJ, GasicTB, GalantiN, Johnson T, MurphyS. Platelet-tumor-cell interactions in mice. The role of platelets in the spread of malignant disease. Int J Cancer. 1973;11(3):704-718.

[10]

YunSH, SimEH, GohRY, Park JI, HanJY. Platelet activation: the mechanisms and potential biomarkers. Biomed Res Int. 2016;2016:1-5.

[11]

MalaraA, Balduini A. Blood platelet production and morphology. Thromb Res. 2012;129(3):241-244.

[12]

ScridonA. Platelets and their role in hemostasis and thrombosis-from physiology to pathophysiology and therapeutic implications. Int J Mol Sci. 2022;23(21):12772.

[13]

BambaceNM, HolmesCE. The platelet contribution to cancer progression. J Thromb Haemostasis. 2011;9(2):237-249.

[14]

AnvariS, OseiE, MaftoonN. Interactions of platelets with circulating tumor cells contribute to cancer metastasis. Sci Rep. 2021;11(1):15477.

[15]

NieswandtB, HafnerM, EchtenacherB, MännelDN. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res. 1999;59(6):1295-1300.

[16]

PlackeT, Örgel M, SchallerM, et al. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res. 2012;72(2):440-448.

[17]

LabelleM, BegumS, HynesRO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20(5):576-59090.

[18]

MarcolinoE, Siddiqui YH, van den BoschM, PooleAW, Jayaraman PS, GastonK. Blood platelets stimulate cancer extravasation through TGFβ-mediated downregulation of PRH/HHEX. Oncogenesis. 2020;9(2):10.

[19]

ChoMS, Bottsford-Miller J, VasquezHG, et al. Platelets increase the proliferation of ovarian cancer cells. Blood. 2012;120(24):4869-4872.

[20]

ZhouL, ZhangZ, TianY, Li Z, LiuZ, ZhuS. The critical role of platelet in cancer progression and metastasis. Eur J Med Res. 2023;28(1):385.

[21]

RenJ, HeJ, ZhangH, et al. Platelet tlr4-erk5 axis facilitates net-mediated capturing of circulating tumor cells and distant metastasis after surgical stress. Cancer Res. 2021;81(9):2373-2385.

[22]

LevinJ. Thrombocytosis associated with malignant disease. Arch Intern Med. 1964;114:497-500.

[23]

HaemmerleM, StoneRL, MenterDG, Afshar-Kharghan V, SoodAK. The platelet lifeline to cancer: challenges and opportunities. Cancer Cell. 2018;33(6):965-983.

[24]

BaileySER, Ukoumunne OC, ShephardE, HamiltonW. How useful is thrombocytosis in predicting an underlying cancer in primary care? a systematic review. Fam Pract. 2017;34(1):4-10.

[25]

StoneRL, NickAM, McNeishIA, et al. Paraneoplastic thrombocytosis in ovarian cancer. N Engl J Med. 2012;366(7):610-618.

[26]

SasakiK, KawaiK, TsunoNH, Sunami E, KitayamaJ. Impact of preoperative thrombocytosis on the survival of patients with primary colorectal cancer. World J Surg. 2012;36(1):192-200.

[27]

LiH, JiangW, ZhangSR, et al. The platelet pannexin 1-IL-1β axis orchestrates pancreatic ductal adenocarcinoma invasion and metastasis. Oncogene. 2023;42(18):1453-1465.

[28]

RowethHG, Battinelli EM. Lessons to learn from tumor-educated platelets. Blood. 2021;137(23):3174-3180.

[29]

SabrkhanyS, Kuijpers MJE, Oude EgbrinkMGA, GriffioenAW. Platelets as messengers of early-stage cancer. Cancer Metastasis Rev. 2021;40(2):563-573.

[30]

GayLJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11(2):123-134.

[31]

HarkerLA. Platelet production. N Engl J Med. 1970;282(9):492-494.

[32]

GuoK, Machlus KR, CamachoV. The many faces of the megakaryocytes and their biological implications. Curr Opin Hematol. 2024;31(1):1-5.

[33]

WilliamsonAE, Liyanage S, HassanshahiM, et al. Discovery of an embryonically derived bipotent population of endothelial-macrophage progenitor cells in postnatal aorta. Nat Commun. 2024;15(1):7097.

[34]

MachlusKR, Italiano Jr, JE. The incredible journey: from megakaryocyte development to platelet formation. J Cell Biol. 2013;201(6):785-796.

[35]

RandiAM, LaffanMA. Von Willebrand factor and angiogenesis: basic and applied issues. J Thromb Haemostasis. 2017;15(1):13-20.

[36]

AndrewsR, ShenY, GardinerE, Dong J, LópezJ, BerndtM. The glycoprotein Ib-IX-V complex in platelet adhesion and signaling. Thromb Haemost. 1999;82(2):357-364.

[37]

De CandiaE, HallSW, RutellaS, Landolfi R, AndrewsRK, De CristofaroR. Binding of thrombin to glycoprotein Ib accelerates the hydrolysis of Par-1 on intact platelets. J Biol Chem. 2001;276(7):4692-4698.

[38]

TsujiM, EzumiY, AraiM, Takayama H. A novel association of Fc receptor γ-chain with glycoprotein VI and their co-expression as a collagen receptor in human platelets. J Biol Chem. 1997;272(38):23528-23531.

[39]

NieswandtB. Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen. EMBO J. 2001;20(9):2120-2130.

[40]

EganK, Crowley D, SmythP, et al. Platelet adhesion and degranulation induce pro-survival and pro-angiogenic signalling in ovarian cancer cells. PLoS ONE. 2011;6(10):e26125.

[41]

SaboorM, AyubQ, IlyasS, Moinuddin S. Platelet receptors: an instrumental of platelet physiology. Pak J Med Sci. 2013;29(3):891-896.

[42]

OfosuFA, NyarkoKA. Human platelet thrombin receptors. Hematol Oncol Clin North Am. 2000;14(5):1185-1198, x.

[43]

KahnML, ZhengYW, HuangW, et al. A dual thrombin receptor system for platelet activation. Nature. 1998;394(6694):690-694.

[44]

SoslauG, ClassR, MorganDA, et al. Unique pathway of thrombin-induced platelet aggregation mediated by glycoprotein Ib. J Biol Chem. 2001;276(24):21173-21183.

[45]

DörmannD, Clemetson KJ, KehrelBE. The GPIb thrombin-binding site is essential for thrombin-induced platelet procoagulant activity. Blood. 2000;96(7):2469-2478.

[46]

AdamF, Guillin MC, Jandrot-PerrusM. Glycoprotein Ib-mediated platelet activation. A signalling pathway triggered by thrombin. Eur J Biochem. 2003;270(14):2959-2970.

[47]

ThonJN, Montalvo A, Patel-HettS, et al. Cytoskeletal mechanics of proplatelet maturation and platelet release. J Cell Biol. 2010;191(4):861-874.

[48]

PatelSR, Richardson JL, SchulzeH, et al. Differential roles of microtubule assembly and sliding in proplatelet formation by megakaryocytes. Blood. 2005;106(13):4076-4085.

[49]

YadavS, Storrie B. The cellular basis of platelet secretion: emerging structure/function relationships. Platelets. 2017;28(2):108-118.

[50]

PokrovskayaID, YadavS, RaoA, et al. 3D ultrastructural analysis of α-granule, dense granule, mitochondria, and canalicular system arrangement in resting human platelets. Res Pract Thromb Haemost. 2020;4(1):72-85.

[51]

GrichineA, JacobS, EcklyA, et al. The fate of mitochondria during platelet activation. Blood Adv. 2023;7(20):6290-6302.

[52]

DingY, GuiX, ChuX, et al. MTH1 protects platelet mitochondria from oxidative damage and regulates platelet function and thrombosis. Nat Commun. 2023;14(1):4829.

[53]

ChungJ, JeongD, KimG, et al. Super-resolution imaging of platelet-activation process and its quantitative analysis. Sci Rep. 2021;11(1):10511.

[54]

SabrkhanyS, Kuijpers MJE, Oude EgbrinkMGA, GriffioenAW. Platelets as messengers of early-stage cancer. Cancer Metastasis Rev. 2021;40(2):563-573.

[55]

GharibE, Veilleux V, BoudreauLH, PichaudN, Robichaud GA. Platelet-derived microparticles provoke chronic lymphocytic leukemia malignancy through metabolic reprogramming. Front Immunol. 2023;14:1207631.

[56]

NieswandtB, WatsonSP. Platelet-collagen interaction: is GPVI the central receptor? Blood. 2003;102(2):449-461.

[57]

JungSM, TsujiK, MoroiM. Glycoprotein (GP) VI dimer as a major collagen-binding site of native platelets: direct evidence obtained with dimeric GPVI-specific Fabs. J Thromb Haemostasis. 2009;7(8):1347-1355.

[58]

ChoMJ, LiuJ, PestinaTI, et al. The roles of αIIbβ3-mediated outside-in signal transduction, thromboxane A2, and adenosine diphosphate in collagen-induced platelet aggregation. Blood. 2003;101(7):2646-2651.

[59]

MeyersKM, Holmsen H, SeachordCL. Comparative study of platelet dense granule constituents. Am J Physiol Regulat Integrat Compar Physiol. 1982;243(3):R454-R461.

[60]

BORNGVR. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature. 1962;194:927-929.

[61]

JinJ, Kunapuli SP. Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proc Natl Acad Sci. 1998;95(14):8070-8074.

[62]

HardyAR, JonesML, MundellSJ, Poole AW. Reciprocal cross-talk between P2Y1 and P2Y12 receptors at the level of calcium signaling in human platelets. Blood. 2004;104(6):1745-1752.

[63]

HollopeterG, Jantzen HM, VincentD, et al. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature. 2001;409(6817):202-207.

[64]

JinJ, DanielJL, KunapuliSP. Molecular basis for ADP-induced platelet activation. J Biol Chem. 1998;273(4):2030-2034.

[65]

RahmanSM, HladyV. Downstream platelet adhesion and activation under highly elevated upstream shear forces. Acta Biomater. 2019;91:135-143.

[66]

GremmelT, Frelinger, 3rd A, MichelsonA. Platelet physiology. Semin Thromb Hemost. 2016;42(3):191-204.

[67]

MatsuiH, Sugimoto M, MizunoT, et al. Distinct and concerted functions of von Willebrand factor and fibrinogen in mural thrombus growth under high shear flow. Blood. 2002;100(10):3604-3610.

[68]

ClarkSR, MaAC, TavenerSA, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Med. 2007;13(4):463-469.

[69]

BlairP, RexS, VitsevaO, et al. Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase. Circ Res. 2009;104(3):346-354.

[70]

WongCHY, JenneCN, PetriB, Chrobok NL, KubesP. Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance. Nature Immunol. 2013;14(8):785-792.

[71]

SempleJW, Italiano JE, FreedmanJ. Platelets and the immune continuum. Nat Rev Immunol. 2011;11(4):264-274.

[72]

YuG, RuxAH, MaP, BdeirK, SachaisBS. Endothelial expression of E-selectin is induced by the platelet-specific chemokine platelet factor 4 through LRP in an NF-κB-dependent manner. Blood. 2005;105(9):3545-3551.

[73]

ZhouH, DengM, LiuY, et al. Platelet HMGB1 is required for efficient bacterial clearance in intra-abdominal bacterial sepsis in mice. Blood Adv. 2018;2(6):638-648.

[74]

NgamsriKC, PutriRA, JansC, et al. CXCR4 and CXCR7 inhibition ameliorates the formation of Platelet-neutrophil complexes and neutrophil extracellular traps through Adora2b signaling. Int J Mol Sci. 2021;22(24):13576.

[75]

TokoroT, MakinoI, HaradaS, et al. Interactions between neutrophils and platelets in the progression of acute pancreatitis. Pancreas. 2020;49(6):830-836.

[76]

GaertnerF, AhmadZ, RosenbergerG, et al. Migrating platelets are mechano-scavengers that collect and bundle bacteria. Cell. 2017;171(6):1368-1382.e23.

[77]

Silvestre-RoigC, Braster Q, Ortega-GomezA, SoehnleinO. Neutrophils as regulators of cardiovascular inflammation. Nat Rev Cardiol. 2020;17(6):327-340.

[78]

EtulainJ, Martinod K, WongSL, CifuniSM, Schattner M, WagnerDD. P-selectin promotes neutrophil extracellular trap formation in mice. Blood. 2015;126(2):242-246.

[79]

RinderH, BonanJ, RinderC, Ault K, SmithB. Dynamics of leukocyte-platelet adhesion in whole blood. Blood. 1991;78(7):1730-1737.

[80]

FuchsTA, BrillA, DuerschmiedD, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci. 2010;107(36):15880-15885.

[81]

JorchSK, KubesP. An emerging role for neutrophil extracellular traps in noninfectious disease. Nature Med. 2017;23(3):279-287.

[82]

ZarbockA, Müller H, KuwanoY, LeyK. PSGL-1-dependent myeloid leukocyte activation. J Leukoc Biol. 2009;86(5):1119-1124.

[83]

IvanovII, AptaBHR, BonnaAM, Harper MT. Platelet p-selectin triggers rapid surface exposure of tissue factor in monocytes. Sci Rep. 2019;9(1):13397.

[84]

WeyrichAS, ElstadMR, McEverRP, et al. Activated platelets signal chemokine synthesis by human monocytes. J Clin Invest. 1996;97(6):1525-1534.

[85]

MooreKL, StultsNL, DiazS, et al. Identification of a specific glycoprotein ligand for P-selectin (CD62) on myeloid cells. J Cell Biol. 1992;118(2):445-456.

[86]

WangY, GaoH, ShiC, et al. Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIbα. Nat Commun. 2017;8:15559.

[87]

SilversteinRL, AschAS, NachmanRL. Glycoprotein IV mediates thrombospondin-dependent platelet-monocyte and platelet-U937 cell adhesion. J Clin Invest. 1989;84(2):546-552.

[88]

WrightSD, WeitzJI, HuangAJ, Levin SM, SilversteinSC, LoikeJD. Complement receptor type three (CD11b/CD18) of human polymorphonuclear leukocytes recognizes fibrinogen. Proc Natl Acad Sci. 1988;85(20):7734-7738.

[89]

DiacovoTG, deFougerolles AR, BaintonDF, SpringerTA. A functional integrin ligand on the surface of platelets: intercellular adhesion molecule-2. J Clin Invest. 1994;94(3):1243-1251.

[90]

SantosoS, SachsUJH, KrollH, et al. The junctional adhesion molecule 3 (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin Mac-1. J Exp Med. 2002;196(5):679-691.

[91]

PhillipsJH, ChangC, LanierLL. Platelet-induced expression of FcγRIII (CD16) on human monocytes. Eur J Immunol. 1991;21(4):895-899.

[92]

LeeSJ, YoonBR, KimHY, Yoo SJ, KangSW, LeeWW. Activated platelets convert CD14+CD16-into CD14+CD16+ monocytes with enhanced FcγR-mediated phagocytosis and skewed M2 polarization. Front Immunol. 2021;11:611133.

[93]

LishkoVK, Yakubenko VP, UgarovaTP, PodolnikovaNP. Leukocyte integrin Mac-1 (CD11b/CD18, αMβ2, CR3) acts as a functional receptor for platelet factor 4. J Biol Chem. 2018;293(18):6869-6882.

[94]

PervushinaO, Scheuerer B, ReilingN, et al. Platelet factor 4/CXCL4 induces phagocytosis and the generation of reactive oxygen metabolites in mononuclear phagocytes independently of Gi protein activation or intracellular calcium transients. J Immunol. 2004;173(3):2060-2067.

[95]

ChatterjeeM, von Ungern-Sternber. SNI, SeizerP, et al. Platelet-derived CXCL12 regulates monocyte function, survival, differentiation into macrophages and foam cells through differential involvement of CXCR4-CXCR7. Cell Death Dis. 2015;6(11):e1989.

[96]

LaffontB, Corduan A, RousseauM, et al. Platelet microparticles reprogram macrophage gene expression and function. Thromb Haemost. 2016;115(2):311-323.

[97]

BarrettTJ, Schlegel M, ZhouF, et al. Platelet regulation of myeloid suppressor of cytokine signaling 3 accelerates atherosclerosis. Sci Transl Med. 2019;11(517):eaax0481.

[98]

von HundelshausenP, Koenen RR, SackM, et al. Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood. 2005;105(3):924-930.

[99]

WilliamsMWY, Guiffre AK, FletcherJP. Platelets and smooth muscle cells affecting the differentiation of monocytes. PLoS ONE. 2014;9(2):e88172.

[100]

MarxC, Novotny J, SalbeckD, et al. Eosinophil-platelet interactions promote atherosclerosis and stabilize thrombosis with eosinophil extracellular traps. Blood. 2019;134(21):1859-1872.

[101]

PitchfordSC, MomiS, GianniniS, et al. Platelet P-selectin is required for pulmonary eosinophil and lymphocyte recruitment in a murine model of allergic inflammation. Blood. 2005;105(5):2074-2081.

[102]

DiacovoTG, PuriKD, WarnockRA, Springer TA, von AndrianUH. Platelet-mediated lymphocyte delivery to high endothelial venules. Science. 1996;273(5272):252-255.

[103]

KohCH, LeeS, KwakM, Kim BS, ChungY. CD8 T-cell subsets: heterogeneity, functions, and therapeutic potential. Exp Mol Med. 2023;55(11):2287-2299.

[104]

SpeiserDE, Chijioke O, SchaeubleK, MünzC. CD4+ T cells in cancer. Nature Cancer. 2023;4(3):317-329.

[105]

ShiG, FieldDJ, KoK, et al. Platelet factor 4 limits Th17 differentiation and cardiac allograft rejection. J Clin Invest. 2014;124(2):543-552.

[106]

GerdesN, ZhuL, ErsoyM, et al. Platelets regulate CD4+ T-cell differentiation via multiple chemokines in humans. Thromb Haemost. 2011;106(2):353-362.

[107]

RossaintJ, ThomasK, MersmannS, et al. Platelets orchestrate the resolution of pulmonary inflammation in mice by T reg cell repositioning and macrophage education. J Exp Med. 2021;218(7):e20201353.

[108]

CognasseF, Hamzeh-Cognasse H, LafargeS, et al. Human platelets can activate peripheral blood B cells and increase production of immunoglobulins. Exp Hematol. 2007;35(9):1376-1387.

[109]

DuffauP, Seneschal J, NiccoC, et al. Platelet CD154 potentiates Interferon-α secretion by plasmacytoid dendritic cells in systemic lupus erythematosus. Sci Transl Med. 2010;2(47):47ra63.

[110]

HanP, HanlonD, ArshadN, et al. Platelet P-selectin initiates cross-presentation and dendritic cell differentiation in blood monocytes. Sci Adv. 2020;6(11):eaaz1580.

[111]

BockM, Bergmann CB, JungS, BiberthalerP, Heimann L, HanschenM. Platelets differentially modulate CD4+ Treg activation via GPIIa/IIIb-, fibrinogen-, and PAR4-dependent pathways. Immunol Res. 2022;70(2):185-196.

[112]

GuoL, ShenS, RowleyJW, et al. Platelet MHC class I mediates CD8+ t-cell suppression during sepsis. Blood. 2021;138(5):401-416.

[113]

BénézechC, NayarS, FinneyBA, et al. CLEC-2 is required for development and maintenance of lymph nodes. Blood. 2014;123(20):3200-3207.

[114]

ZhangZ, XuX, ZhangD, et al. Targeting erbin-mitochondria axis in platelets/megakaryocytes promotes B cell-mediated antitumor immunity. Cell Metab. 2024;36(3):541-556.e9.

[115]

UnruhD, Horbinski C. Beyond thrombosis: the impact of tissue factor signaling in cancer. J Hematol Oncol. 2020;13(1):93.

[116]

MatsuiY, AmanoH, ItoY, et al. Thromboxane A2 receptor signaling facilitates tumor colonization through P-selectin-mediated interaction of tumor cells with platelets and endothelial cells. Cancer Sci. 2012;103(4):700-707.

[117]

EganK, Crowley D, SmythP, et al. Platelet adhesion and degranulation induce pro-survival and pro-angiogenic signalling in ovarian cancer cells. PLoS ONE. 2011;6(10):e26125.

[118]

HaemmerleM, Bottsford-Miller J, PradeepS, et al. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. J Clin Invest. 2016;126(5):1885-1896.

[119]

MitrugnoA, Tassi Yunga S, SylmanJL, et al. The role of coagulation and platelets in colon cancer-associated thrombosis. Am J Physiol Cell Physiol. 2019;316(2):C264-C273.

[120]

ShakerH, Bundred NJ, LandbergG, et al. Breast cancer stromal clotting activation (Tissue Factor and thrombin): a pre-invasive phenomena that is prognostic in invasion. Cancer Med. 2020;9(5):1768-1778.

[121]

De CandiaE. Mechanisms of platelet activation by thrombin: a short history. Thromb Res. 2012;129(3):250-256.

[122]

AdamsGN, Rosenfeldt L, FrederickM, et al. Colon cancer growth and dissemination relies upon thrombin, stromal PAR-1, and fibrinogen. Cancer Res. 2015;75(19):4235-4243.

[123]

RondonAMR, KrooneC, KapteijnMY, Versteeg HH, BuijsJT. Role of tissue factor in tumor progression and Cancer-associated thrombosis. Semin Thromb Hemost. 2019;45(4):396-412.

[124]

KimYJ, BorsigL, VarkiNM, Varki A. P-selectin deficiency attenuates tumor growth and metastasis. Proc Natl Acad Sci. 1998;95(16):9325-9330.

[125]

PolgarJ, Matuskova J, WagnerDD. The P-selectin, tissue factor, coagulation triad. J Thromb Haemostasis. 2005;3(8):1590-1596.

[126]

FurieB, FurieBC. Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation. Trends Mol Med. 2004;10(4):171-178.

[127]

AyC, Simanek R, VormittagR, et al. High plasma levels of soluble P-selectin are predictive of venous thromboembolism in cancer patients: results from the Vienna cancer and thrombosis study (CATS). Blood. 2008;112(7):2703-2708.

[128]

Mammadova-BachE, Gil-Pulido J, SarukhanyanE, et al. Platelet glycoprotein VI promotes metastasis through interaction with cancer cell-derived galectin-3. Blood. 2020;135(14):1146-1160.

[129]

Mammadova-BachE, Zigrino P, BruckerC, et al. Platelet integrin α6β1 controls lung metastasis through direct binding to cancer cell-derived ADAM9. JCI Insight. 2016;1(14):e88245.

[130]

QuM, ZouX, FangF, et al. Platelet-derived microparticles enhance megakaryocyte differentiation and platelet generation via miR-1915-3p. Nat Commun. 2020;11(1):4964.

[131]

SadallahS, Schmied L, EkenC, CharoudehHN, Amicarella F, SchifferliJA. Platelet-derived ectosomes reduce NK cell function. J Immunol 2016;197(5):1663-1671.

[132]

AggarwalA, Jennings CL, ManningE, CameronSJ. Platelets at the vessel wall in Non-thrombotic disease. Circ Res. 2023;132(6):775-790.

[133]

LiX, WangQ. Platelet-derived microparticles and autoimmune diseases. Int J Mol Sci. 2023;24(12):10275.

[134]

QiC, WeiB, ZhouW, et al. P-selectin-mediated platelet adhesion promotes tumor growth. Oncotarget. 2015;6(9):6584-6596.

[135]

KrishnanH, RayesJ, MiyashitaT, et al. Podoplanin: an emerging cancer biomarker and therapeutic target. Cancer Sci. 2018;109(5):1292-1299.

[136]

RiedlJ, Preusser M, NazariPMS, et al. Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism. Blood. 2017;129(13):1831-1839.

[137]

RayesJ, WatsonSP, NieswandtB. Functional significance of the platelet immune receptors GPVI and CLEC-2. J Clin Invest. 2019;129(1):12-23.

[138]

TsukijiN, OsadaM, SasakiT, et al. Cobalt hematoporphyrin inhibits CLEC-2-podoplanin interaction, tumor metastasis, and arterial/venous thrombosis in mice. Blood Adv. 2018;2(17):2214-2225.

[139]

ShiraiT, InoueO, TamuraS, et al. C-type lectin-like receptor 2 promotes hematogenous tumor metastasis and prothrombotic state in tumor-bearing mice. J Thromb Haemostasis. 2017;15(3):513-525.

[140]

HwangBO, ParkSY, ChoES, et al. Platelet CLEC2-podoplanin axis as a promising target for oral cancer treatment. Front Immunol. 2021;12:807600.

[141]

XuM, WangX, PanY, et al. Blocking podoplanin suppresses growth and pulmonary metastasis of human malignant melanoma. BMC Cancer. 2019;19(1):599.

[142]

Alonso-EscolanoD, Strongin AY, ChungAW, DeryuginaEI, Radomski MW. Membrane type-1 matrix metalloproteinase stimulates tumour cell-induced platelet aggregation: role of receptor glycoproteins. Br J Pharmacol. 2004;141(2):241-252.

[143]

YuLX, YanL, YangW, et al. Platelets promote tumour metastasis via interaction between TLR4 and tumour cell-released high-mobility group box 1 protein. Nat Commun. 2014;5:5256.

[144]

DudikiT, Veleeparambil M, ZhevlakovaI, et al. Mechanism of tumor-platelet communications in cancer. Circ Res. 2023;132(11):1447-1461.

[145]

NilssonRJA, BalajL, HullemanE, et al. Blood platelets contain tumor-derived RNA biomarkers. Blood. 2011;118(13):3680-3683.

[146]

SabrkhanyS, Kuijpers MJE, KnolJC, et al. Exploration of the platelet proteome in patients with early-stage cancer. J Proteomics. 2018;177:65-74.

[147]

GaoY, LiuCJ, LiHY, et al. Platelet RNA enables accurate detection of ovarian cancer: an intercontinental, biomarker identification study. Protein Cell. 2023;14(6):579-590.

[148]

BombeliT, Schwartz BR, HarlanJM. Adhesion of activated platelets to endothelial cells: evidence for a GPIIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), αvβ3 integrin, and GPIbα. J Exp Med. 1998;187(3):329-339.

[149]

TimpJF, Braekkan SK, VersteegHH, CannegieterSC. Epidemiology of cancer-associated venous thrombosis. Blood. 2013;122(10):1712-1723.

[150]

HisadaY, Mackman N. Cancer-associated pathways and biomarkers of venous thrombosis. Blood. 2017;130(13):1499-1506.

[151]

KhoranaAA, Connolly GC. Assessing risk of venous thromboembolism in the patient with cancer. J Clin Oncol. 2009;27(29):4839-4847.

[152]

SchlesingerM. Role of platelets and platelet receptors in cancer metastasis. J Hematol Oncol. 2018;11(1):125.

[153]

HeinmöllerE, Weinel RJ, HeidtmannHH, et al. Studies on tumor-cell-induced platelet aggregation in human lung cancer cell lines. J Cancer Res Clin Oncol. 1996;122(12):735-744.

[154]

SunL, LiQ, GuoY, et al. Extract of caulis spatholobi, a novel platelet inhibitor, efficiently suppresses metastasis of colorectal cancer by targeting tumor cell-induced platelet aggregation. Biomed Pharmacother. 2020;123:109718.

[155]

ChenX, LiQ, KanXX, et al. Extract of caulis spatholobi, a novel blocker targeting tumor cell induced platelet aggregation, inhibits breast cancer metastasis. Oncol Rep. 2016;36(6):3215-3224.

[156]

Garcia-LeonMJ, LiboniC, MittelheisserV, et al. Platelets favor the outgrowth of established metastases. Nat Commun. 2024;15(1):3297.

[157]

ShengM, SunR, FuJ, LuG. The podoplanin-CLEC-2 interaction promotes platelet-mediated melanoma pulmonary metastasis. BMC Cancer. 2024;24(1):399.

[158]

OriaVO, Lopatta P, SchillingO. The pleiotropic roles of ADAM9 in the biology of solid tumors. Cell Mol Life Sci. 2018;75(13):2291-2301.

[159]

WeberMR, ZukaM, LorgerM, et al. Activated tumor cell integrin αvβ3 cooperates with platelets to promote extravasation and metastasis from the blood stream. Thromb Res. 2016;140:S27-S36.

[160]

TrikhaM, ZhouZ, TimarJ, et al. Multiple roles for platelet GPIIb/IIIa and alphavbeta3 integrins in tumor growth, angiogenesis, and metastasis. Cancer Res. 2002;62(10):2824-2833.

[161]

BorsigL, WongR, FeramiscoJ, Nadeau DR, VarkiNM, VarkiA. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci. 2001;98(6):3352-3357.

[162]

AliAS, AjazA. The role of mucin-educated platelet activation in tumor invasiveness: an unfolding concern in the realm of cancer biology. Biomedicine. 2017;7(4):21.

[163]

WahrenbrockM, BorsigL, LeD, VarkiN, VarkiA. Selectin-mucin interactions as a probable molecular explanation for the association of Trousseau syndrome with mucinous adenocarcinomas. J Clin Invest. 2003;112(6):853-862.

[164]

Pereira-VeigaT, Schneegans S, PantelK, WikmanH. Circulating tumor cell-blood cell crosstalk: biology and clinical relevance. Cell Rep. 2022;40(9):111298.

[165]

GaneshK, Massagué J. Targeting metastatic cancer. Nature Med. 2021;27(1):34-44.

[166]

LäubliH, Spanaus KS, BorsigL. Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes. Blood. 2009;114(20):4583-4591.

[167]

ChenY, ZhouJ, LiuZ, et al. Tumor cell-induced platelet aggregation accelerates hematogenous metastasis of malignant melanoma by triggering macrophage recruitment. J Exp Clin Cancer Res. 2023;42(1):277.

[168]

MarrellaA, FediA, VaraniG, et al. High blood flow shear stress values are associated with circulating tumor cells cluster disaggregation in a multi-channel microfluidic device. PLoS ONE. 2021;16(1):e0245536.

[169]

ZamoraC, Cantó E, NietoJC, et al. Binding of platelets to lymphocytes: a potential Anti-inflammatory therapy in rheumatoid arthritis. J Immunol. 2017;198(8):3099-3108.

[170]

KoppHG, PlackeT, SalihHR. Platelet-derived transforming growth factor-β down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res. 2009;69(19):7775-7783.

[171]

CastriconiR, Cantoneti C, Della ChiesaM, et al. Transforming growth factor β1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci. 2003;100(7):4120-4125.

[172]

LeeJC, LeeKM, KimDW, Heo DS. Elevated TGF-β1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol. 2004;172(12):7335-7340.

[173]

LiuX, SongJ, ZhangH, et al. Immune checkpoint HLA-E:CD94-NKG2A mediates evasion of circulating tumor cells from NK cell surveillance. Cancer Cell. 2023;41(23):272-287.e9.

[174]

HinterleitnerC, Strähle J, MalenkeE, et al. Platelet PD-L1 reflects collective intratumoral PD-L1 expression and predicts immunotherapy response in non-small cell lung cancer. Nat Commun. 2021;12(1):7005.

[175]

ChoMS, LiJ, Gonzalez-DelgadoR, et al. The effect of platelet G proteins on platelet extravasation and tumor growth in the murine model of ovarian cancer. Blood Adv. 2021;5(7):1947-1951d.

[176]

PalumboJS, Talmage KE, MassariJV, et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood. 2005;105(1):178-185.

[177]

PalumboJS, Talmage KE, MassariJV, et al. Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and-independent mechanisms. Blood. 2007;110(1):133-141.

[178]

ClarKL, Hinterleitner C, SchneiderP, SalihHR, MaurerS. Inhibition of NK reactivity against solid tumors by Platelet-derived RANKL. Cancers. 2019;11(3):277.

[179]

PlackeT, SalihHR, KoppHG. GITR ligand provided by thrombopoietic cells inhibits NK cell antitumor activity. J Immunol. 2012;189(1):154-160.

[180]

ZhouY, Heitmann JS, ClarKL, et al. Platelet-expressed immune checkpoint regulator GITRL in breast cancer. Cancer Immunol Immunother. 2021;70(9):2483-2496.

[181]

CluxtonCD, Spillane C, O’TooleSA, SheilsO, Gardiner CM, O’LearyJJ. Suppression of natural killer cell NKG2D and CD226 anti-tumour cascades by platelet cloaked cancer cells: implications for the metastatic cascade. PLoS ONE. 2019;14(3):e0211538.

[182]

MaurerS, KroppKN, KleinG, et al. Platelet-mediated shedding of NKG2D ligands impairs NK cell immune-surveillance of tumor cells. Oncoimmunology. 2017;7(2):e1364827.

[183]

MiyamaY, Morikawa T, MiyakawaJ, et al. The prognostic value of PD-L1 expression in upper tract urothelial carcinoma varies according to platelet count. Cancer Med. 2018;7(9):4330-4338.

[184]

RolfesV, IdelC, PriesR, et al. PD-L1 is expressed on human platelets and is affected by immune checkpoint therapy. Oncotarget. 2018;9(44):27460-27470.

[185]

ZaslavskyAB, AdamsMP, CaoX, et al. Platelet PD-L1 suppresses anti-cancer immune cell activity in PD-L1 negative tumors. Sci Rep. 2020;10(1):19296.

[186]

ChoMS, LeeH, Gonzalez-DelgadoR, et al. Platelets increase the expression of PD-L1 in ovarian cancer. Cancers. 2022;14(10):2498.

[187]

ShiG, FieldDJ, KoK, et al. Platelet factor 4 limits Th17 differentiation and cardiac allograft rejection. J Clin Invest. 2014;124(2):543-552.

[188]

GerdesN, ZhuL, ErsoyM, et al. Platelets regulate CD4+ T-cell differentiation via multiple chemokines in humans. Thromb Haemost. 2011;106(2):353-362.

[189]

BockM, Bergmann CB, JungS, BiberthalerP, Heimann L, HanschenM. Platelets differentially modulate CD4+ Treg activation via GPIIa/IIIb-, fibrinogen-, and PAR4-dependent pathways. Immunol Res. 2022;70(2):185-196.

[190]

AhamedJ, BurgN, YoshinagaK, Janczak CA, RifkinDB, CollerBS. In vitro and in vivo evidence for shear-induced activation of latent transforming growth factor-β1. Blood. 2008;112(9):3650-3660.

[191]

RachidiS, Metelli A, RiesenbergB, et al. Platelets subvert T cell immunity against cancer via GARP-TGFβ axis. Sci Immunol. 2017;2(11):eaai7911.

[192]

MetelliA, WuBX, RiesenbergB, et al. Thrombin contributes to cancer immune evasion via proteolysis of platelet-bound GARP to activate LTGF-β. Sci Transl Med. 2020;12(525):eaay4860.

[193]

KöhlerS, Ullrich S, RichterU, SchumacherU. E-/P-selectins and colon carcinoma metastasis: first in vivo evidence for their crucial role in a clinically relevant model of spontaneous metastasis formation in the lung. Br J Cancer. 2010;102(3):602-609.

[194]

LambertAW, Pattabiraman DR, WeinbergRA. Emerging biological principles of metastasis. Cell. 2017;168(4):670-691.

[195]

LangerH, MayAE, BültmannA, GawazM. ADAM 15 is an adhesion receptor for platelet GPIIb-IIIa and induces platelet activation. Thromb Haemost. 2005;94(3):555-561.

[196]

HaemmerleM, Bottsford-Miller J, PradeepS, et al. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. J Clin Invest. 2016;126(5):1885-1896.

[197]

Mammadova-BachE, Zigrino P, BruckerC, et al. Platelet integrin α6β1 controls lung metastasis through direct binding to cancer cell-derived ADAM9. JCI Insight. 2016;1(14):e88245.

[198]

LiX, ChenX, GongS, et al. Platelets promote CRC by activating the C5a/C5aR1 axis via PSGL-1/JNK/STAT1 signaling in tumor-associated macrophages. Theranostics. 2023;13(6):2040-2056.

[199]

LonsdorfAS, Krämer BF, FahrleitnerM, et al. Engagement of αIIbβ3 (GPIIb/IIIa) with ανβ3 integrin mediates interaction of melanoma cells with platelets. J Biol Chem. 2012;287(3):2168-2178.

[200]

WardY, LakeR, FarajiF, et al. Platelets promote metastasis via binding tumor CD97 leading to bidirectional signaling that coordinates transendothelial migration. Cell Rep. 2018;23(3):808-822.

[201]

SchumacherD, Strilic B, SivarajKK, WettschureckN, Offermanns S. Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell. 2013;24(1):130-137.

[202]

QianBZ, LiJ, ZhangH, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475(7355):222-225.

[203]

LäubliH, Spanaus KS, BorsigL. Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes. Blood. 2009;114(20):4583-4591.

[204]

LabelleM, BegumS, HynesRO. Platelets guide the formation of early metastatic niches. Proc Natl Acad Sci. 2014;111(30):E3053-E3061.

[205]

JiangL, LuanY, MiaoX, et al. Platelet releasate promotes breast cancer growth and angiogenesis via VEGF-integrin cooperative signalling. Br J Cancer. 2017;117(5):695-703.

[206]

WartiovaaraU, SalvenP, MikkolaH, et al. Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation. Thromb Haemost. 1998;80(1):171-175.

[207]

KisuckaJ, Butterfield CE, DudaDG, et al. Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proc Natl Acad Sci. 2006;103(4):855-860.

[208]

KaiserR, EscaigR, KranichJ, et al. Procoagulant platelet sentinels prevent inflammatory bleeding through GPIIBIIIA and GPVI. Blood. 2022;140(2):121-139.

[209]

MöhleR, GreenD, MooreMAS, Nachman RL, RafiiS. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci. 1997;94(2):663-668.

[210]

VerheulHM, Hoekman K, LupuF, et al. Platelet and coagulation activation with vascular endothelial growth factor generation in soft tissue sarcomas. Clin Cancer Res 2000;6(1):166-171.

[211]

WojtukiewiczMZ, SierkoE, HempelD, Tucker SC, HonnKV. Platelets and cancer angiogenesis nexus. Cancer Metastasis Rev. 2017;36(2):249-262.

[212]

BattinelliEM, Markens BA, Italiano Jr,JE. Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis. Blood. 2011;118(5):1359-1369.

[213]

Lakka KlementG, YipTT, CassiolaF, et al. Platelets actively sequester angiogenesis regulators. Blood. 2009;113(12):2835-2842.

[214]

ItalianoJE, Richardson JL, Patel-HettS, et al. Angiogenesis is regulated by a novel mechanism: pro-and antiangiogenic proteins are organized into separate platelet α granules and differentially released. Blood. 2008;111(3):1227-1233.

[215]

SehgalS, Storrie B. Evidence that differential packaging of the major platelet granule proteins von Willebrand factor and fibrinogen can support their differential release. J Thromb Haemostasis. 2007;5(10):2009-2016.

[216]

KuznetsovHS, MarshT, MarkensBA, et al. Identification of luminal breast cancers that establish a tumor-supportive macroenvironment defined by proangiogenic platelets and bone marrow-derived cells. Cancer Discovery. 2012;2(12):1150-1165.

[217]

Ho-Tin-NoéB, Goerge T, CifuniSM, DuerschmiedD, WagnerDD. Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res. 2008;68(16):6851-6858.

[218]

VolzJ, Mammadova-Bach E, Gil-PulidoJ, et al. Inhibition of platelet GPVI induces intratumor hemorrhage and increases efficacy of chemotherapy in mice. Blood. 2019;133(25):2696-2706.

[219]

Rodriguez-MartinezA, Simon-Saez I, PeralesS, et al. Exchange of cellular components between platelets and tumor cells: impact on tumor cells behavior. Theranostics. 2022;12(5):2150-2161.

[220]

ZhangW, ZhouH, LiH, et al. Cancer cells reprogram to metastatic state through the acquisition of platelet mitochondria. Cell Rep. 2023;42(9):113147.

[221]

ContursiA, Fullone R, Szklanna-KoszalinskaP, et al. Tumor-educated platelet extracellular vesicles: proteomic profiling and crosstalk with colorectal cancer cells. Cancers. 2023;15(2):350.

[222]

WojtukiewiczMZ, TangDG, NelsonKK, et al. Thrombin enhances tumor cell adhesive and metastatic properties via increased alpha IIb beta 3 expression on the cell surface. Thromb Res. 1992;68(3):233-245.

[223]

GharibE, Veilleux V, BoudreauLH, PichaudN, Robichaud GA. Platelet-derived microparticles provoke chronic lymphocytic leukemia malignancy through metabolic reprogramming. Front Immunol. 2023;14:1207631.

[224]

VeilleuxV, Pichaud N, BoudreauLH, RobichaudGA. Mitochondria transfer by Platelet-derived microparticles regulates breast cancer bioenergetic states and malignant features. Mol Cancer Res. 2024;22(3):268-281.

[225]

KirschbaumM, Karimian G, AdelmeijerJ, GiepmansBNG, PorteRJ, LismanT. Horizontal RNA transfer mediates platelet-induced hepatocyte proliferation. Blood. 2015;126(6):798-806.

[226]

Martins CastanheiraN, Spanhofer AK, WienerS, BobeS, Schillers H. Uptake of platelets by cancer cells and recycling of the platelet protein CD42a. J Thromb Haemostasis. 2022;20(1):170-181.

[227]

CollinsonRJ, BoeyD, WilsonL, et al. PlateletSeq: a novel method for discovery of blood-based biomarkers. Methods. 2023;219:139-149.

[228]

TongH, LiK, ZhouM, et al. Coculture of cancer cells with platelets increases their survival and metastasis by activating the TGFβ/Smad/PAI-1 and PI3K/AKT pathways. Int J Biol Sci. 2023;19(13):4259-4277.

[229]

MezouarS, MegeD, DarboussetR, et al. Involvement of platelet-derived microparticles in tumor progression and thrombosis. Semin Oncol. 2014;41(3):346-358.

[230]

LiangH, YanX, PanY, et al. MicroRNA-223 delivered by platelet-derived microvesicles promotes lung cancer cell invasion via targeting tumor suppressor EPB41L3. Mol Cancer. 2015;14:58.

[231]

XuY, ChenL, ChenY, et al. Prediction of potential biomarkers in early-stage nasopharyngeal carcinoma based on platelet RNA sequencing. Mol Biotechnol. 2023;65(7):1096-1108.

[232]

TakagiS, Tsukamoto S, ParkJ, et al. Platelets enhance multiple myeloma progression via IL-1β upregulation. Clin Cancer Res. 2018;24(10):2430-2439.

[233]

YangL, JiangQ, LiDZ, ZhouX, YuDS, ZhongJ. TIMP1 mRNA in tumor-educated platelets is diagnostic biomarker for colorectal cancer. Aging. 2019;11(20):8998-9012.

[234]

LiX, LiuL, SongX, et al. TEP linc-GTF2H2-1, RP3-466P17.2, and lnc-ST8SIA4-12 as novel biomarkers for lung cancer diagnosis and progression prediction. J Cancer Res Clin Oncol. 2021;147(6):1609-1622.

[235]

LiuCJ, LiHY, GaoY, et al. Platelet RNA signature independently predicts ovarian cancer prognosis by deep learning neural network model. Protein Cell. 2023;14(8):618-622.

[236]

BestMG, SolN, KooiI, et al. RNA-Seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell. 2015;28(5):666-676.

[237]

ShenZ, DuW, PerkinsC, et al. Platelet transcriptome identifies progressive markers and potential therapeutic targets in chronic myeloproliferative neoplasms. Cell Rep Med. 2021;2(10):100425.

[238]

YaoB, QuS, HuR, et al. Delivery of platelet TPM3 mRNA into breast cancer cells via microvesicles enhances metastasis. FEBS Open Bio. 2019;9(12):2159-2169.

[239]

In ’t VeldSGJG, Arkani M, PostE, et al. Detection and localization of early-and late-stage cancers using platelet RNA. Cancer Cell. 2022;40(9):999-1009.

[240]

AmistenS. A rapid and efficient platelet purification protocol for platelet gene expression studies. Methods Mol Biol. 2012;788:155-172.

[241]

MiddletonEA, RowleyJW, CampbellRA, et al. Sepsis alters the transcriptional and translational landscape of human and murine platelets. Blood. 2019;134(12):911-923.

[242]

DenisMM, TolleyND, BuntingM, et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell. 2005;122(3):379-391.

[243]

D’AmbrosiS, Nilsson RJ, WurdingerT. Platelets and tumor-associated RNA transfer. Blood. 2021;137(23):3181-3191.

[244]

NilssonRJA, Karachaliou N, BerenguerJ, et al. Rearranged EML4-ALK fusion transcripts sequester in circulating blood platelets and enable blood-based crizotinib response monitoring in non-small-cell lung cancer. Oncotarget. 2016;7(1):1066-1075.

[245]

RowleyJW, Schwertz H, WeyrichAS. Platelet mRNA: the meaning behind the message. Curr Opin Hematol. 2012;19(5):385-391.

[246]

KrishnanAnandi, ZhangYue, PerkinsCecelia, GotlibJason, Zehnder JamesL. Platelet transcriptomic signatures in myeloproliferative neoplasms. Blood. 2017;130:5288.

[247]

BestMG, SolN, In ‘t VeldSGJG, et al. Swarm intelligence-enhanced detection of non-small-cell lung cancer using tumor-educated platelets. Cancer Cell. 2017;32(2):238-252.e9.

[248]

XueL, XieL, SongX, Song X. Identification of potential tumor-educated platelets RNA biomarkers in non-small-cell lung cancer by integrated bioinformatical analysis. J Clin Lab Anal. 2018;32(7):e22450.

[249]

Antunes-FerreiraM, D’Ambrosi S, ArkaniM, et al. Tumor-educated platelet blood tests for non-small cell lung cancer detection and management. Sci Rep. 2023;13(1):9359.

[250]

SaitoR, ShodaK, MaruyamaS, et al. Platelets enhance malignant behaviours of gastric cancer cells via direct contacts. Br J Cancer. 2021;124(3):570-573.

[251]

SolN, In ‘t Veld SGJG, VancuraA, et al. Tumor-educated platelet RNA for the detection and (pseudo)progression monitoring of glioblastoma. Cell Rep Med. 2020;1(7):100101.

[252]

NilssonRJA, BalajL, HullemanE, et al. Blood platelets contain tumor-derived RNA biomarkers. Blood. 2011;118(13):3680-3683.

[253]

QiZH, XuHX, ZhangSR, et al. The significance of liquid biopsy in pancreatic cancer. J Cancer. 2018;9(18):3417-3426.

[254]

ShiQ, XuJ, ChenC, et al. Direct contact between tumor cells and platelets initiates a FAK-dependent F3/TGF-β positive feedback loop that promotes tumor progression and EMT in osteosarcoma. Cancer Lett. 2024;591:216902.

[255]

TakemotoA, Okitaka M, TakagiS, et al. A critical role of platelet TGF-β release in podoplanin-mediated tumour invasion and metastasis. Sci Rep. 2017;7:42186.

[256]

OhSA, LiuM, NixonBG, et al. Foxp3-independent mechanism by which TGF-β controls peripheral T cell tolerance. Proc Natl Acad Sci. 2017;114(36):E7536-E7544.

[257]

Sola-PennaM, Paixão LP, BrancoJR, et al. Serotonin activates glycolysis and mitochondria biogenesis in human breast cancer cells through activation of the Jak1/STAT3/ERK1/2 and adenylate cyclase/PKA, respectively. Br J Cancer. 2020;122(2):194-208.

[258]

ZhangZ, XuX, ZhangD, et al. Targeting erbin-mitochondria axis in platelets/megakaryocytes promotes B cell-mediated antitumor immunity. Cell Metab. 2024;36(3):541-556.

[259]

SchneiderMA, HeebL, BeffingerMM, et al. Attenuation of peripheral serotonin inhibits tumor growth and enhances immune checkpoint blockade therapy in murine tumor models. Sci Transl Med. 2021;13(611):eabc8188.

[260]

IchikawaJ, AndoT, KawasakiT, et al. Role of platelet C-type lectin-like receptor 2 in promoting lung metastasis in osteosarcoma. J Bone Miner Res. 2020;35(9):1738-1750.

[261]

SasakiT, ShiraiT, TsukijiN, et al. Functional characterization of recombinant snake venom rhodocytin: rhodocytin mutant blocks CLEC-2/podoplanin-dependent platelet aggregation and lung metastasis. J Thromb Haemostasis. 2018;16(5):960-972.

[262]

GebremeskelS, LeVatte T, LiwskiRS, JohnstonB, Bezuhly M. The reversible P2Y12 inhibitor ticagrelor inhibits metastasis and improves survival in mouse models of cancer. Int J Cancer. 2015;136(1):234-240.

[263]

US National Library of Medicine. ClinicalTrials.gov, 2023. https://classic.clinicaltrials.gov/ct2/show/NCT03245489

[264]

HuQ, LiH, ArchibongE, et al. Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets. Nat Biomed Eng. 2021;5(9):1038-1047.

[265]

YangY, WangY, YaoY, et al. T cell-mimicking platelet-drug conjugates. Matter. 2023;6(7):2340-2355.

[266]

PapaAL, JiangA, KorinN, et al. Platelet decoys inhibit thrombosis and prevent metastatic tumor formation in preclinical models. Sci Transl Med. 2019;11(479):eaau5898.

[267]

FangM, LiuR, FangY, Zhang D, KongB. Emerging platelet-based drug delivery systems. Biomed Pharmacother. 2024;177:117131.

[268]

HuCMJ, FangRH, WangKC, et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 2015;526(7571):118-121.

[269]

BahmaniB, GongH, LukBT, et al. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nat Commun. 2021;12(1):1999.

[270]

ZhuY, XuL, KangY, Cheng Q, HeY, JiX. Platelet-derived drug delivery systems: pioneering treatment for cancer, cardiovascular diseases, infectious diseases, and beyond. Biomaterials. 2024;306:122478.

[271]

FangRH, GaoW, ZhangL. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat Rev Clin Oncol. 2023;20(1):33-48.

[272]

MaC, FuQ, DiggsLP, et al. Platelets control liver tumor growth through P2Y12-dependent CD40L release in NAFLD. Cancer Cell. 2022;40(9):986-998.

[273]

IyerKS, DayalS. Modulators of platelet function in aging. Platelets. 2020;31(4):474-482.

[274]

PoscabloDM, Worthington AK, Smith-BerdanS, et al. An age-progressive platelet differentiation path from hematopoietic stem cells causes exacerbated thrombosis. Cell. 2024;187(12):3090-3107.e21.

[275]

KrishnanA, ThomasS. Toward platelet transcriptomics in cancer diagnosis, prognosis and therapy. Br J Cancer. 2022;126(3):316-322.

[276]

BestMG, Wesseling P, WurdingerT. Tumor-Educated platelets as a noninvasive biomarker source for cancer detection and progression monitoring. Cancer Res. 2018;78(13):3407-3412.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm - Future Medicine published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).

AI Summary AI Mindmap
PDF

826

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/