MXene-Based Electrochemiluminescence (ECL) Biosensors: A Review on Analyte Detection and Diagnostic Applications

Kai Zhang

MEDCOMM - Biomaterials and Applications ›› 2025, Vol. 4 ›› Issue (4) : e70027

PDF
MEDCOMM - Biomaterials and Applications ›› 2025, Vol. 4 ›› Issue (4) : e70027 DOI: 10.1002/mba2.70027
REVIEW ARTICLE

MXene-Based Electrochemiluminescence (ECL) Biosensors: A Review on Analyte Detection and Diagnostic Applications

Author information +
History +
PDF

Abstract

MXenes, a family of two-dimensional (2D) transition metal carbides and nitrides, have rapidly gained attention in the field of electrochemiluminescence (ECL) biosensing owing to their exceptional physicochemical properties, including ultrahigh electrical conductivity, tunable surface terminations, large specific surface area, and excellent biocompatibility. These features render MXenes highly suitable for enhancing ECL signal output, facilitating efficient biomolecule immobilization, and enabling versatile functionalization for selective target recognition. This review provides a comprehensive and up-to-date summary of recent progress in MXene-based ECL biosensors, focusing on material advantages, functionalization strategies, sensing mechanisms, and performance metrics. Special emphasis is placed on the role of MXene in signal amplification and real-sample adaptability. Representative case studies are discussed to illustrate their application in detecting clinical biomarkers, pathogenic genes, environmental pollutants, and food contaminants with high sensitivity and specificity. Moreover, practical challenges—including oxidative degradation, dispersibility, and cytotoxicity—are critically evaluated alongside emerging solutions such as surface engineering and polymer encapsulation. By integrating advanced materials science with biosensing technologies, MXene-based ECL platforms are paving the way for next-generation diagnostic tools. This review aims to provide a useful reference for future research and promote the practical deployment of MXene-based biosensors in biomedical and environmental analysis.

Cite this article

Download citation ▾
Kai Zhang. MXene-Based Electrochemiluminescence (ECL) Biosensors: A Review on Analyte Detection and Diagnostic Applications. MEDCOMM - Biomaterials and Applications, 2025, 4(4): e70027 DOI:10.1002/mba2.70027

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

N. Arab, M. Hosseini, and G. Xu, “Emerging Trends and Recent Advances in Mxene/Mxene-Based Nanocomposites Toward Electrochemiluminescence Sensing and Biosensing,” Biosensors and Bioelectronics 265 (December2024): 116623.

[2]

A. Firoozbakhtian, M. Hosseini, Y. Guan, and G. Xu, “Boosting Electrochemiluminescence Immunoassay Sensitivity Via Co–Pt Nanoparticles Within a Ti3C2 MXene-Modified Single Electrode Electrochemical System on Raspberry Pi,” Analytical Chemistry 95, no. 40 (September 2023): 15110–15117.

[3]

K. Zhang, M. Yang, H. Sun, et al., “Novel Strategy to Inhibit CRISPR/Cas13a Activity by PNA/crRNA Duplex and Its Application in MMP-2 Biosensor,” Sensors and Actuators B: Chemical 376 (January 2023): 133023.

[4]

K. Zhang, Z. Fan, Y. Huang, Y. Ding, and M. Xie, “A Strategy Combining 3D-DNA Walker and CRISPR-Cas12a Trans-Cleavage Activity Applied to MXene Based Electrochemiluminescent Sensor for SARS-CoV-2 RdRp Gene Detection,” Talanta 236 (January 2022): 122868.

[5]

K. Zhang, Z. Fan, Y. Ding, S. Zhu, M. Xie, and N. Hao, “Exploring the Entropy-Driven Amplification Reaction and Trans-Cleavage Activity of CRISPR-Cas12a for the Development of an Electrochemiluminescence Biosensor for the Detection of the SARS-CoV-2 RdRrp Gene in Real Samples and Environmental Surveillance,” Environmental Science: Nano 9, no. 1 (2022): 162–172.

[6]

L. Wang, H. Zhang, T. Zhuang, J. Liu, N. Sojic, and Z. Wang, “Sensitive Electrochemiluminescence Biosensing of Polynucleotide Kinase Using the Versatility of Two-Dimensional Ti3C2TX Mxene Nanomaterials,” Analytica Chimica Acta 1191 (January 2022): 339346.

[7]

L. Tan, W. Zhang, Z. Lian, et al., “Ultrasensitive Electrochemiluminescence Biosensor Constructed by Luminol-Diazonium Ion Functionalized Au/MXene Nanocomposites for Early Stage Detection of Disease In Human,” Electrochimica Acta 505 (November 2024): 144961.

[8]

I. A. Vasyukova, O. V. Zakharova, D. V. Kuznetsov, and A. A. Gusev, “Synthesis, Toxicity Assessment, Environmental and Biomedical Applications of MXenes: A Review,” Nanomaterials 12, no. 11 (2022): 1797.

[9]

X. Zhou, H. Song, X. Zhang, et al., “Aggregation-Induced Electrochemiluminescence of AgNCs Enhanced With AuNPs@MXene Composites for Ultrasensitive Detection of microRNA,” Chemistry – An Asian Journal 20 (February 2025): e202401417.

[10]

D. Lu, X. Zhou, L. Lin, X. Zhang, Y. Chen, and L. Feng, “Porphyrin-Functionalized Glutathione-Ti3C2 Mxene Quantum Dots for Enhanced Electrochemiluminescence and Sensitive Detection of Copper Ions,” Journal of Electroanalytical Chemistry 962 (June 2024): 118285.

[11]

Z. Li, Z. Wang, Y. Nie, P. Wang, and Q. Ma, “A Novel GSHh-Capping Mxene QD-Based ECL Biosensor for the Detection of miRNA221 in Triple-Negative Breast Cancer Tumor,” Chemical Engineering Journal 448 (November 2022): 137636.

[12]

W. Cheng, Z. Lin, L. Zhao, et al., “CeO2/MXene Heterojunction-Based Ultrasensitive Electrochemiluminescence Biosensing for Bcr-Abl Fusion Gene Detection Combined With Dual-Toehold Strand Displacement Reaction for Signal Amplification,” Biosensors and Bioelectronics 210 (August 2022): 114287.

[13]

B. Sun, P. Wang, Z. Liang, Z. Li, and Q. Ma, “MoS2/MXene Van der Waals Heterojunction-Based Electrochemiluminescence Sensor for Triple Negative Breast Cancer Detection,” Talanta 277 (September 2024): 126343.

[14]

F. Momeni, S. M. Khoshfetrat, H. Bagheri, and K. Zarei, “Ti3C2 MXene-Based Nanozyme as Coreaction Accelerator for Enhancing Electrochemiluminescence of Glucose Biosensing,” Biosensors and Bioelectronics 250 (April 2024): 116078.

[15]

Z. U. D. Babar, B. Della Ventura, R. Velotta, and V. Iannotti, “Advances and Emerging Challenges in MXenes and Their Nanocomposites for Biosensing Applications,” RSC Advances 2022 12, no. 30 (2022): 19590–19610.

[16]

D. Lu, H. Zhao, X. Zhang, Y. Chen, and L. Feng, “New Horizons for MXenes in Biosensing Applications,” Biosensors 12, no. 10 (October 2022): 820.

[17]

L. Wang, H. Zhang, T. Zhuang, J. Liu, N. Sojic, and Z. Wang, “Sensitive Electrochemiluminescence Biosensing of Polynucleotide Kinase Using the Versatility of Two-Dimensional Ti3C2TX MXene Nanomaterials,” Analytica Chimica Acta 1191 (January 2022): 339346.

[18]

K. Zhang, Y. Huang, Y. Gu, F. Yang, and N. Hao, “A Novel Isothermal Amplification Strategy for Rapid and Sensitive Detection of Matrix Metalloproteinase 2 Using a Bipedal Dna Walker In Anti-Aging Research,” Sensors and Actuators B: Chemical 397 (December 2023): 134650.

[19]

J. Wei, Z. Song, J. Cui, et al., “Entropy-Driven Assisted T7 RNA Polymerase Amplification-Activated CRISPR/Cas13a Activity for SARS-CoV-2 Detection in Human Pharyngeal Swabs and Environment by an Electrochemiluminescence Biosensor,” Journal of Hazardous Materials 452 (June 2023): 131268.

[20]

K. Zhang, Z. Fan, Y. Ding, and M. Xie, “A pH-Engineering Regenerative DNA Tetrahedron ECL Biosensor for the Assay of SARS-CoV-2 RdRp Gene Based on CRISPR/Cas12a Trans-Activity,” Chemical Engineering Journal 429 (February 2022): 132472.

[21]

P. Mahajan, “Review—Fundamentals to Applications of MXenes for Biosensing,” Journal of the Electrochemical Society 171, no. 2 (February 2024): 027516.

[22]

L. Tan, W. Zhang, Z. Lian, et al., “Ultrasensitive Electrochemiluminescence Biosensor Constructed by Luminol-Diazonium Ion Functionalized Au/MXxene Nanocomposites for Early Stage Detection of Disease in Human,” Electrochimica Acta 505 (November 2024): 144961.

[23]

L. Gao and C. He, “Advances in MXene-Based Luminescence Sensing Strategies,” Analytical Methods 16, no. 12 (March 2024): 1718–1735.

[24]

W. Cheng, Z. Lin, L. Zhao, et al., “CeO2/MXene Heterojunction-Based Ultrasensitive Electrochemiluminescence Biosensing for BCR-ABL Fusion Gene Detection Combined With Dual-Toehold Strand Displacement Reaction for Signal Amplification,” Biosensors and Bioelectronics 210 (2022): 114287.

[25]

N. Liu, X. Yan, Y. Gao, Z. Li, Q. Ma, and Z. Zhang, “A Novel Electropolymerized Molecularly Imprinted Dual-Mode Sensor for Bisphenol AF Detection in Pond Mud,” Science of the Total Environment 946 (2024): 174251.

[26]

L. Liu, Y. Zou, T. Xia, et al., “A Double-Quenching Paperclip ECL Biosensing Platform for Ultrasensitive Detection of Antibiotic Resistance Genes (mecA) Based on Ti3C2 MXene-Au NPs as a Coreactant Accelerator,” Biosensors and Bioelectronics 240 (2023): 115651.

[27]

S. Gokul Eswaran, M. Rashad, A. Santhana Krishna Kumar, and A. F. M. El-Mahdy, “A Comprehensive Review of Mxene-Based Emerging Materials for Energy Storage Applications and Future Perspectives,” Chemistry – An Asian Journal 20, no. 4 (2025): e202401181.

[28]

A. Ali, S. M. Majhi, L. A. Siddig, et al., “Recent Advancements in MXene-Based Biosensors for Health and Environmental Applications—A Review,” Biosensors 14, no. 10 (2024): 497.

[29]

M. Mozafari and M. Soroush, “Surface Functionalization of MXenes,” Materials Advances 2, no. 22 (2021): 7277–7307.

[30]

T. Li, W. Qiang, and B. Lei, “Bioactive Surface-Functionalized MXxenes for Biomedicine,” Nanoscale 17, no. 9 (2025): 4854–4891.

[31]

M. Li, Z. Li, P. Wang, and Q. Ma, “A Novel Bimetallic MXene Derivative QD-Based ECL Sensor for miRNA-27a-3p Detection,” Biosensors and Bioelectronics 228 (May 2023): 115225.

[32]

Z. Li, Z. Wang, Y. Nie, P. Wang, and Q. Ma, “A Novel GSH-Capping Mxene QD-Based ECL Biosensor for the Detection of miRNA221 in Triple-Negative Breast Cancer Tumor,” Chemical Engineering Journal 448 (November 2022): 137636.

[33]

A. Parihar, A. Singhal, N. Kumar, R. Khan, M. A. Khan, and A. K. Srivastava, “Next-Generation Intelligent MXene-Based Electrochemical Aptasensors for Point-of-Care Cancer Diagnostics,” Nano-Micro Letters 14, no. 1 (December 2022): 100.

[34]

L. Gutiérrez-Gálvez, M. V. Sulleiro, C. Gutiérrez-Sánchez, et al., “MoS2-Carbon Nanodots as a New Electrochemiluminescence Platform for Breast Cancer Biomarker Detection,” Biosensors 13, no. 3 (March 2023): 348.

[35]

J. Wang, X. Wang, B. Li, K. Zhang, and J. Mao, “Entropy-Driven Reactions for Controlling CRISPR/Cas12a and Constructing an Electrochemical Biosensor for Cardiac Biomarkers Detection,” Microchimica Acta 190, no. 11 (November 2023): 440.

[36]

S. M. R. Mortazavi, M. Hosseini, G. Xu, H. Naderi-Manesh, and M. R. Ganjali, “Highly Specific Detection of ROR1 Cancer Biomarker With Bipolar Electrochemiluminescence,” Microchimica Acta 191, no. 12 (November 2024): 734.

[37]

Y. Nie, P. Wang, S. Wang, Q. Ma, and X. Su, “Accurate Capture and Identification of Exosomes: Nanoarchitecture of the MXene Heterostructure/Engineered Lipid Layer,” ACS Sensors 8, no. 4 (April 2023): 1850–1857.

[38]

H. Zhou, L. You, J. Zhang, et al., “FSCV/ECL Dual-Mode Detection of Circulating Tumor Cells Based on Multi-Functionalized 2D Bionanomaterials,” Sensors and Actuators B: Chemical 390 (September 2023): 134013.

[39]

X. Ren, M. Shao, Z. Xie, et al., “A Co-Reactive Immunosensor Based on Ti3C2Tx MXene@TiO2–MoS2 Hybrids Promoting Luminol@Au@Ni–Co NCs Electrochemiluminescence for CYFRA 21–1 Detection,” ACS Sensors 9, no. 4 (April 2024): 1992–1999.

[40]

H. Yao, X. Wang, Y. Dong, and M. Ye, “Promoting Effect of TiVC MXene on Cathodic Electrogenerated Chemiluminescence of Ru(bpy)32+ and Its Application in the Sensitive Detection of Sulfite,” Microchimica Acta 191, no. 4 (April 2024): 206.

[41]

H. Sun, J. Guan, H. Chai, et al., “Zinc Porphyrin/MXene Hybrids With Phosphate-Induced Stimuli-Responsive Behavior for Dual-Mode Fluorescent/Electrochemiluminescent Ratiometric Biosensing,” Biosensors and Bioelectronics 251 (May 2024): 116080.

[42]

N. Liu, X. Yan, Y. Gao, Z. Li, Q. Ma, and Z. Zhang, “A Novel Electropolymerized Molecularly Imprinted Dual-Mode Sensor for Bisphenol Af Detection in Pond Mud,” Science of the Total Environment 946 (October 2024): 174251.

[43]

L. Liu, Y. Zou, T. Xia, et al., “A Double-Quenching Paperclip ECL Biosensing Platform for Ultrasensitive Detection of Antibiotic Resistance Genes (mecA) Based on Ti3C2 MXene-Au NPs as a Coreactant Accelerator,” Biosensors and Bioelectronics 240 (November 2023): 115651.

[44]

X. Shan, D. Kuang, Q. Feng, M. Wu, and J. Yang, “A Dual-Mode Ratiometric Aptasensor for Accurate Detection of Pathogenic Bacteria Based on Recycling of DNAzyme Activation,” Food Chemistry 423 (October 2023): 136287.

[45]

J. Zhang, Y. Deng, L. Chen, et al., “A Novel Electrochemiluminescence Aptasensor Using Ti3C2@AuNRs-Ru for Ultra-Sensitive Detection of T-2 Toxin,” Electrochimica Acta 475 (January 2024): 143688.

[46]

J. Wang, S. Li, R. Sun, et al., “Electrochemiluminescent Aptasensor for Aflatoxin B1 by Integrating Anodized Aluminum Oxide for Nanopore Screening and Gold Nanoparticles for Surface Plasmon Resonance Amplification,” Sensors and Actuators B: Chemical 415 (September 2024): 136007.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm – Biomaterials and Applications published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).

AI Summary AI Mindmap
PDF

32

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/