Jan 2024, Volume 5 Issue 1
    

  • Select all
  • REVIEW
    Li Zhuang, Ling Yang, Linsheng Li, Zhaoyang Ye, Wenping Gong
    PDF

    Although tuberculosis (TB) is an infectious disease, the progression of the disease following Mycobacterium tuberculosis (MTB) infection is closely associated with the host's immune response. In this review, a comprehensive analysis of TB prevention, diagnosis, and treatment was conducted from an immunological perspective. First, we delved into the host's immune response mechanisms against MTB infection as well as the immune evasion mechanisms of the bacteria. Addressing the challenges currently faced in TB diagnosis and treatment, we also emphasized the importance of protein, genetic, and immunological biomarkers, aiming to provide new insights for early and personalized diagnosis and treatment of TB. Building upon this foundation, we further discussed intervention strategies involving chemical and immunological treatments for the increasingly critical issue of drug-resistant TB and other forms of TB. Finally, we summarized TB prevention, diagnosis, and treatment challenges and put forward future perspectives. Overall, these findings provide valuable insights into the immunological aspects of TB and offer new directions toward achieving the WHO's goal of eradicating TB by 2035.

  • ORIGINAL ARTICLE
    Xiaoyu Wang, Yanghui Zhu, Taiqing Liu, Lingyan Zhou, Yunhai Fu, Jinhua Zhao, Yinqi Li, Yeteng Zheng, Xiaodong Yang, Xiangjie Di, Yang Yang, Zhiyao He
    PDF

    Duchenne muscular dystrophy (DMD) is an incurable X-linked recessive genetic disease caused by mutations in the dystrophin gene. Many researchers aim to restore truncated dystrophin via viral vectors. However, the low packaging capacity and immunogenicity of vectors have hampered their clinical application. Herein, we constructed four lentiviral vectors with truncated and sequence-optimized dystrophin genes driven by muscle-specific promoters. The four lentiviral vectors stably expressed mini-dystrophin in C2C12 muscle cells in vitro. To estimate the treatment effect in vivo, we transferred the lentiviral vectors into neonatal C57BL/10ScSn-Dmdmdx mice through local injection. The levels of modified dystrophin expression increased, and their distribution was also restored in treated mice. At the same time, they exhibited the restoration of pull force and a decrease in the number of mononuclear cells. The remissions lasted 3–6 months in vivo. Moreover, no integration sites of vectors were distributed into the oncogenes. In summary, this study preliminarily demonstrated the feasibility and safety of lentiviral vectors with mini-dystrophin for DMD gene therapy and provided a new strategy to restore truncated dystrophin.

  • HIGHLIGHT
    Qin Yang, Ezra Burstein, Da Jia
    PDF
  • LETTER
    Jiadi Gan, Jiaxuan Wu, Huohuo Zhang, Dan Liu, Weimin Li
    PDF
  • ORIGINAL ARTICLE
    Yunfei Xu, Kexin Li, Yao Zhao, Lin Zhou, Nina He, Haoduo Qiao, Qing Xu, Huali Zhang, Ying Liu, Jie Zhao
    PDF

    Ischemic stroke is an acute serious cerebrovascular disease with high mortality and disability. Ferroptosis is an important regulated cell death (RCD) in ischemic stroke. 15-Hydroxyprostaglandin dehydrogenase (15-PGDH), a degrading enzyme of prostaglandin E2 (PGE2), is shown to regulate RCD such as autophagy and apoptosis. The study aimed to determine whether 15-PGDH regulates ferroptosis and ischemic stroke, and further the exact mechanism. We demonstrated that overexpression of 15-PGDH in the brain tissues or primary cultured neurons significantly aggravated cerebral injury and neural ferroptosis in ischemic stroke. While inhibition of 15-PGDH significantly protected against cerebral injury and neural ferroptosis, which benefits arise from the activation of the PGE2/PGE2 receptor 4 (EP4) axis. While the impact of 15-PGDH was abolished with glutathione peroxidase 4 (GPX4) deficiency. Then, 15-PGDH inhibitor was found to promote the activation of cAMP-response element-binding protein (CREB) and nuclear factor kappa-B (NF-κB) via the PGE2/EP4 axis, subsequently transcriptionally upregulate the expression of GPX4. In summary, our study indicates that inhibition of 15-PGDH promotes the activation PGE2/EP4 axis, subsequently transcriptionally upregulates the expression of GPX4 via CREB and NF-κB, and then protects neurons from ferroptosis and alleviates the ischemic stroke. Therefore, 15-PGDH may be a potential therapeutic target for ischemic stroke.

  • ORIGINAL ARTICLE
    Biying Xiao, Yanyu Jiang, Shuying Yuan, Lili Cai, Tong Xu, Lijun Jia
    PDF

    Fasting, without inducing malnutrition, has been shown to have various beneficial effects, including the inhibition of tumor initiation and progression. However, prolonged fasting poses challenges for many cancer patients, particularly those in intermediate and terminal stages. Thus, there is an urgent need for the development of fasting mimetics which harness the protective effects of fasting but more suitable for patients. In this study, we first highlighted the pivotal role of silibinin in AMP-activated protein kinase (AMPK) pathway and may serve, as a potential fasting mimetic via screening hepatoprotective drugs. Further metabolic analysis showed that silibinin inhibited the adenosine triphosphate (ATP) levels, glucose uptake and diminished glycolysis process, which further confirmed that silibinin served as a fasting mimetic. In addition, fasting synergized with silibinin, or used independently, to suppress the growth of hepatocellular carcinoma (HCC) in vivo. Mechanistically, silibinin upregulated death receptor 5 (DR5) through AMPK activation, and thus promoting extrinsic apoptosis and inhibiting HCC growth both in vitro and in vivo. Inhibition of AMPK using small interfering RNA (siRNA) or compound C, an AMPK inhibitor, significantly attenuated the upregulation of DR5 and the apoptotic response induced by silibinin. These findings suggest that silibinin holds promise as a fasting mimetic and may serve as an adjuvant drug for HCC treatment.

  • ORIGINAL ARTICLE
    Wenhao Xu, Jiahe Lu, Xi Tian, Shiqi Ye, Shiyin Wei, Jun Wang, Aihetaimujiang Anwaier, Yuanyuan Qu, Wangrui Liu, Kun Chang, Hailiang Zhang, Dingwei Ye
    PDF

    Tertiary lymphoid structures (TLS) are organized aggregates of immune cells that form under pathological conditions. However, the predictive value of TLS in clear cell renal cell carcinoma (ccRCC) for immunotherapies remains unclear. We comprehensively assessed the implications for prognosis and immunological responses of the TLS spatial and maturation heterogeneity in 655 ccRCC patients. A higher proportion of early-TLS was found in peritumoral TLS, while intratumoral TLS mainly comprised secondary follicle-like TLS (SFL-TLS), indicating markedly better survival. Notably, presence of TLS, especially intratumoral TLS and SFL-TLS, significantly correlated with better survival and objective reflection rate for ccRCC patients receiving anti-Programmed Cell Death Protein-1 (PD-1)/Programmed Cell Death-Ligand-1 (PD-L1) immunotherapies. In peritumoral TLS cluster, primary follicle-like TLS, the proportion of tumor-associated macrophages, and Treg infiltration in the peritumoral regions increased prominently, suggesting an immunosuppressive tumor microenvironment. Interestingly, spatial transcriptome annotation and multispectral fluorescence showed that an abundance of mature plasma cells within mature TLS has the capacity to produce IgA and IgG, which demonstrate significantly higher objective response rates and a superior prognosis for ccRCC patients subjected to immunotherapy. In conclusion, this study revealed the implications of TLS spatial and maturation heterogeneity on the immunological status and clinical responses, allowing the improvement of precise immunotherapies of ccRCC.

  • HIGHLIGHT
    Yanyan Liu, Yulong Cai
    PDF
  • HIGHLIGHTS
    Yingqi Kuang, Wenhuan Sun, Long Zhang
    PDF