Duchenne muscular dystrophy treatment with lentiviral vector containing mini-dystrophin gene in vivo

Xiaoyu Wang, Yanghui Zhu, Taiqing Liu, Lingyan Zhou, Yunhai Fu, Jinhua Zhao, Yinqi Li, Yeteng Zheng, Xiaodong Yang, Xiangjie Di, Yang Yang, Zhiyao He

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (1) : e423. DOI: 10.1002/mco2.423
ORIGINAL ARTICLE

Duchenne muscular dystrophy treatment with lentiviral vector containing mini-dystrophin gene in vivo

Author information +
History +

Abstract

Duchenne muscular dystrophy (DMD) is an incurable X-linked recessive genetic disease caused by mutations in the dystrophin gene. Many researchers aim to restore truncated dystrophin via viral vectors. However, the low packaging capacity and immunogenicity of vectors have hampered their clinical application. Herein, we constructed four lentiviral vectors with truncated and sequence-optimized dystrophin genes driven by muscle-specific promoters. The four lentiviral vectors stably expressed mini-dystrophin in C2C12 muscle cells in vitro. To estimate the treatment effect in vivo, we transferred the lentiviral vectors into neonatal C57BL/10ScSn-Dmdmdx mice through local injection. The levels of modified dystrophin expression increased, and their distribution was also restored in treated mice. At the same time, they exhibited the restoration of pull force and a decrease in the number of mononuclear cells. The remissions lasted 3–6 months in vivo. Moreover, no integration sites of vectors were distributed into the oncogenes. In summary, this study preliminarily demonstrated the feasibility and safety of lentiviral vectors with mini-dystrophin for DMD gene therapy and provided a new strategy to restore truncated dystrophin.

Keywords

Duchenne muscular dystrophy / dystrophin / gene delivery / gene therapy / lentiviral vector

Cite this article

Download citation ▾
Xiaoyu Wang, Yanghui Zhu, Taiqing Liu, Lingyan Zhou, Yunhai Fu, Jinhua Zhao, Yinqi Li, Yeteng Zheng, Xiaodong Yang, Xiangjie Di, Yang Yang, Zhiyao He. Duchenne muscular dystrophy treatment with lentiviral vector containing mini-dystrophin gene in vivo. MedComm, 2024, 5(1): e423 https://doi.org/10.1002/mco2.423

References

[1]
Duan D, Goemans N, Takeda Si, et al. Duchenne muscular dystrophy. Nat Rev Dis Primers. 2021;7(1):13.
[2]
Choi E, Koo T. CRISPR technologies for the treatment of Duchenne muscular dystrophy. Mol Ther. 2021;29(11):3179-3191.
[3]
Crisafulli S, Sultana J, Fontana A, et al. Global epidemiology of Duchenne muscular dystrophy: an updated systematic review and meta-analysis. Orphanet J Rare Dis. 2020;15(1):141.
[4]
Powell PA, Carlton J, Rowen D, et al. Development of a new quality of life measure for Duchenne muscular dystrophy using mixed methods: the DMD-QoL. Neurology. 2021;96(19):e2438-e2450.
[5]
Mercuri E, Bönnemann CG, Muntoni F. Muscular dystrophies. Lancet. 2019;394(10213):2025-2038.
[6]
Nallamilli BRR, Chaubey A, Valencia CA, et al. A single NGS-based assay covering the entire genomic sequence of the DMD gene facilitates diagnostic and newborn screening confirmatory testing. Hum Mutat. 2021;42(5):626-638.
[7]
Valera IC, Wacker AL, Hwang HS, et al. Essential roles of the dystrophin-glycoprotein complex in different cardiac pathologies. Adv Med Sci. 2021;66(1):52-71.
[8]
Leng L, Dong X, Gao X, et al. Exosome-mediated improvement in membrane integrity and muscle function in dystrophic mice. Mol Ther. 2021;29(4):1459-1470.
[9]
Ramirez MP, Anderson MJM, Kelly MD, et al. Dystrophin missense mutations alter focal adhesion tension and mechanotransduction. Proc Natl Acad Sci U S A. 2022;119(25):e2205536119.
[10]
de Feraudy Y, Ben Yaou R, Wahbi K, et al. Very low residual dystrophin quantity is associated with milder dystrophinopathy. Ann Neurol. 2021;89(2):280-292.
[11]
Sheikh O, Yokota T. Developing DMD therapeutics: a review of the effectiveness of small molecules, stop-codon readthrough, dystrophin gene replacement, and exon-skipping therapies. Expert Opin Inv Drug. 2021;30(2):167-176.
[12]
Frank DE, Schnell FJ, Akana C, et al. Increased dystrophin production with golodirsen in patients with Duchenne muscular dystrophy. Neurology. 2020;94(21):e2270-e2282.
[13]
Heo Y-A. Golodirsen: first approval. Drugs. 2020;80(3):329-333.
[14]
Zakeri SE, Pradeep SP, Kasina V, et al. Casimersen for the treatment of Duchenne muscular dystrophy. Trends Pharmacol Sci. 2022;43(7):607-608.
[15]
Shirley M. Casimersen: first approval. Drugs. 2021;81(7):875-879.
[16]
McDonald CM, Shieh PB, Abdel-Hamid HZ, et al. Open-label evaluation of eteplirsen in patients with Duchenne muscular dystrophy amenable to exon 51 skipping: PROMOVI trial. J Neuromuscul Dis. 2021;8(6):989-1001.
[17]
Iftikhar M, Frey J, Shohan MJ, et al. Current and emerging therapies for Duchenne muscular dystrophy and spinal muscular atrophy. Pharmacol Therapeut. 2021;220:107719.
[18]
Wasala LP, Watkins T, Wasala N, et al. The implication of hinge 1 and hinge 4 in micro-dystrophin gene therapy for Duchenne muscular dystrophy. Hum Gene Ther. 2023;34(9–10):459-470.
[19]
Mendell JR, Sahenk Z, Lehman K, et al. Assessment of systemic delivery of rAAVrh74.MHCK7.micro-dystrophin in children with Duchenne muscular dystrophy: a nonrandomized controlled trial. JAMA Neurol. 2020;77(9):1122-1131.
[20]
Potter RA, Griffin DA, Heller KN, et al. Dose-escalation study of systemically delivered rAAVrh74.MHCK7.micro-dystrophin in the mouse model of Duchenne muscular dystrophy. Hum Gene Ther. 2021;32(7–8):375-389.
[21]
Manini A, Abati E, Nuredini A, et al. Adeno-associated virus (AAV)-mediated gene therapy for Duchenne muscular dystrophy: the issue of transgene persistence. Front Neurol. 2022;12:814174.
[22]
Muhuri M, Maeda Y, Ma H, et al. Overcoming innate immune barriers that impede AAV gene therapy vectors. J Clin Investig. 2021;131(1):e143780.
[23]
Perry C, Rayat ACME. Lentiviral vector bioprocessing. Viruses. 2021;13(2):268.
[24]
Shi R, Jia S, Liu H, et al. Clinical grade lentiviral vector purification and quality control requirements. J Sep Sci. 2022;45(12):2093-2101.
[25]
Ferrari G, Thrasher AJ, Aiuti A. Gene therapy using haematopoietic stem and progenitor cells. Nat Rev Genet. 2021;22(4):216-234.
[26]
Locatelli F, Thompson AA, Kwiatkowski JL, et al. Betibeglogene autotemcel gene therapy for non-β/β genotype β-thalassemia. New Engl J Med. 2022;386(5):415-427.
[27]
Liu S, Deng B, Yin Z, et al. Combination of CD19 and CD22 CAR-T cell therapy in relapsed B-cell acute lymphoblastic leukemia after allogeneic transplantation. Am J Hematol. 2021;96(6):671-679.
[28]
Wang J, Zhang X, Zhou Z, et al. A novel adoptive synthetic TCR and antigen receptor (STAR) T-cell therapy for B-cell acute lymphoblastic leukemia. Am J Hematol. 2022;97(8):992-1004.
[29]
Kohn DB, Booth C, Shaw KL, et al. Autologous ex vivo lentiviral gene therapy for adenosine deaminase deficiency. New Engl J Med. 2021;384(21):2002-2013.
[30]
Kohn DB, Booth C, Kang EM, et al. Lentiviral gene therapy for X-linked chronic granulomatous disease. Nat Med. 2020;26(2):200-206.
[31]
Wang X, Ma C, Rodríguez Labrada R, et al. Recent advances in lentiviral vectors for gene therapy. Sci China Life Sci. 2021;64(11):1842-1857.
[32]
Hakim CH, Wasala NB, Pan X, et al. A five-repeat micro-dystrophin gene ameliorated dystrophic phenotype in the severe DBA/2J-mdx model of Duchenne muscular dystrophy. Mol Ther-Meth Clin D. 2017;6:216-230.
[33]
Malerba A, Sidoli C, Lu-Nguyen N, et al. Dose-dependent microdystrophin expression enhancement in cardiac muscle by a cardiac-specific regulatory element. Hum Gene Ther. 2021;32(19–20):1138-1146.
[34]
Starikova AV, Skopenkova VV, Polikarpova AV, et al. Therapeutic potential of highly functional codon-optimized microutrophin for muscle-specific expression. Sci Rep. 2022;12(1):848.
[35]
Wilson DGS, Tinker A, Iskratsch T. The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction. Commun Biol. 2022;5(1):1022.
[36]
Meng J, Moore M, Counsell J, et al. Optimized lentiviral vector to restore full-length dystrophin via a cell-mediated approach in a mouse model of Duchenne muscular dystrophy. Mol Ther-Meth Clin D. 2022;25:491-507.
[37]
Sondka Z, Bamford S, Cole CG, et al. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer. 2018;18(11):696-705.
[38]
Bengtsson NE, Crudele JM, Klaiman JM, et al. Comparison of dystrophin expression following gene editing and gene replacement in an aged preclinical DMD animal model. Mol Ther. 2022;30(6):2176-2185.
[39]
Karri DR, Zhang Y, Chemello F, et al. Long-term maintenance of dystrophin expression and resistance to injury of skeletal muscle in gene edited DMD mice. Mol Ther Nucleic Acids. 2022;28:154-167.
[40]
Wang X-Y, He Z-Y. Lentiviral Vectors for Gene Therapy. eLS. John Wiley & Sons. 2022:1-10.
[41]
Magnani A, Semeraro M, Adam F, et al. Long-term safety and efficacy of lentiviral hematopoietic stem/progenitor cell gene therapy for Wiskott–Aldrich syndrome. Nat Med. 2022;28(1):71-80.
[42]
Campochiaro PA, Lauer AK, Sohn EH, et al. Lentiviral vector gene transfer of endostatin/angiostatin for macular degeneration (GEM) study. Hum Gene Ther. 2017;28:99-111.
[43]
Nicolas CT, VanLith CJ, Hickey RD, et al. In vivo lentiviral vector gene therapy to cure hereditary tyrosinemia type 1 and prevent development of precancerous and cancerous lesions. Nat Commun. 2022;13(1):5012.
[44]
Kimura E, Li S, Gregorevic P, et al. Dystrophin delivery to muscles of mdx mice using lentiviral vectors leads to myogenic progenitor targeting and stable gene expression. Mol Ther. 2010;18(1):206-213.
[45]
van Putten M, van der Pijl EM, Hulsker M, et al. Low dystrophin levels in heart can delay heart failure in mdx mice. J Mol Cell Cardiol. 2014;69:17-23.
[46]
Shirley JL, de Jong YP, Terhorst C, et al. Immune responses to viral gene therapy vectors. Mol Ther. 2020;28(3):709-722.
[47]
Brown BD, Sitia G, Annoni A, et al. In vivo administration of lentiviral vectors triggers a type I interferon response that restricts hepatocyte gene transfer and promotes vector clearance. Blood. 2006;109(7):2797-2805.

RIGHTS & PERMISSIONS

2024 2024 The Authors. MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/