PDF
Abstract
In this note, we prove an extension result for holomorphic immersions of Stein manifolds into Euclidean spaces with minimal possible dimension in some cases, which can be seen as a relative version of the classical result of Eliashberg and Gromov.
Keywords
Stein manifold
/
immersion
/
embedding
/
32Q28
Cite this article
Download citation ▾
Tianlong Yu.
Extending Immersions of Stein Manifolds into Euclidean Spaces.
Frontiers of Mathematics 1-8 DOI:10.1007/s11464-025-0245-3
| [1] |
Acquistapace F, Broglia F, Tognoli A. A relative embedding theorem for Stein spaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 1975, 2(4): 507-522
|
| [2] |
Bishop E. Mappings of partially analytic spaces. Amer. J. Math., 1961, 83: 209-242
|
| [3] |
Borell S, Kutzschebauch F. Non-equivalent embeddings into complex Euclidean spaces. Internat. J. Math., 2006, 17(9): 1033-1046
|
| [4] |
Eliashberg Y, Gromov M. Embeddings of Stein manifolds of dimension n into the affine space of dimension 3n/2 + 1. Ann. of Math. (2), 1992, 136(1): 123-135
|
| [5] |
Forster O. Zur Theorie der Steinschen Algebren und Moduln. Math. Z., 1967, 97: 376-405
|
| [6] |
Forster O. Plongements des variétés de Stein. Comment. Math. Helv., 1970, 45: 170-184
|
| [7] |
Forstnerič F. Stein Manifolds and Holomorphic Mappings—The Homotopy Principle in Complex Analysis, 2017Second EditionCham, Springer
|
| [8] |
Forstnerič F, Ivarsson B, Kutzschebauch F, Prezelj J. An interpolation theorem for proper holomorphic embeddings. Math. Ann., 2007, 338(3): 545-554
|
| [9] |
Gromov M. Partial Differential Relations, 1986, Berlin, Springer-Verlag
|
| [10] |
Gromov M. Oka’s principle for holomorphic sections of elliptic bundles. J. Amer. Math. Soc., 1989, 2(4): 851-897
|
| [11] |
Gromov M, Èliašberg JaM. Nonsingular mappings of Stein manifolds. Funkcional. Anal. i Priložen., 1971, 5(2): 82-83
|
| [12] |
Hörmander L. An Introduction to Complex Analysis in Several Variables, 1990Third EditionAmsterdam, North-Holland Publishing Co.7
|
| [13] |
Kolarič D. Parametric H-principle for holomorphic immersions with approximation. Differential Geom. Appl., 2011, 29(3): 292-298
|
| [14] |
Narasimhan R. Imbedding of holomorphically complete complex spaces. Amer. J. Math., 1960, 82: 917-934
|
| [15] |
Prezelj J. Interpolation of embeddings of Stein manifolds on discrete sets. Math. Ann., 2003, 326(2): 275-296
|
| [16] |
Schürmann J. Embeddings of Stein spaces into affine spaces of minimal dimension. Math. Ann., 1997, 307(3): 381-399
|
RIGHTS & PERMISSIONS
Peking University
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.