Extending Immersions of Stein Manifolds into Euclidean Spaces

Tianlong Yu

Frontiers of Mathematics ›› : 1 -8.

PDF
Frontiers of Mathematics ›› :1 -8. DOI: 10.1007/s11464-025-0245-3
Research Article
research-article

Extending Immersions of Stein Manifolds into Euclidean Spaces

Author information +
History +
PDF

Abstract

In this note, we prove an extension result for holomorphic immersions of Stein manifolds into Euclidean spaces with minimal possible dimension in some cases, which can be seen as a relative version of the classical result of Eliashberg and Gromov.

Keywords

Stein manifold / immersion / embedding / 32Q28

Cite this article

Download citation ▾
Tianlong Yu. Extending Immersions of Stein Manifolds into Euclidean Spaces. Frontiers of Mathematics 1-8 DOI:10.1007/s11464-025-0245-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Acquistapace F, Broglia F, Tognoli A. A relative embedding theorem for Stein spaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 1975, 2(4): 507-522

[2]

Bishop E. Mappings of partially analytic spaces. Amer. J. Math., 1961, 83: 209-242

[3]

Borell S, Kutzschebauch F. Non-equivalent embeddings into complex Euclidean spaces. Internat. J. Math., 2006, 17(9): 1033-1046

[4]

Eliashberg Y, Gromov M. Embeddings of Stein manifolds of dimension n into the affine space of dimension 3n/2 + 1. Ann. of Math. (2), 1992, 136(1): 123-135

[5]

Forster O. Zur Theorie der Steinschen Algebren und Moduln. Math. Z., 1967, 97: 376-405

[6]

Forster O. Plongements des variétés de Stein. Comment. Math. Helv., 1970, 45: 170-184

[7]

Forstnerič F. Stein Manifolds and Holomorphic Mappings—The Homotopy Principle in Complex Analysis, 2017Second EditionCham, Springer

[8]

Forstnerič F, Ivarsson B, Kutzschebauch F, Prezelj J. An interpolation theorem for proper holomorphic embeddings. Math. Ann., 2007, 338(3): 545-554

[9]

Gromov M. Partial Differential Relations, 1986, Berlin, Springer-Verlag

[10]

Gromov M. Oka’s principle for holomorphic sections of elliptic bundles. J. Amer. Math. Soc., 1989, 2(4): 851-897

[11]

Gromov M, Èliašberg JaM. Nonsingular mappings of Stein manifolds. Funkcional. Anal. i Priložen., 1971, 5(2): 82-83

[12]

Hörmander L. An Introduction to Complex Analysis in Several Variables, 1990Third EditionAmsterdam, North-Holland Publishing Co.7

[13]

Kolarič D. Parametric H-principle for holomorphic immersions with approximation. Differential Geom. Appl., 2011, 29(3): 292-298

[14]

Narasimhan R. Imbedding of holomorphically complete complex spaces. Amer. J. Math., 1960, 82: 917-934

[15]

Prezelj J. Interpolation of embeddings of Stein manifolds on discrete sets. Math. Ann., 2003, 326(2): 275-296

[16]

Schürmann J. Embeddings of Stein spaces into affine spaces of minimal dimension. Math. Ann., 1997, 307(3): 381-399

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

13

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/