Einstein-Randers Metrics on Homogeneous Spaces Arising from Generalized Wallach Spaces

Chao Chen , Huibin Chen , Zhiqi Chen

Frontiers of Mathematics ›› : 1 -24.

PDF
Frontiers of Mathematics ›› :1 -24. DOI: 10.1007/s11464-025-0138-5
Research Article
research-article

Einstein-Randers Metrics on Homogeneous Spaces Arising from Generalized Wallach Spaces

Author information +
History +
PDF

Abstract

In this paper, we focus on Einstein metrics and Einstein-Randers metrics on homogeneous spaces G/H which are arising from generalized Wallach spaces G/K. In fact, we study a special kind of G-invariant metrics on G/H which is determined by Ad(K)-invariant inner products on the tangent space of G/H, and then obtain new Einstein metrics on G/H. Furthermore, based on these Einstein metrics, we construct new Einstein-Randers metrics on G/H.

Keywords

Einstein-Randers metric / Finsler manifold / homogeneous space / generalized Wallach space / 53C25 / 53C30

Cite this article

Download citation ▾
Chao Chen, Huibin Chen, Zhiqi Chen. Einstein-Randers Metrics on Homogeneous Spaces Arising from Generalized Wallach Spaces. Frontiers of Mathematics 1-24 DOI:10.1007/s11464-025-0138-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arvanitoyeorgos A, Dzhepko VV, Nikonorov YuG. Invariant Einstein metrics on some homogeneous spaces of classical Lie groups. Canad. J. Math., 2009, 61(6): 1201-1213

[2]

Arvanitoyeorgos A, Mori K, Sakane Y. Einstein metrics on compact Lie groups which are not naturally reductive. Geom. Dedicata, 2012, 160: 261-285

[3]

Bao D, Robles C. Ricci and flag curvatures in Finsler geometry. A Sampler of Riemann-Finsler Geometry, 2004, Cambridge, Cambridge Univ. Press197259 50

[4]

Bao D, Robles C, Shen Z. Zermelo navigation on Riemannian manifolds. J. Differential Geom., 2004, 66(3): 377-435

[5]

Besse AL. Einstein Manifolds, 1987, Berlin, Springer-Verlag

[6]

Böhm C. Homogeneous Einstein metrics and simplicial complexes. J. Differential Geom., 2004, 67(1): 79-165

[7]

Böhm C, Wang M, Ziller W. A variational approach for compact homogeneous Einstein manifolds. Geom. Funct. Anal., 2004, 14(4): 681-733

[8]

Chen H., Chen Z., Deng S., New non-naturally reductive Einstein metrics on exceptional simple Lie groups. 2016, arXiv:1612.09373

[9]

Chen Z, Deng S, Liang K. Einstein-Randers metrics on some homogeneous manifolds. Nonlinear Anal., 2013, 91: 114-120

[10]

Chen Z, Deng S, Liang K. Homogeneous manifolds admitting non-Riemannian Einstein–Randers metrics. Sci. China Math., 2015, 58(7): 1473-1482

[11]

Chen Z, Kang Y, Liang K. Invariant Einstein metrics on three-locally-symmetric spaces. Comm. Anal. Geom., 2016, 24(4): 769-792

[12]

Chen Z, Liang K. Non-naturally reductive Einstein metrics on the compact simple Lie group F4. Ann. Global Anal. Geom., 2014, 46(2): 103-115

[13]

Chrysikos I, Sakane Y. Non-naturally reductive Einstein metrics on exceptional Lie groups. J. Geom. Phys., 2017, 116: 152-186

[14]

D’Atri JE, Ziller W. Naturally reductive metrics and Einstein metrics on compact Lie groups. Mem. Amer. Math. Soc., 1979, 18(215): iii+72 pp.

[15]

Deng S, Hou Z. Homogeneous Einstein–Randers spaces of negative Ricci curvature. C. R. Math. Acad. Sci. Paris, 2009, 347(19–201169-1172

[16]

Jensen GR. The scalar curvature of left-invariant Riemannian metrics. Indiana Univ. Math. J., 1970, 20: 1125-1144

[17]

Kang Y, Chen Z. Einstein Riemannian metrics and Einstein–Randers metrics on a class of homogeneous manifolds. Nonlinear Anal., 2014, 107: 86-91

[18]

Liu X, Deng S. Homogeneous Einstein–Randers metrics on Aloff-Wallach spaces. J. Geom. Phys., 2015, 98: 196-200

[19]

Najafi B, Tayebi A. A family of Einstein Randers metrics. Int. J. Geom. Methods Mod. Phys., 2011, 8(5): 1021-1029

[20]

Nikonorov YuG. Classification of generalized Wallach spaces. Geom. Dedicata, 2016, 181: 193-212

[21]

Park J.-S., Sakane Y., Invariant Einstein metrics on certain homogeneous spaces. Tokyo J. Math., 199, 20(1): 51–61

[22]

Wang H, Deng S. Some Einstein–Randers metrics on homogeneous spaces. Nonlinear Anal., 2010, 72(12): 4407-4414

[23]

Wang H, Deng S. Left invariant Einstein–Randers metrics on compact Lie groups. Canad. Math. Bull., 2012, 55(4): 870-881

[24]

Wang H, Deng S. Invariant Einstein–Randers metrics on Stiefel manifolds. Nonlinear Anal. Real World Appl., 2013, 14(1): 594-600

[25]

Wang H, Huang L, Deng S. Homogeneous Einstein–Randers metrics on spheres. Nonlinear Anal., 2011, 74(17): 6295-6301

[26]

Wang MY-K. Einstein metrics from symmetry and bundle constructions. Surveys in Differential Geometry: Essays on Einstein Manifolds, 1999, Boston, MA, International Press2873256

[27]

Wang MY-K. Einstein metrics from symmetry and bundle constructions: a sequel. Differential Geometry—Under the Influence of S.-S. Chern, 2012, Beijing, Higher Education Press25330922

[28]

Wang MY-K, Ziller W. Existence and nonexistence of homogeneous Einstein metrics. Invent. Math., 1986, 84(1): 177-194

[29]

Yan Z, Deng S. On homogeneous Einstein (α, β)-metrics. J. Geom. Phys., 2016, 103: 20-36

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

4

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/