PDF
Abstract
For stationary approximate harmonic maps from a closed Riemannian manifold into closed homogeneous spaces with controlled normal error terms, we derive an a priori W2,1-estimate and then establish energy quantization.
Keywords
Stationary approximate harmonic maps
/
homogeneous space
/
blowup analysis
/
energy quantization
/
53C43
/
58E20
Cite this article
Download citation ▾
He Zhang, Miaomiao Zhu.
Energy Quantization for a Class of Stationary Approximate Harmonic Maps into Homogeneous Spaces.
Frontiers of Mathematics 1-26 DOI:10.1007/s11464-025-0097-x
| [1] |
Allard W. An integrality theorem and a regularity theorem for surfaces whose first variation with respect to a parametric elliptic integrand is controlled. Proc. Sympos. Pure Math., 1986, 44: 1-28
|
| [2] |
Bellettini C, Tian G. Compactness results for triholomorphic maps. J. Eur. Math. Soc. (JEMS), 2019, 21(5): 1271-1317
|
| [3] |
Bethuel F. On the singular set of stationary harmonic maps. Manuscripta Math., 1993, 78(4): 417-443
|
| [4] |
Coifman R, Lions P-L, Meyer Y, Semmes S. Compensated compactness and Hardy spaces. J. Math. Pures Appl. (9), 1993, 72(3): 247-286
|
| [5] |
Ding W, Tian G. Energy identity for a class of approximate harmonic maps from surfaces. Comm. Anal. Geom., 1995, 3(3–4): 543-554
|
| [6] |
Evans L. Partial regularity for stationary harmonic maps into spheres. Arch. Rational Mech. Anal., 1991, 116(2): 101-113
|
| [7] |
Federer H, Ziemer WP. The Lebesgue set of a function whose distribution derivatives are p-th power summable. Indiana Univ. Math. J., 1972, 22: 139-158
|
| [8] |
Fefferman C, Stein E. Hp spaces of several variables. Acta Math., 1972, 129(3–4): 137-193
|
| [9] |
Giaquinta M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, 1983, Princeton, NJ, Princeton University Press105
|
| [10] |
Gilbarg D, Trudinger N. Elliptic Partial Differential Equations of Second Order, 1983Second EditionBerlin, Springer-Verlag224
|
| [11] |
Goldberg D. A local version of real Hardy spaces. Duke Math. J., 1979, 46(1): 27-42
|
| [12] |
Helein F. Regularity of weakly harmonic maps from a surface into a manifold with symmetries. Manuscripta Math., 1991, 70(2): 203-218
|
| [13] |
Helein F. Harmonic Maps, Conservation Laws and Moving Frames, 2002, Cambridge, Cambridge University Press 150
|
| [14] |
Jost J. Two-dimensional Geometric Variational Problems, 1991, Chichester, John Wiley & Sons, Ltd.
|
| [15] |
Lin F. Gradient estimates and blow-up analysis for stationary harmonic maps. Ann. of Math. (2), 1999, 149(3): 785-829
|
| [16] |
Lin F. Mapping problems, fundamental groups and defect measures. Acta Math. Sin. (Engl. Ser.), 1999, 15(1): 25-52
|
| [17] |
Lin F, Rivière T. Energy quantization for harmonic maps. Duke Math. J., 2002, 111(1): 177-193
|
| [18] |
Lin F, Wang C. Energy identity of harmonic map flows from surfaces at finite singular time. Calc. Var. Partial Differential Equations, 1998, 6(4): 369-380
|
| [19] |
Lin F., Wang C., Harmonic and quasi-harmonic spheres, II. 2002, 10(2): 341–375
|
| [20] |
Morrey CBJr.. Multiple Integrals in the Calculus of Variations, 1966, New York, Springer-Verlag New York, Inc. 130
|
| [21] |
Naber A., Valtorta D., Energy identity for stationary harmonic maps. 2024, arXiv: 2401.02242
|
| [22] |
Parker TH. Bubble tree convergence for harmonic maps. J. Differential Geom., 1996, 44(3): 595-633
|
| [23] |
Preiss D. Geometry of measures in ℝn: distribution, rectifiability, and densities. Ann. of Math. (2), 1987, 125(3): 537-643
|
| [24] |
Price P. A monotonicity formula for Yang–Mills fields. Manuscripta Math., 1983, 43(2–3): 131-166
|
| [25] |
Qing J. On singularities of the heat flow for harmonic maps from surface into spheres. Comm. Anal. Geom., 1995, 3(1–2): 297-315
|
| [26] |
Qing J, Tian G. Bubbling of the heat flows for harmonic maps from surfaces. Comm. Pure Appl. Math., 1997, 50(4): 295-310
|
| [27] |
Rivière T. Everywhere discontinuous harmonic maps into spheres. Acta Math., 1995, 175(2): 197-226
|
| [28] |
Rivière T. Interpolation spaces and energy quantization for Yang-Mills fields. Comm. Anal. Geom., 2002, 10(4): 683-708
|
| [29] |
Runst T, Sickel W. Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, 1996, Berlin, Walter de Gruyter & Co. 3
|
| [30] |
Sacks J, Uhlenbeck K. The existence of minimal immersions of 2-spheres. Ann. of Math. (2), 1981, 113: 1-24
|
| [31] |
Scheven C. Zur Regularitätstheorie stationärer harmonischer Abbildungen mit freier Randbedingung, 2004
|
| [32] |
Scheven C. Partial regularity for stationary harmonic maps at a free boundary. Math. Z., 2006, 253: 135-157
|
| [33] |
Schoen RM. Analytic aspects of the harmonic map problem. Seminar on Nonlinear Partial Differential Equations (Berkeley, Calif., 1983), 1984, New York, Springer-Verlag321358 2
|
| [34] |
Schoen R, Uhlenbeck K. A regularity theory for harmonic maps. J. Differential Geometry, 1982, 17(2): 307-335
|
| [35] |
Stein EM. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, 1993, Princeton, NJ, Princeton University Press43
|
| [36] |
Zhang H., Zhu M., Energy quantization for stationary harmonic maps into homogeneous spaces. Sci. China Math., 2025, DOI:https://doi.org/10.1007/s11425-024-2425-0
|
RIGHTS & PERMISSIONS
Peking University
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.