Energy Quantization for a Class of Stationary Approximate Harmonic Maps into Homogeneous Spaces

He Zhang , Miaomiao Zhu

Frontiers of Mathematics ›› : 1 -26.

PDF
Frontiers of Mathematics ›› :1 -26. DOI: 10.1007/s11464-025-0097-x
Research Article
research-article

Energy Quantization for a Class of Stationary Approximate Harmonic Maps into Homogeneous Spaces

Author information +
History +
PDF

Abstract

For stationary approximate harmonic maps from a closed Riemannian manifold into closed homogeneous spaces with controlled normal error terms, we derive an a priori W2,1-estimate and then establish energy quantization.

Keywords

Stationary approximate harmonic maps / homogeneous space / blowup analysis / energy quantization / 53C43 / 58E20

Cite this article

Download citation ▾
He Zhang, Miaomiao Zhu. Energy Quantization for a Class of Stationary Approximate Harmonic Maps into Homogeneous Spaces. Frontiers of Mathematics 1-26 DOI:10.1007/s11464-025-0097-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allard W. An integrality theorem and a regularity theorem for surfaces whose first variation with respect to a parametric elliptic integrand is controlled. Proc. Sympos. Pure Math., 1986, 44: 1-28

[2]

Bellettini C, Tian G. Compactness results for triholomorphic maps. J. Eur. Math. Soc. (JEMS), 2019, 21(5): 1271-1317

[3]

Bethuel F. On the singular set of stationary harmonic maps. Manuscripta Math., 1993, 78(4): 417-443

[4]

Coifman R, Lions P-L, Meyer Y, Semmes S. Compensated compactness and Hardy spaces. J. Math. Pures Appl. (9), 1993, 72(3): 247-286

[5]

Ding W, Tian G. Energy identity for a class of approximate harmonic maps from surfaces. Comm. Anal. Geom., 1995, 3(3–4): 543-554

[6]

Evans L. Partial regularity for stationary harmonic maps into spheres. Arch. Rational Mech. Anal., 1991, 116(2): 101-113

[7]

Federer H, Ziemer WP. The Lebesgue set of a function whose distribution derivatives are p-th power summable. Indiana Univ. Math. J., 1972, 22: 139-158

[8]

Fefferman C, Stein E. Hp spaces of several variables. Acta Math., 1972, 129(3–4): 137-193

[9]

Giaquinta M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, 1983, Princeton, NJ, Princeton University Press105

[10]

Gilbarg D, Trudinger N. Elliptic Partial Differential Equations of Second Order, 1983Second EditionBerlin, Springer-Verlag224

[11]

Goldberg D. A local version of real Hardy spaces. Duke Math. J., 1979, 46(1): 27-42

[12]

Helein F. Regularity of weakly harmonic maps from a surface into a manifold with symmetries. Manuscripta Math., 1991, 70(2): 203-218

[13]

Helein F. Harmonic Maps, Conservation Laws and Moving Frames, 2002, Cambridge, Cambridge University Press 150

[14]

Jost J. Two-dimensional Geometric Variational Problems, 1991, Chichester, John Wiley & Sons, Ltd.

[15]

Lin F. Gradient estimates and blow-up analysis for stationary harmonic maps. Ann. of Math. (2), 1999, 149(3): 785-829

[16]

Lin F. Mapping problems, fundamental groups and defect measures. Acta Math. Sin. (Engl. Ser.), 1999, 15(1): 25-52

[17]

Lin F, Rivière T. Energy quantization for harmonic maps. Duke Math. J., 2002, 111(1): 177-193

[18]

Lin F, Wang C. Energy identity of harmonic map flows from surfaces at finite singular time. Calc. Var. Partial Differential Equations, 1998, 6(4): 369-380

[19]

Lin F., Wang C., Harmonic and quasi-harmonic spheres, II. 2002, 10(2): 341–375

[20]

Morrey CBJr.. Multiple Integrals in the Calculus of Variations, 1966, New York, Springer-Verlag New York, Inc. 130

[21]

Naber A., Valtorta D., Energy identity for stationary harmonic maps. 2024, arXiv: 2401.02242

[22]

Parker TH. Bubble tree convergence for harmonic maps. J. Differential Geom., 1996, 44(3): 595-633

[23]

Preiss D. Geometry of measures in ℝn: distribution, rectifiability, and densities. Ann. of Math. (2), 1987, 125(3): 537-643

[24]

Price P. A monotonicity formula for Yang–Mills fields. Manuscripta Math., 1983, 43(2–3): 131-166

[25]

Qing J. On singularities of the heat flow for harmonic maps from surface into spheres. Comm. Anal. Geom., 1995, 3(1–2): 297-315

[26]

Qing J, Tian G. Bubbling of the heat flows for harmonic maps from surfaces. Comm. Pure Appl. Math., 1997, 50(4): 295-310

[27]

Rivière T. Everywhere discontinuous harmonic maps into spheres. Acta Math., 1995, 175(2): 197-226

[28]

Rivière T. Interpolation spaces and energy quantization for Yang-Mills fields. Comm. Anal. Geom., 2002, 10(4): 683-708

[29]

Runst T, Sickel W. Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, 1996, Berlin, Walter de Gruyter & Co. 3

[30]

Sacks J, Uhlenbeck K. The existence of minimal immersions of 2-spheres. Ann. of Math. (2), 1981, 113: 1-24

[31]

Scheven C. Zur Regularitätstheorie stationärer harmonischer Abbildungen mit freier Randbedingung, 2004

[32]

Scheven C. Partial regularity for stationary harmonic maps at a free boundary. Math. Z., 2006, 253: 135-157

[33]

Schoen RM. Analytic aspects of the harmonic map problem. Seminar on Nonlinear Partial Differential Equations (Berkeley, Calif., 1983), 1984, New York, Springer-Verlag321358 2

[34]

Schoen R, Uhlenbeck K. A regularity theory for harmonic maps. J. Differential Geometry, 1982, 17(2): 307-335

[35]

Stein EM. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, 1993, Princeton, NJ, Princeton University Press43

[36]

Zhang H., Zhu M., Energy quantization for stationary harmonic maps into homogeneous spaces. Sci. China Math., 2025, DOI:https://doi.org/10.1007/s11425-024-2425-0

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

5

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/