A Variant of the Prime Number Theorem, 2

Bin Chen , Jiayuan Hu , Jie Wu

Frontiers of Mathematics ›› : 1 -16.

PDF
Frontiers of Mathematics ›› :1 -16. DOI: 10.1007/s11464-025-0085-1
Research Article
research-article

A Variant of the Prime Number Theorem, 2

Author information +
History +
PDF

Abstract

Let Λ(n) be the von Mangoldt function. Let

11P(n)
be the characteristic function of prime numbers and let [t] be the integral part of real number t. In this paper, we prove that the asymptotic formula
nxΛ([xn])=(d=1Λ(d)d(d+1))x+Oε(x7/15+ε)
holds as x → ∞, where ε > 0 is an arbitrarily small positive number and c > 0 is a positive constant. This improves some recent results of Zhang [J. Number Theory, 2024, 257: 163–185] and of Lü [Colloq. Math., 2024, 177(1–2): 11–19], which require
715+1195
and
2247
in place of
715
, respectively. We also improve some results of Ma–Chen–Wu [Int. J. Number Theory, 2019, 15(3): 597–611] and of Zhou–Feng [Rocky Mountain J. Math., 2024, 54(2): 623–629].

Keywords

The prime number theorem / exponential sums / Vaughan’s identity / 11N37 / 11L07

Cite this article

Download citation ▾
Bin Chen, Jiayuan Hu, Jie Wu. A Variant of the Prime Number Theorem, 2. Frontiers of Mathematics 1-16 DOI:10.1007/s11464-025-0085-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baker RC. Sums of two relatively prime cubes. Acta Arith., 2007, 129(2): 103-146

[2]

Bordelles O. On certain sums of number theory. Int. J. Number Theory, 2022, 18(9): 2053-2074

[3]

Bordellès O, Dai L, Heyman R, Pan H, Shparlinski IE. On a sum involving the Euler function. J. Number Theory, 2019, 202: 278-297

[4]

Bordellès O, Luca F, Moree P, Shparlinski IE. Denominators of Bernoulli polynomials. Mathematika, 2018, 64(2): 519-541

[5]

Bourgain J. Decoupling, exponential sums and the Riemann zeta function. J. Amer. Math. Soc., 2017, 30(1): 205-224

[6]

Fouvry É, Iwaniec H. Exponential sums with monomials. J. Number Theory, 1989, 33(3): 311-333

[7]

Graham SW, Kolesnik G. Van der Corput’s Method of Exponential Sums, 1991, Cambridge, Cambridge University Press 126

[8]

Heath-Brown DR. The Pjateckiǐ-Šapiro Prime Number Theorem. J. Number Theory, 1983, 16(2): 242-266

[9]

Kellner BC. On a product of certain primes. J. Number Theory, 2017, 179: 126-141

[10]

Liu K, Wu J, Yang Z. A variant of the prime number theorem. Indag. Math. (N.S.), 2022, 33(2): 388-396

[11]

X-D, Xu X. On fractional sum of the von Mangoldt function. Colloq. Math., 2024, 177(1–2): 11-19

[12]

Ma J, Wu J. On a sum involving the Mangoldt function. Period. Math. Hungar., 2021, 83(1): 39-48

[13]

Ma R, Wu J. On the primes in floor function sets. Bull. Aust. Math. Soc., 2023, 108(2): 236-243

[14]

Ma W-X, Chen Y-G, Wu B-L. Distribution of the primes involving the ceiling function. Int. J. Number Theory, 2019, 15(3): 597-611

[15]

Robert O, Sargos P. Three-dimensional exponential sums with monomials. J. Reine Angew. Math., 2006, 591: 1-20

[16]

Sargos P, Wu J. Multiple exponential sums with monomials and their applications in number theory. Acta Math. Hungar., 2000, 87(4): 333-354

[17]

Vaughan RC. An elementary method in prime number theory. Acta Arith., 1980, 37: 111-115

[18]

Wu J. Note on a paper by Bordelles, Dai, Heyman, Pan and Shparlinski. Period. Math. Hungar., 2020, 80(1): 95-102

[19]

Zhai W. On a sum involving the Euler function. J. Number Theory, 2020, 211: 199-219

[20]

Zhai W. On some sums involving small arithmetic functions. Acta Math. Sin. (Engl. Ser.), 2024, 40(10): 2097-2518

[21]

Zhang W. On a variant of the prime number theorem. J. Number Theory, 2024, 257: 163-185

[22]

Zhou G-L, Feng Y-F. Distribution of the primes represented by ⌊xn⌋\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lfloor {{x \over n}}\rfloor $$\end{document} in short interval. Rocky Mountain J. Math., 2024, 54(2): 623-629

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

9

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/